37
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Application of MRI to detect high-risk atherosclerotic plaque

&
Pages 545-550 | Published online: 10 Jan 2014

References

  • Lloyd-Jones D, Adams R, Carnethon M et al. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation119, 480–486 (2009).
  • van der Wal AC, Becker AE, van der Loos C, Das P. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation89, 36–44 (1994).
  • Farb A, Burke AP, Tang AL et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation93, 1354–1363 (1996).
  • Ambrose JA, Tannenbaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol.12, 56–62 (1988).
  • Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am. J. Cardiol.69, 729–732 (1992).
  • Saam T, Underhill HR, Chu B et al. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J. Am. Coll. Cardiol.51, 1014–1021 (2008).
  • Davies MJ. Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation85, I19–I24 (1992).
  • Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med.336, 1276–1282 (1997).
  • Boyle JJ. Association of coronary plaque rupture and atherosclerotic inflammation. J. Pathol.181, 93–99 (1997).
  • van der Wal AC, Becker AE, van der Loos C, Das P. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation89, 36–44 (1994).
  • Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in Human Atherosclerosis. Circulation113, 2245–2252 (2006).
  • Kolodgie FD, Gold HK, Burke AP et al. Intraplaque hemorrhage and progression of coronary atheroma. N. Engl. J. Med.349, 2316–2325 (2003).
  • Pasterkamp G, Schoneveld AH, Hijnen DJ et al. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis150, 245–253 (2000).
  • Yuan C, Mitsumori LM, Ferguson MS et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation104, 2051–2056 (2001).
  • Clarke SE, Hammond RR, Mitchell JR, Rutt BK. Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology. Magn. Reson. Med.50, 1199–1208 (2003).
  • Saam T, Ferguson MS, Yarnykh VL et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler. Thromb. Vasc. Biol.25, 234–239 (2005).
  • Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with i n vivo multicontrast magnetic resonance imaging. Circulation106, 1368–1373 (2002).
  • Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J. Magn. Reson. Imaging17, 410–420 (2003).
  • Sadat U, Weerakkody RA, Bowden DJ et al. Utility of high resolution MR imaging to assess carotid plaque morphology: a comparison of acute symptomatic, recently symptomatic and asymptomatic patients with carotid artery disease. Atherosclerosis207(2), 434–439 (2009).
  • Takaya N, Yuan C, Chu B et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI – initial results. Stroke37, 818–823 (2006).
  • Yuan C, Zhang SX, Polissar NL. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation105, 181–185 (2002).
  • Wasserman BA, Smith WI, Trout HH 3rd, Cannon RO 3rd, Balaban RS, Arai AE. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology223, 566–573 (2002).
  • Kramer CM, Cerilli LA, Hagspiel K, DiMaria JM, Epstein FH, Kern JA. Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm. Circulation109, 1016–1021 (2004).
  • Kerwin W, Hooker A, Spilker M et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation107, 851–856 (2003).
  • Lin W, Abendschein DR, Haacke EM. Contrast-enhanced magnetic resonance angiography of carotid arterial wall in pigs. J. Magn. Reson. Imaging7, 183–190 (1997).
  • Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology241, 459–468 (2006).
  • Manning WJ, Nezafat R, Appelbaum E, Danias PG, Hauser TH, Yeon SB. Coronary magnetic resonance imaging. Cardiol. Clin.25, 141–170, vi (2007).
  • Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation99, 3139–3148 (1999).
  • Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation102, 2582–2587 (2000).
  • Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn. Reson. Med.46, 848–854 (2001).
  • Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. A fast 3D approach for coronary MRA. J. Magn. Reson. Imaging10, 821–825 (1999).
  • Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation106, 296–299 (2002).
  • Stuber M, Botnar RM, Danias PG et al. Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J. Am. Coll. Cardiol.34, 524–531 (1999).
  • Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Breathhold three-dimensional coronary magnetic resonance angiography using real-time navigator technology. J. Cardiovasc. Magn. Reson.1, 233–238 (1999).
  • Meairs S, Rother J, Neff W, Hennerici M. New and future developments in cerebrovascular ultrasound, magnetic resonance angiography, and related techniques. J. Clin. Ultrasound23, 139–149 (1995).
  • Zimarino M, Prati F, Stabile E et al. Optical coherence tomography accurately identifies intermediate atherosclerotic lesions – an in vivo evaluation in the rabbit carotid artery. Atherosclerosis193, 94–101 (2007).
  • Jang IK, Bouma BE, Kang DH et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol.39, 604–609 (2002).
  • Waxman S, Dixon SR, L’Allier P et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc. Imaging2, 858–868 (2009).
  • Rudd JHF, Warburton EA, Fryer TD et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation105, 2708–2711 (2002).
  • Fusman B, Wolfkiel CJ. Ultrafast computed tomography for detection of coronary artery calcification. Am. J. Card. Imaging9, 206–212 (1995).
