158
Views
15
CrossRef citations to date
0
Altmetric
Review

Current devices for high-performance whole-body hyperthermia therapy

&
Pages 407-423 | Published online: 09 Jan 2014

References

  • Takano YS, Harmon BV, Kerr JF. Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: a study using electron microscopy and DNA gel electrophoresis. J. Pathol.163(4), 329–336 (1991).
  • Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol. Immunother.55(3), 320–328 (2006).
  • Siddiqui F, Avery PR, Li CY et al. Induction of the human heat shock promoter HSP 70b by nutritional stress: implications for cancer gene therapy. Cancer Invest.26(6), 553–561 (2008).
  • Siddiqui F, Kolozsvary A, Barton KN, Freytag SO, Brown SL, Kim JH. Does hyperthermia increase adenoviral transgene expression or dissemination in tumors? Int. J. Hyperthermia25(4), 273–279 (2009).
  • Sugarbaker PH. Laboratory and clinical basis for hyperthermia as a component of intracavitary chemotherapy. Int. J. Hyperthermia23(5), 431–442 (2007).
  • Tarner IH, Müller-Ladner U, Uhlemann C, Lange U. The effect of mild whole-body hyperthermia on systemic levels of TNF-α, IL-1β, and IL-6 in patients with ankylosing spondylitis. Clin. Rheumatol.28(4), 397–402 (2009).
  • Franckena M, Stalpers LJ, Koper PCM et al. Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: an update of the Dutch Deep Hyperthermia Trial. Int. J. Radiat. Oncol. Biol. Phys.70(4), 1176–1182 (2008).
  • Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol. Ther.101(3), 227–257 (2004).
  • Multhoff G. Activation of natural killer cells by heat shock protein 70. Int. J. Hyperthermia25(3), 169–175 (2009).
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer3(6), 401–410 (2003).
  • Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol.40(10), 2353–2362 (1990).
  • Hildebrandt B, Wust P, Ahlers O et al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol.43(1), 33–56 (2002).
  • Wust P, Hildebrandt B, Sreenivasa G et al. Hyperthermia in combined treatment of cancer. Lancet Oncol.3(8), 487–497 (2002).
  • Van der Zee J, Gonzalez D, van Rhoon GC, van Dijk JDP, van Putten WLJ, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet355(9210), 1119–1125 (2000).
  • Kraybill WG, Olenki T, Evans SS et al. A Phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumours: correlation with mouse models. Int. J. Hyperthermia18(3), 253–266 (2002).
  • Atanackovic D, Pollok K, Faltz C et al. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naive/memory t-cell subtypes. Am. J. Physiol. Regul. Integr. Comp. Physiol.290(3), R585–R594 (2006).
  • Milani V, Lorenz M, Weinkauf M et al. Combination of hyperthermia and bortezomib results in additive killing in mantle cell lymphoma cells. Int. J. Hyperthermia25(4), 262–272 (2009).
  • Bakhshandeh A, Bruns I, Traynor A et al. Ifosfamide, carboplatin and etoposide combined with 41.8°C whole body hyperthermia for malignant pleural mesothelioma. Lung Cancer39(3), 339–345 (2003).
  • Wiedemann GJ, d‘Oleire F, Knop E et al. Ifosfamide and carboplatin combined with 41.8°C whole-body hyperthermia in patients with refractory sarcoma and malignant teratoma. Cancer Res.54(20), 5346–5350 (1994).
  • Lohmann R. Pilot study of whole-body hyperthermia combined with chemotherapy in patients with metastasised pretreated progressive breast, ovarian, and colorectal carcinomas. Tumordiagn. U. Ther.22, 115–120 (2001).
  • Park MY, Jung SE, Cho SH et al. Preliminary experience using high intensity focused ultrasound for treating liver metastasis from colon and stomach cancer. Int. J. Hyperthermia25(3), 180–188 (2009).
  • Strobl B, Rjosk D, Janni W et al. Whole body hyperthermia combined with carboplatin/paclitaxel in patients with ovarian carcinoma – Phase-II-study. J. Clin. Oncol.22(14 Suppl.), 5128–5129 (2004).
  • Atmaca A, Al-Batran SE, Neumann A et al. Whole-body hyperthermia (WBH) in combination with carboplatin in patients with recurrent ovarian cancer – a Phase II study. Gynecol. Oncol.112(2), 384–388 (2009).
