389
Views
31
CrossRef citations to date
0
Altmetric
Review

Cochlear implants: current status and future potential

&
Pages 389-401 | Published online: 09 Jan 2014

References

  • Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear. Res.242(1–2), 3–21 (2008).
  • Strenzke N, Pauli-Magnus D, Meyer A, Brandt A, Maier H, Moser T. [Update on physiology and pathophysiology of the inner ear: pathomechanisms of sensorineural hearing loss]. HNO56(1), 27–36 (2008).
  • Zeng FG, Rebscher S, Harrison WV, Sun X, Feng H. Cochlear implants: system design, integration and evaluation. IEEE Rev. Biomed. Eng.1, 115–142 (2008).
  • Fu QJ, Nogaki G. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing. J. Assoc. Res. Otolaryngol.6(1), 19–27 (2005).
  • Landsberger DM, Srinivasan AG. Virtual channel discrimination is improved by current focusing in cochlear implant recipients. Hear. Res.254(1–2), 34–41 (2009).
  • Drennan WR, Won JH, Dasika VK, Rubinstein JT. Effects of temporal fine structure on the lateralization of speech and on speech understanding in noise. J. Assoc. Res. Otolaryngol.8(3), 373–383 (2007).
  • Stickney GS, Assmann PF, Chang J, Zeng FG. Effects of cochlear implant processing and fundamental frequency on the intelligibility of competing sentences. J. Acoust. Soc. Am.122(2), 1069–1078 (2007).
  • Gfeller K, Turner C, Oleson J et al. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise. Ear Hear.28(3), 412–423 (2007).
  • Chang YT, Yang HM, Lin YH, Liu SH, Wu JL. Tone discrimination and speech perception benefit in Mandarin-speaking children fit with HiRes fidelity 120 sound processing. Otol. Neurotol.30(6), 750–757 (2009).
  • Zierhofer CM, Schatzer R. Simultaneous intracochlear stimulation based on channel interaction compensation: analysis and first results. IEEE Trans. Biomed. Eng.55(7), 1907–1916 (2008).
  • Magnusson L. Comparison of the fine structure processing (FSP) strategy and the CIS strategy used in the MED-EL cochlear implant system: speech intelligibility and music sound quality. Int. J. Audiol.50(4), 279–287 (2011).
  • Arnoldner C, Riss D, Brunner M, Durisin M, Baumgartner WD, Hamzavi JS. Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Otolaryngol.127(12), 1298–1303 (2007).
  • Hochmair I, Nopp P, Jolly C et al. MED-EL Cochlear implants: state of the art and a glimpse into the future. Trends Amplif.10(4), 201–219 (2006).
  • Riss D, Arnoldner C, Baumgartner WD, Kaider A, Hamzavi JS. A new fine structure speech coding strategy: speech perception at a reduced number of channels. Otol. Neurotol.29(6), 784–788 (2008).
  • Koch DB, Downing M, Osberger MJ, Litvak L. Using current steering to increase spectral resolution in CII and HiRes 90K users. Ear Hear.28(Suppl. 2), S38–S41 (2007).
  • Brendel M, Buechner A, Krueger B, Frohne-Buechner C, Lenarz T. Evaluation of the Harmony soundprocessor in combination with the speech coding strategy HiRes 120. Otol. Neurotol.29(2), 199–202 (2008).
  • Buechner A, Brendel M, Krueger B et al. Current steering and results from novel speech coding strategies. Otol. Neurotol.29(2), 203–207 (2008).
  • Firszt JB, Holden LK, Reeder RM, Skinner MW. Speech recognition in cochlear implant recipients: comparison of standard HiRes and HiRes 120 sound processing. Otol. Neurotol.30(2), 146–152 (2009).
  • Donaldson GS, Dawson PK, Borden LZ. Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: speech perception and its relation to place-pitch sensitivity. Ear Hear. (2010).
  • Schatzer R, Krenmayr A, Au DK, Kals M, Zierhofer C. Temporal fine structure in cochlear implants: preliminary speech perception results in Cantonese-speaking implant users. Acta Otolaryngol.130(9), 1031–1039 (2010).
  • Buchner A, Nogueira W, Edler B, Battmer RD, Lenarz T. Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants. Otol. Neurotol.29(2), 189–192 (2008).
  • Littlefield PD, Vujanovic I, Mundi J, Matic AI, Richter CP. Laser stimulation of single auditory nerve fibers. Laryngoscope120(10), 2071–2082 (2010).
  • Rajguru SM, Matic AI, Robinson AM et al. Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear. Res.269(1–2), 102–111 (2010).
  • Richter CP, Bayon R, Izzo AD et al. Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hear. Res.242(1–2), 42–51 (2008).
  • Pettingill LN, Richardson RT, Wise AK, O’Leary SJ, Shepherd RK. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system. IEEE Trans. Biomed. Eng.54(6 Pt 1), 1138–1148 (2007).
  • Rejali D, Lee VA, Abrashkin KA, Humayun N, Swiderski DL, Raphael Y. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear. Res.228(1–2), 180–187 (2007).
  • Vieira M, Christensen BL, Wheeler BC, Feng AS, Kollmar R. Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice. Hear. Res.230(1–2), 17–23 (2007).
  • Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC. Localized cell and drug delivery for auditory prostheses. Hear. Res.242(1–2), 117–131 (2008).