  • Wilhjelm JE, Gronholdt ML, Wiebe B, Jespersen SK, Hansen LK, Sillesen H. Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: correlation with visual classification and histological examination. IEEE Trans. Med. Imaging17, 910–922 (1998).
  • Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A. Texture-based classification of atherosclerotic carotid plaques. IEEE Trans. Med. Imaging22, 902–912 (2003).
  • O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med.340, 14–22 (1999).
  • Nagai Y, Metter EJ, Earley CJ et al. Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation98, 1504–1509 (1998).
  • Stone GW, Maehara A, Lansky AJ et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med.364, 226–235 (2011).
  • Blankstein R, Ferencik M. The vulnerable plaque: can it be detected with cardiac CT? Atherosclerosis211, 386–389 (2010).
  • Constantinides P. Experimental Atherosclerosis. Elsevier Publishing Co., NY, USA (1965).
  • Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures. Arch. Pathol.72, 197–208 (1961).
  • Cullen P, Baetta R, Bellosta S et al. Rupture of the atherosclerotic plaque: does a good animal model exist? Arterioscler. Thromb. Vasc. Biol.23, 535–542 (2003).
  • Falk E, Schwartz SM, Galis ZS, Rosenfeld ME. Putative murine models of plaque rupture. Arterioscler. Thromb. Vasc. Biol.27, 969–972 (2007).
  • Fuster V, Badimon L, Badimon JJ, Ip JH, Chesebro JH. The porcine model for the understanding of thrombogenesis and atherogenesis. Mayo Clin. Proc.66, 818–831 (1991).
  • Schwartz SM, Galis ZS, Rosenfeld ME, Falk E. Plaque rupture in humans and mice. Arterioscler. Thromb. Vasc. Biol.27, 705–713 (2007).
  • Constantindes PC. Rabbit arterial thrombosis production by systemic procedures. Arch. Pathol.72, 197–208 (1961).
  • Phinikaridou A, Hallock KJ, Qiao Y, Hamilton JA. A robust rabbit model of human atherosclerosis and atherothrombosis. J. Lipid Res.50, 787–797 (2009).
  • Johnstone MT, Botnar RM, Perez AS et al. In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model. Arterioscler. Thromb. Vasc. Biol.21, 1556–1560 (2001).
  • Johnstone MT, Perez AS, Nasser I et al. Angiotensin receptor blockade with candesartan attenuates atherosclerosis, plaque disruption, and macrophage accumulation within the plaque in a rabbit model. Circulation110, 2060–2065 (2004).
  • Botnar RM, Perez AS, Witte S et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation109, 2023–2029 (2004).
  • Phinikaridou A, Ruberg FL, Hallock KJ et al. In vivo detection of vulnerable atherosclerotic plaque by MRI in a rabbit model. Circ. Cardiovasc. Imaging3, 323–332 (2010).
  • Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation101, 598–603 (2000).
  • Smits PC, Pasterkamp G, de Jaegere PP, de Feyter PJ, Borst C. Angioscopic complex lesions are predominantly compensatory enlarged: an angioscopy and intracoronary ultrasound study. Cardiovasc. Res.41, 458–464 (1999).
  • Crawford T, Levene CI. Medial thinning in atheroma. J. Pathol. Bacteriol.66, 19–23 (1953).
  • Bond MG, Adams MR, Bullock BC. Complicating factors in evaluating coronary artery atherosclerosis. Artery9, 21–29 (1981).
  • Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med.316, 1371–1375 (1987).
  • McPherson DD, Sirna SJ, Hiratzka LF et al. Coronary arterial remodeling studied by high-frequency epicardial echocardiography: an early compensatory mechanism in patients with obstructive coronary atherosclerosis. J. Am. Coll. Cardiol.17, 79–86 (1991).
  • Losordo DW, Rosenfield K, Kaufman J, Pieczek A, Isner JM. Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. In vivo documentation using intravascular ultrasound. Circulation89, 2570–2577 (1994).
  • Nishioka T, Luo H, Eigler NL, Berglund H, Kim CJ, Siegel RJ. Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: an in vivo intravascular ultrasound study. J. Am. Coll. Cardiol.27, 1571–1576 (1996).
  • Miao C, Chen S, Macedo R et al. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol.53, 1708–1715 (2009).
  • von Birgelen C, Klinkhart W, Mintz GS et al. Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo.J. Am. Coll. Cardiol.37, 1864–1870 (2001).
  • Motoyama S, Kondo T, Sarai M et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol.50, 319–326 (2007).
  • Pasterkamp G, Borst C, Gussenhoven EJ et al. Remodeling of de novo atherosclerotic lesions in femoral arteries: impact on mechanism of balloon angioplasty. J. Am. Coll. Cardiol.26, 422–428 (1995).
  • Steen H, Lima JA, Chatterjee S et al. High-resolution three-dimensional aortic magnetic resonance angiography and quantitative vessel wall characterization of different atherosclerotic stages in a rabbit model. Invest. Radiol.42, 614–621 (2007).
  • Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, Hatsukami TS. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J. Magn. Reson. Imaging15, 62–67 (2002).
  • Maintz D, Ozgun M, Hoffmeier A et al. Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur. Heart J.27, 1732–1736 (2006).
  • Ibrahim T, Makowski MR, Jankauskas A et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc Imaging2, 580–588 (2009).
  • Calcagno C, Cornily JC, Hyafil F et al. Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler. Thromb. Vasc. Biol.28, 1311–1317 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.