  • Hildebrandt B, Dräger J, Kerner T et al. Whole-body hyperthermia in the scope of Von Ardenne‘s systemic cancer multistep therapy (sCMT) combined with chemotherapy in patients with metastatic colorectal cancer: a Phase I/II study. Int. J. Hyperthermia20(3), 317–333 (2004).
  • Ahmed HU, Arya M, Levitt G, Duffy PG, Sebire NJ, Mushtaq I. Part II: treatment of primary malignant non-wilms’ renal tumours in children. Lancet Oncol.8(9), 842–848 (2007).
  • Richel O, Zum Vörde Sive Vörding PJ, Rietbroek R et al. Phase II study of carboplatin and whole body hyperthermia (WBH) in recurrent and metastatic cervical cancer. Gynecol. Oncol.95(3), 680–685 (2004).
  • Harima Y, Nagata K, Harima K, Ostapenko VV, Tanaka Y, Sawada S. A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int. J. Hyperthermia25(5), 338–343 (2009).
  • Bergs JW, Franken NAP, Haveman J, Geijsen ED, Crezee J, Van Bree C. Hyperthermia, cisplatin and radiation trimodality treatment: a promising cancer treatment: a review from preclinical studies to clinical application. Int. J. Hyperthermia23(4), 329–341 (2007).
  • Yu D-Y, Zhao Q-L, Wei Z-L, Shehata M, Kondo T. Enhancement of hyperthermia-induced apoptosis by sanazole in human lymphoma u937 cells. Int. J. Hyperthermia25(5), 364–373 (2009).
  • Sheeja K, Kuttan G. Effect of Andrographis paniculata as an adjuvant in combined chemo-radio and whole body hyperthermia treatment – a preliminary study. Immunopharmacol. Immunotoxicol.30(1), 181–194 (2008).
  • Hildebrandt B, Hegewisch-Becker S, Kerner T et al. Current status of radiant whole-body hyperthermia at temperatures >41.5°C and practical guidelines for the treatment of adults. Int. J. Hyperthermia21(2), 169–183 (2005).
  • Xiang S-H, Chen B-W, Zhou Y-X, Yan X-M, Liu J. Development of interventional whole body hyperthermia system: part I: device fabrication and performance evaluation. Forschung im Ingenieurwesen72(3), 145–152 (2008).
  • Kinsht NV, Kinsht DN. Mathematical modelling of systemic circulation and heat exchange in whole body hyperthermia (43–44 c). In: Proceeding (483) ACIT – Automation, Control, and Applications – 2005. Shokin YI, Potaturkin OI (Eds). ACTA Press, Novosibirsk, Russia, 20–23 (2005).
  • Xiang S, Liu J. Comprehensive evaluation on the heating capacities of four typical whole body hyperthermia strategies via compartmental model. Int. J. Heat Mass Trans.51(23–24), 5486–5496 (2008).
  • Von Ardenne M, Kirsch R. On the methodology of extreme hyperthermia, with special reference to multi-step cancer chemotherapy. Dtsch. Gesundheitsw.20(43), 1935–1940 (1965).
  • Kirsch E, Von Ardenne M, Reitnauer PG. [A recently developed vibrating chair and its significance in the conservative treatment of urolithiasis. Concluding remarks]. Z. Urol. Nephrol.58(4), 225–236 (1965).
  • Kirsch R, Schmidt D. Klinische und experimentelle erfahrungen mit der mehrschritt-therapie. Zentralblatt für Chirurgie36, 1297–1312 (1966).
  • Law HT, Pettigrew RT. Whole-body and regional hyperthermia by direct heating. In: Hyperthermia. Blackie, Glasgow, UK 180–201 (1986).
  • Von Ardenne M, Von Ardenne T, Böhme G, Reitnauer PG. [Selective local hyperthermy of tumor tissue. Homogenized energy supply also to deep-seated tissues by high-performance decametric wave coil section plus dual system raster motion (author transl.)]. Arch. Geschwulstforsch.47(6), 487–523 (1977).
  • Park WY, Macnamara TE. Temperature change and neuromuscular blockade by d-tubocurarine or pancuronium in man. Anesthesiology50(2), 161–163 (1979).
  • Parks LC, Minaberry D, Smith DP, Neely WA. Treatment of far-advanced bronchogenic carcinoma by extracorporeally induced systemic hyperthermia. J. Thorac. Cardiovasc. Surg.78(6), 883–892 (1979).
