830
Views
14
CrossRef citations to date
0
Altmetric
Editorial

Targeted delivery of microbubbles and nanobubbles for image-guided thermal ablation therapy of tumors

, &
Pages 303-306 | Published online: 09 Jan 2014

References

  • VanSonnenberg E, McMullen WN, Solbiati L, Livraghi T, Mueller PR, Silverman SG. Tumor Ablation: Principles and Practice. Springer Science and Business Media, NY, USA (2005).
  • Carrafiello G, Lagana D, Mangini M et al. Microwave tumors ablation: principles, clinical applications and review of preliminary experiences. Int. J. Surg.6(Suppl. 1), S65–S69 (2008).
  • Brown DB. Concepts, considerations, and concerns on the cutting edge of radiofrequency ablation. J. Vasc. Interv. Radiol.16(5), 597–613 (2005).
  • Hill CR, ter Haar GR. Review article: high intensity focused ultrasound – potential for cancer treatment. Br. J. Radiol.68(816), 1296–1303 (1995).
  • Bitsch RG, Dux M, Helmberger T, Lubienski A. Effects of vascular perfusion on coagulation size in radiofrequency ablation of ex vivo perfused bovine livers. Invest. Radiol.41(4), 422–427 (2006).
  • Chang I, Mikityansky I, Wray-Cahen D, Pritchard WF, Karanian JW, Wood BJ. Effects of perfusion on radiofrequency ablation in swine kidneys. Radiology231(2), 500–505 (2004).
  • Denys AL, De Baere T, Mahe C et al. Radio-frequency tissue ablation of the liver: effects of vascular occlusion on lesion diameter and biliary and portal damages in a pig model. Eur. Radiol.11(10), 2102–2108 (2001).
  • Goldberg SN, Saldinger PF, Gazelle GS et al. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intratumoral doxorubicin injection in a rat breast tumor model. Radiology220(2), 420–427 (2001).
  • Lee JM, Han JK, Chang JM et al. Radiofrequency ablation of the porcine liver in vivo: increased coagulation with an internally cooled perfusion electrode. Acad. Radiol.13(3), 343–352 (2006).
  • Berjano EJ. Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. Biomed. Eng. Online5, 24 (2006).
  • Jain MK, Wolf PD. A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation. Ann. Biomed. Eng.28(9), 1075–1084 (2000).
  • Liu Z, Lobo SM, Humphries S et al. Radiofrequency tumor ablation: insight into improved efficacy using computer modeling. AJR Am. J. Roentgenol.184(4), 1347–1352 (2005).
  • Baere TD. Computed tomography imaging for tumor ablation. In: Tumor Ablation: Principles and Practice. VanSonnenberg E, McMullen WN, Solbiati L, Livraghi T, Mueller PR, Silverman SG (Eds). Springer Science and Business Media, NY, USA, 104–120 (2005).
  • Tonolini M, Solbiati L. Ultrasound imaging in tumor ablation. In: Tumor Ablation: Priniciples and Practice. VanSonnenberg E, McMullen WN, Solbiati L, Livraghi T, Mueller PR, Silverman SG (Eds). Springer Science and Business Media, NY, USA, 104–120 (2005).
  • Hazle JD, Stafford RJ, Price RE. Magnetic resonance imaging-guided focused ultrasound thermal therapy in experimental animal models: correlation of ablation volumes with pathology in rabbit muscle and VX2 tumors. J. Magn. Reson. Imaging15(2), 185–194 (2002).
  • Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin. Nucl. Med.28(3), 192–197 (2003).
  • Jolesz FA, McDannold N. Current status and future potential of MRI-guided focused ultrasound surgery. J. Magn. Reson. Imaging27(2), 391–399 (2008).
  • Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperthermia10(4), 457–483 (1994).
  • Breen MS, Breen M, Butts K, Chen L, Saidel GM, Wilson DL. MRI-guided thermal ablation therapy: model and parameter estimates to predict cell death from MR thermometry images. Ann. Biomed. Eng.35(8), 1391–1403 (2007).
  • Xu RX, Povoski SP. Diffuse optical imaging and spectroscopy for cancer. Expert Rev. Med. Devices4(1), 83–95 (2007).
  • Frangioni JV. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol.7(5), 626–634 (2003).
  • Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol. Cancer Res. Treat.4(5), 559–566 (2005).
  • Meloni MF, Livraghi T, Filice C, Lazzaroni S, Calliada F, Perretti L. Radiofrequency ablation of liver tumors: the role of microbubble ultrasound contrast agents. Ultrasound Q.22(1), 41–47 (2006).
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials21(23), 2475–2490 (2000).
  • Lu J, Jackson JK, Gleave ME, Burt HM. The preparation and characterization of anti-VEGFR2 conjugated, paclitaxel-loaded PLLA or PLGA microspheres for the systemic targeting of human prostate tumors. Cancer Chemother. Pharmacol.61(6), 997–1005 (2008).
  • Sun B, Ranganathan B, Feng SS. Multifunctional poly(d,l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer. Biomaterials29(4), 475–486 (2008).
  • Betancourt T, Byrne JD, Sunaryo N et al. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J. Biomed. Mater. Res. A91(1), 263–276 (2009).
  • Campbell RB. Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med. Chem.6(6), 503–512 (2006).
  • Xu JS, Huang J, Qin R et al. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials31(7), 1716–1722 (2010).
  • Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin. Cancer Res.13(1), 323–330 (2007).
  • Xu R, Huang J, Xu J et al. Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. J. Biomed. Opt.14(3), 034020 (2009).
  • Kim C, Qin R, Xu JS, Xu RX, Wang L. Ultrasound and photoacoustic dual-modal imaging of thick biological tissue with microbubble enhancement. J. Biomed. Opt. (2009) (In press).
  • Giesecke T, Hynynen K. Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro.Ultrasound Med. Biol.29(9), 1359–1365 (2003).
  • Winter PM, Cai K, Caruthers SD, Wickline SA, Lanza GM. Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev. Med. Devices4(2), 137–145 (2007).
  • Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics48(4), 260–270 (2008).
  • Zou P, Xu S, Wang A et al. Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol. Pharm.6(2), 428–440 (2009).
  • Xu RX, Ewing J, El-Dahdah H, Wang B, Povoski SP. Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions. Technol. Cancer Res. Treat.7(6), 471–482 (2008).
  • Xu RX, Qiang B, Mao JJ, Povoski SP. Development of a handheld near-infrared imager for dynamic characterization of in vivo biological tissue systems. Appl. Opt.46(30), 7442–7451 (2007).
  • Xu RX, Wang F, Theyyunni N, Lee R, Patel VR. Numerical simulation of radiofrequency ablation process for intraoperative assessment of tissue temperature and ablation margin. J. Urol.181(4), 158 (2009).
  • Huang J, Xu JS, Xu RX. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials31(6), 1278–1286 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.