  • Maeta M, Koga S, Shimizu N et al. Effect of extracorporeally induced total body hyperthermia for cancer on cardiovascular function. Jpn. Heart J.25(6), 993–1000 (1984).
  • Willnow U, Lindner H, Brock D et al. [Treatment of otherwise incurable tumor diseases in childhood using whole-body hyperthermia and chemotherapy]. Dtsch. Med. Wochenschr.114(6), 208–213 (1989).
  • Edelmann A, Mahanna DL, Lewis LA, Thatcher JS, Hartman FA. The use of adrenal extract in fever therapy. J. Clin. Endocrinol. Metab.3(1), 20 (1943).
  • Robins HI, Dennis WH, Neville AJ et al. A nontoxic system for 41.8°C whole-body hyperthermia: results of a Phase I study using a radiant heat device. Cancer Res.45(8), 3937–3944 (1985).
  • Robins HI, Longo W. Whole body hyperthermia: simple complexities. Intensive Care Med.25(9), 898–900 (1999).
  • Heckel M, Heckel I. [Studies on 479 cases of infrared hyperthermia treatments. Contribution to the method of whole body hyperthermia]. Med. Welt30(25), 971–975 (1979).
  • Wust P, Riess H, Hildebrandt B et al. Feasibility and analysis of thermal parameters for the whole-bodyhyperthermia system iratherm-2000. Int. J. Hyperthermia16(4), 325–339 (2000).
  • Wust P, Gneveckow U, Johannsen M et al. Magnetic nanoparticles for interstitial thermotherapy: feasibility, tolerance and achieved temperatures. Int. J. Hyperthermia22(8), 673–685 (2006).
  • Johannsen M, Gneveckow U, Taymoorian K et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective Phase I trial. Int. J. Hyperthermia23(3), 315–323 (2007).
  • Sharma R, Chen CJ. Newer nanoparticles in hyperthermia treatment and thermometry. J. Nanopart. Res.11(3), 671–689 (2009).
  • Foster KR, Glaser R. Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys.92(6), 609–620 (2007).
  • Nittby H, Grafstr MG, Eberhardt JL et al. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier. Electromagn. Biol. Med.27(2), 103–126 (2008).
  • Dahl O. Status of clinical hyperthermia. Acta Oncol.38(7), 863–873 (1999).
  • Nikiforov V. Magnetic induction hyperthermia. Russ. Phys. J.50(9), 913–924 (2007).
  • Roszkowski W, Wrembel JM, Roszkowski K, Janiak M, Szmigielski S. Effect of whole-body microwave hyperthermia on delayed cutaneous hypersensitivity in tumor-bearing mice. J. Cancer Res. Clin. Oncol.97(1), 23–29 (1980).
  • Hauck ML, LaRue SM, Petros WP et al. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin. Cancer Res.12(13), 4004–4010 (2006).
  • Nelson DA, Charbonnel S, Curran AR et al. A high-resolution voxel model for predicting local tissue temperatures in humans subjected to warm and hot environments. J. Biomech. Eng.131, 041003 (2009).
  • Chen XL, Wang F, Bao YQ. An accidental burn resulted from whole body hyperthermia therapy. Burns33(2), 252–254 (2007).
  • Kokura S, Adachi S, Manabe E et al. Whole body hyperthermia improves obesity-induced insulin resistance in diabetic mice. Int. J. Hyperthermia23(3), 259–265 (2007).
  • Dong J, Shi-ying Z, Suo-Cheng C. Research progress of whole body hyperthermia and apoptosis of tumor cells. Medical Recapitulate14(1), 50–53 (2008).
  • Hager ED, Dziambor H, Hohmann D, Muhe N, Strama H. Intraperitoneal hyperthermic perfusion chemotherapy of patients with chemotherapy-resistant peritoneal disseminated ovarian cancer. Int. J. Gynecol. Cancer11(Suppl. 1), 57–63 (2001).
  • Douwes F, Bogovic J, Douwes O, Migeod F, Grote C. Whole-body hyperthermia in combination with platinum-containing drugs in patients with recurrent ovarian cancer. Int. J. Clin. Oncol.9(2), 85–91 (2004).
  • Alvarez Secord A, Jones EL, Hahn CA et al. Phase I/II trial of intravenous doxil and whole abdomen hyperthermia in patients with refractory ovarian cancer. Int. J. Hyperthermia21(4), 333–347 (2005).
  • Von Ardenne A, Wehner H. Extreme whole-body hyperthermia with water-filtered infrared-a radiation. In: Hyperthermia in Cancer Treatment: A Primer. Baronzio GF, Hager ED (Eds). Springer Science, NY, USA, 237 (2006).
  • Brockow T, Wagner A, Franke A, Offenbächer M, Resch KL. A randomized controlled trial on the effectiveness of mild water-filtered near infrared whole-body hyperthermia as an adjunct to a standard multimodal rehabilitation in the treatment of fibromyalgia. Clin. J. Pain23(1), 67–75 (2007).
  • Kerner T, Hildebrandt B, Ahlers O et al. Anaesthesiological experiences with whole body hyperthermia. Int. J. Hyperthermia19(1), 1–12 (2003).
  • Schencking M, Frese T, Sandholzer H. [Treatment of a radiculopathia by whole-body hyperthermia]. Forsch Komplementmed.15(5), 273 (2008).
  • Yang W, Fu W, Li X et al. Clinical application of whole body hyperthermia to treat advaced carcinoma. Journal of North China Coal Medical College6(4), 688–690 (2002).
  • Liu Y, Ding X, Liu P, Yang Y, Pan X. Case report of whole body hyperthermia to treat bone metastasis of thyroid carcinoma. Journal of Shandong University (Health Sciences)45(9), 968–969 (2007).
  • Ahlers O, Hildebrandt B, Dieing A et al. Stress induced changes in lymphocyte subpopulations and associated cytokines during whole body hyperthermia of 41.8–42.2°C. Eur. J. Appl. Physiol.95(4), 298–306 (2005).
  • Hildebrandt B, Schoeler D, Ringel F et al. Differential gene expression in peripheral blood lymphocytes of cancer patients treated with whole body hyperthermia and chemotherapy: a pilot study. Int. J. Hyperthermia22(8), 625–635 (2006).
  • Wehner H, Von Ardenne A, Kaltofen S. Whole-body hyperthermia with water-filtered infrared radiation: technical-physical aspects and clinical experiences. Int. J. Hyperthermia17(1), 19–30 (2001).
  • Ohishi T, Nukuzuma C, Seki A et al. Alkalization of blood ph is responsible for survival of cancer patients by mild hyperthermia. Biomed. Res.30(2), 95 (2009).
  • Bull JMC, Scott GL, Strebel FR et al. Fever-range whole-body thermal therapy combined with cisplatin, gemcitabine, and daily interferon-α: a description of a Phase I-II protocol. Int. J. Hyperthermia24(8), 649–662 (2008).
  • Wrzal PK, Bettaieb A, Averill-Bates DA. Molecular mechanisms of apoptosis activation by heat shock in multidrug-resistant chinese hamster cells. Radiat. Res.170(4), 498–511 (2008).
  • Sumiyoshi K, Strebel FR, Rowe RW, Bull JMC. The effect of whole-body hyperthermia combined with ‘metronomic’ chemotherapy on rat mammary adenocarcinoma metastases. Int. J. Hyperthermia19(2), 103–118 (2003).
  • Pritchard MT, Ostberg JR, Evans SS et al. Protocols for simulating the thermal component of fever: preclinical and clinical experience. Methods32(1), 54–62 (2004).
  • Pritchard MT, Wolf SF, Kraybill WF, Repasky EA. The anti-tumor effect of interleukin-12 is enhanced by mild (fever-range) thermal therapy. Immunol. Invest.34(3), 361–380 (2005).
  • Ishibashi J, Yamashita K, Ishikawa T et al. The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70a. Med. Oncol.25(2), 229–237 (2008).
  • Hattori T, Kokura S, Okuda T et al. Antitumor effect of whole body hyperthermia with α-galactosylceramide in a subcutaneous tumor model of colon cancer. Int. J. Hyperthermia23(7), 591–598 (2007).
  • Toyokawa H, Matsui Y, Uhara J et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. (Maywood)228(6), 724–729 (2003).
  • Yamada Y, Itoh Y, Aoki S et al. Preliminary results of m-vac chemotherapy combined with mild hyperthermia, a new therapeutic strategy for advanced or metastatic transitional cell carcinoma of the urothelium. Cancer Chemother. Pharmacol.64(6), 1079–1083 (2009).
  • Witkamp AJ, De Bree E, Kaag MM et al. Extensive cytoreductive surgery followed by intra-operative hyperthermic intraperitoneal chemotherapy with mitomycin-c in patients with peritoneal carcinomatosis of colorectal origin. Eur. J. Cancer37(8), 979–984 (2001).
  • Witkamp AJ, de Bree E, Van Goethem R, Zoetmulder FA. Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy. Cancer Treat. Rev.27(6), 365–374 (2001).
  • Witkamp AJ, De Bree E, Kaag MM, Van Slooten GW, Van Coevorden F, Zoetmulder FA. Extensive surgical cytoreduction and intraoperative hyperthermic intraperitoneal chemotherapy in patients with pseudomyxoma peritonei. Br. J. Surg.88(3), 458–463 (2001).
  • Matsuzaki Y, Edagawa M, Shimizu T et al. Intrapleural hyperthermic perfusion with chemotherapy increases apoptosis in malignant pleuritis. Ann. Thorac. Surg.78(5), 1769–1772 (2004).
  • Zwischenberger JB, Vertrees RA, Woodson LC et al. Percutaneous venovenous perfusion-induced systemic hyperthermia for advanced non-small cell lung cancer: initial clinical experience. Ann. Thorac. Surg.72(1), 234–242 (2001).
  • Vertrees RA, Leeth A, Girouard M, Roach JD, Zwischenberger JB. Whole-body hyperthermia: a review of theory, design and application. Perfusion17(4), 279–290 (2002).
  • Zwischenberger JB, Vertrees RA, Bedell EA, McQuitty CK, Chernin JM, Woodson LC. Percutaneous venovenous perfusion-induced systemic hyperthermia for lung cancer: a Phase I safety study. Ann. Thorac. Surg.77(6), 1916–1925 (2004).
  • Vertrees RA, Das GC, Coscio AM, Xie J, Zwischenberger JB, Boor PJ. A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells. Mol. Carcinog.44(2), 111–121 (2005).
  • Vertrees RA, Das GC, Popov VL et al. Synergistic interaction of hyperthermia and gemcitabine in lung cancer. Cancer Biol. Ther.4(10), 1144–1153 (2005).
  • Bernard AC, Davenport DL, Chang PK, Vaughan TB, Zwischenberger JB. Intraoperative transfusion of 1 U to 2 U packed red blood cells is associated with increased 30-day mortality, surgical-site infection, pneumonia, and sepsis in general surgery patients. J. Am. Coll. Surg.208(5), 931–937 (2009).
  • Xiang S-H, Chen B-W, He X-H et al. Development of interventional whole body hyperthermia system: part II: in vivo animal experimental evaluation. Forschung im Ingenieurwesen73(3), 139–146 (2009).
  • Xiang S-H, Liu J, Zhou Y-X, Yan X-M. Monitoring temperature of a heating needle and surrounding blood during interventional whole body hyperthermia therapy. Meas. Sci. Tech.18(11), 3417–3424 (2007).
  • Malyutina YV, Makarova YM, Semenets TN, Semina OV, Mosin AF, Kabakov AE. Whole body hyperthermia in mice confers heat shock protein-dependent radioresistance of their bone marrow and thymocytes. J. Therm. Biol.30(7), 511–517 (2005).
  • Tolson JK, Roberts SM. Manipulating heat shock protein expression in laboratory animals. Methods35(2), 149–157 (2005).
  • Chankova SG, Yurina NP, Dimova EG et al. Pretreatment with heat does not affect double-strand breaks DNA rejoining in Chlamydomonas reinhardtii. J. Therm. Biol.34(7), 332–336 (2009).
  • Zaidi AK, Patil MS, Bagewadikar RS, Subramanian M, Kaklij GS. Radioprotection by whole body hyperthermia: possible mechanism(s). J. Therm. Biol.27(1), 29–37 (2002).
  • Blatteis CM. Endotoxic fever: new concepts of its regulation suggest new approaches to its management. Pharmacol. Ther.111(1), 194–223 (2006).
  • Nyberg F, Hallberg M, Hari Shanker S. Neuropeptides in hyperthermia. In: Progress in Brain Research. Elsevier, MO, USA, 277–293 (2007).
  • Vinkers CH, Van Bogaert MJ, Klanker M et al. Translational aspects of pharmacological research into anxiety disorders: the stress-induced hyperthermia (sih) paradigm. Eur. J. Pharmacol.585(2–3), 407–425 (2008).
  • Szelényi Z. Cholecystokinin: role in thermoregulation and other aspects of energetics. Clin. Chim. Acta411(5–6), 329–335 (2009).
  • Dhiraj A, Daniel C, Trent P, Mikhail S, Robert BR. Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation. Phys. Med. Biol.50(8), 1919–1935 (2005).
  • Arora D, Skliar M, Cooley D, Blankespoor A, Moellmer J, Roemer R. Nonlinear model predictive thermal dose control of thermal therapies: experimental validation with phantoms. In: American Control Conference, 2004. Proceedings of the 2004 American Control Conference. AAC (Eds). IEEE, Boston, MA, USA, 1627–1632 (2004).
  • Hjertaker BT, Froystein T, Schem BC. A thermometry system for quality assurance and documentation of whole body hyperthermia procedures. Int. J. Hyperthermia21(1), 45–55 (2005).
  • Wust P, Cho CH, Hildebrandt B, Gellermann J. Thermal monitoring: invasive, minimal-invasive and non-invasive approaches. Int. J. Hyperthermia22(3), 255–262 (2006).
  • Sikoski P, Banks ML, Gould R, Young RW, Wallace JM, Nader MA. Comparison of rectal and infrared thermometry for obtaining body temperature in cynomolgus macaques (Macaca fascicularis). J. Med. Primatol.36(6), 381–384 (2007).
  • Kistemaker JA, Den Hartog EA, Daanen HA. Reliability of an infrared forehead skin thermometer for core temperature measurements. J. Med. Eng. Technol.30(4), 252–261 (2006).
  • Zhang S, Malloy CR, Sherry AD. MRI thermometry based on paracest agents. J. Am. Chem. Soc.127(50), 17572 (2005).
  • Vanne A, Hynynen K. MRI feedback temperature control for focused ultrasound surgery. Phys. Med. Biol.48(1), 31–43 (2003).
  • Wyatt C, Soher B, Maccarini P, Charles HC, Stauffer P, Macfall J. Hyperthermia mri temperature measurement: evaluation of measurement stabilisation strategies for extremity and breast tumours. Int. J. Hyperthermia25(6), 422–433 (2009).
  • Mirko W, Peter W, Martin W et al. Adaptation of antenna profiles for control of mr guided hyperthermia (HR) in a hybrid MR–HT system. Med. Phys.34(12), 4717–4725 (2007).
  • Bayford RH. Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng.8(1), 63–91 (2006).
  • Meaney PM, Paulsen KD, Fanning MW, Li D, Fang Q. Image accuracy improvements in microwave tomographic thermometry: phantom experience. Int. J. Hyperthermia19(5), 534–550 (2003).
  • Xia Y, Hu Z, Nan Q, Jia L, Peng J, Zeng Y. Design of double ultrasound pulse transmission and receiving circuit used in ultrasound thermometry. J. Med. Eng. Tech.30(2), 112–118 (2006).
  • Kamiyama T, Ito J, Noda H, Iwasa H, Kiyanagi Y, Ikeda S. Computer tomography thermometry – an application of neutron resonance absorption spectroscopy. Nucl. Instrum. Meth. Phys. Res.A542(1–3), 258–263 (2005).
  • Han B, Hanson W, Bensalah K, Tuncel A, Stern J, Cadeddu J. Development of quantum dot-mediated fluorescence thermometry for thermal therapies. Ann. Biomed. Eng.37(6), 1230–1239 (2009).
  • Szasz A, Szasz O, Szasz N. Electro-hyperthermia: a new paradigm in cancer therapy. DZO33(3), 91–99 (2001).
  • Fiorentini G, Szasz A. Hyperthermia today: electric energy, a new opportunity in cancer treatment. J. Cancer Res. Ther.2(2), 41–46 (2006).
  • Andocs G, Szasz O, Szasz A. Oncothermia treatment of cancer: from the laboratory to clinic. Electromagn. Biol. Med.28(2), 148–165 (2009).
  • Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A. Strong synergy of heat and modulated electromagnetic field in tumor cell killing. Strahlenther. Onkol.185(2), 120–126 (2009).
  • Kennedy JE. Innovation: high-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer5(4), 321–327 (2005).
  • Wootton JH, Ross AB, Diederich CJ. Prostate thermal therapy with high intensity transurethral ultrasound: the impact of pelvic bone heating on treatment delivery. Int. J. Hyperthermia23(8), 609–622 (2007).
  • Burtnyk M, Chopra R, Bronskill MJ. Quantitative analysis of 3-D conformal MRI-guided transurethral ultrasound therapy of the prostate: theoretical simulations. Int. J. Hyperthermia25(2), 116–131 (2009).
  • Puccini S, Bar NK, Bublat M, Kahn T, Busse H. Simulations of thermal tissue coagulation and their value for the planning and monitoring of laser-induced interstitial thermotherapy (LITT). Magn. Res. Med.49(2), 351–362 (2003).
  • Vesselov LM, Whittington W, Lilge L. Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications. Lasers Surg. Med.34(4), 348–351 (2004).
  • Ma N, Gao X, Zhang XX. Two-layer simulation model of laser-induced interstitial thermo-therapy. Lasers Med. Sci.18(4), 184–189 (2004).
  • Zhou J, Liu J. Numerical study on 3-D light and heat transport in biological tissues embedded with large blood vessels during laser-induced thermotherapy. Numerical Heat Transfer: Part A – Applications45(5), 415–449 (2004).
  • Zhou J, Zhang Y, Chen J. Effects of large blood vessels on the transient propagation of ultrafast laser pulse in biological tissues. Heat Mass Trans.45(5), 527–535 (2009).
  • Atsarkin VA, Levkin LV, Posvyanskiy VS et al. Solution to the bioheat equation for hyperthermia with La1xAgyMnO3 nanoparticles: the effect of temperature autostabilization. Int. J. Hyperthermia25(3), 240–247 (2009).
  • Li F-R, Yan W-H, Guo Y-H, Qi H, Zhou H-X. Preparation of carboplatin-fec-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Int. J. Hyperthermia25(5), 383–391 (2009).
  • Renard P-EL, Buchegger F, Petri-Fink A et al. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Int. J. Hyperthermia25(3), 229–239 (2009).
  • Salloum M, Ma R, Zhu L. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. Int. J. Hyperthermia25(4), 309–321 (2009).
  • Babincova M, Sourivong P, Leszczynska D, Babinec P. Blood-specific whole-body electromagnetic hyperthermia. Med. Hypotheses55(6), 459–460 (2000).
  • Babincova M, Altanerova V, Altaner C, Cicmanec P, Babinec P. In vivo heating of magnetic nanoparticles in alternating magnetic field. Med. Phys.31(8), 2219–2221 (2004).
  • Sreenivasa G, Gellermann J, Rau B et al. Clinical use of the hyperthermia treatment planning system hyperplan to predict effectiveness and toxicity. Int. J. Radiat. Oncol. Biol. Phys.55(2), 407–419 (2003).
  • Bakshandeh A, Bruns I, Eberhardt K et al. Ifosfamide, carboplatin and etoposide combined with aquatherm-induced 41.8 °C whole-body hyperthermia for adult patients with malignant pleural mesothelioma. Ann. Oncol.11(4), 113–115 (2000).
  • Westermann AM, Wiedemann GJ, Jager E et al. A systemic hyperthermia oncologic working group trial. Ifosfamide, carboplatin, and etoposide combined with 41.8°C whole-body hyperthermia for metastatic soft tissue sarcoma. Oncology64(4), 312–321 (2003).
  • Dieing A, Ahlers O, Kerner T et al. Whole body hyperthermia induces apoptosis in subpopulations of blood lymphocytes. Immunobiology207(4), 265–273 (2003).
  • Gong B, Asimakis GK, Chen Z et al. Whole-body hyperthermia induces up-regulation of vascular endothelial growth factor accompanied by neovascularization in cardiac tissue. Life Sci.79(19), 1781–1788 (2006).
  • Chen M-Y, Lin J-H, Tai D-Y et al. Alteration of arterial blood pressure and myocardial injury induced by whole body hyperthermia in pigs. J. Mol. Cell. Cardiol.40(6), 1009 (2006).
  • Lagendijk JJW. Hyperthermia treatment planning. Phys. Med. Biol.(5), R61 (2000).
  • Gellermann J, Wust P, Stalling D et al. Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan. Int. J. Radiat. Oncol. Biol. Phys.47(4), 1145–1156 (2000).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.