  • Middlebrooks JC, Snyder RL. Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J. Neurosci.30(5), 1937–1946 (2010).
  • Middlebrooks JC, Snyder RL. Auditory prosthesis with a penetrating nerve array. J. Assoc. Res. Otolaryngol.8(2), 258–279 (2007).
  • Middlebrooks JC, Snyder RL. Intraneural stimulation for auditory prosthesis: modiolar trunk and intracranial stimulation sites. Hear. Res.242(1–2), 52–63 (2008).
  • Lenarz T, Stover T, Buechner A et al. Temporal bone results and hearing preservation with a new straight electrode. Audiol. Neurootol.11(Suppl. 1), 34–41 (2006).
  • Lenarz T, Stover T, Buechner A, Lesinski-Schiedat A, Patrick J, Pesch J. Hearing conservation surgery using the Hybrid-L electrode. Results from the first clinical trial at the Medical University of Hannover. Audiol. Neurootol.14(Suppl. 1), 22–31 (2009).
  • Finley CC, Holden TA, Holden LK et al. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol. Neurotol.29(7), 920–928 (2008).
  • Lee J, Nadol JB Jr, Eddington DK. Depth of electrode insertion and postoperative performance in humans with cochlear implants: a histopathologic study. Audiol. Neurootol.15(5), 323–331 (2010).
  • Verbist BM, Skinner MW, Cohen LT et al. Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol. Neurotol.31(5), 722–730 (2010).
  • Verbist BM, Joemai RM, Briaire JJ, Teeuwisse WM, Veldkamp WJ, Frijns JH. Cochlear coordinates in regard to cochlear implantation: a clinically individually applicable 3 dimensional CT-based method. Otol. Neurotol.31(5), 738–744 (2010).
  • Chung K, Zeng FG. Using hearing aid adaptive directional microphones to enhance cochlear implant performance. Hear. Res.250(1–2), 27–37 (2009).
  • Buechner A, Brendel M, Saalfeld H, Litvak L, Frohne-Buechner C, Lenarz T. Results of a pilot study with a signal enhancement algorithm for HiRes 120 cochlear implant users. Otol. Neurotol.31(9), 1386–1390 (2010).
  • Roland JT Jr, Cosetti M, Wang KH, Immerman S, Waltzman SB. Cochlear implantation in the very young child: long-term safety and efficacy. Laryngoscope119(11), 2205–2210 (2009).
  • Yoshinaga-Itano C. Early intervention after universal neonatal hearing screening: impact on outcomes. Ment. Retard. Dev. Disabil. Res. Rev.9(4), 252–266 (2003).
  • Moeller MP, Tomblin JB, Yoshinaga-Itano C, Connor CM, Jerger S. Current state of knowledge: language and literacy of children with hearing impairment. Ear Hear.28(6), 740–753 (2007).
  • Korver AM, Konings S, Dekker FW et al. Newborn hearing screening vs later hearing screening and developmental outcomes in children with permanent childhood hearing impairment. JAMA304(15), 1701–1708 (2010).
  • Ball RS. The Gesell Developmental Schedules: Arnold Gesell (1880–1961). J. Abnorm. Child Psychol.5(3), 233–239 (1977).
  • Daemers K, Yperman M, De Beukelaer C, De Saegher G, De Ceulaer G, Govaerts PJ. Normative data of the A(section)E discrimination and identification tests in preverbal children. Cochlear Implants Int.7(2), 107–116 (2006).
  • Govaerts PJ, Daemers K, Yperman M, De Beukelaer C, De Saegher G, De Ceulaer G. Auditory speech sounds evaluation (A(section)E): a new test to assess detection, discrimination and identification in hearing impairment. Cochlear Implants Int.7(2), 92–106 (2006).
  • Dettman SJ, Pinder D, Briggs RJ, Dowell RC, Leigh JR. Communication development in children who receive the cochlear implant younger than 12 months: risks versus benefits. Ear Hear.28(2 Suppl.), S11–S18 (2007).
  • Valencia DM, Rimell FL, Friedman BJ, Oblander MR, Helmbrecht J. Cochlear implantation in infants less than 12 months of age. Int. J. Pediatr. Otorhinolaryngol.72(6), 767–773 (2008).
  • Miyamoto RT, Hay-McCutcheon MJ, Kirk KI, Houston DM, Bergeson-Dana T. Language skills of profoundly deaf children who received cochlear implants under 12 months of age: a preliminary study. Acta Otolaryngol.128(4), 373–377 (2008).
  • De Raeve L. A longitudinal study on auditory perception and speech intelligibility in deaf children implanted younger than 18 months in comparison to those implanted at later ages. Otol. Neurotol.31(8), 1261–1267 (2010).
  • Tait M, De Raeve L, Nikolopoulos TP. Deaf children with cochlear implants before the age of 1 year: comparison of preverbal communication with normally hearing children. Int. J. Pediatr. Otorhinolaryngol.71(10), 1605–1611 (2007).
  • Holt RF, Svirsky MA. An exploratory look at pediatric cochlear implantation: is earliest always best? Ear Hear.29(4), 492–511 (2008).
  • Niparko JK, Tobey EA, Thal DJ et al. Spoken language development in children following cochlear implantation. JAMA303(15), 1498–1506 (2010).
  • Schauwers K, Gillis S, Govaerts PJ. The characteristics of prelexical babbling after cochlear implantation between 5 and 20 months of age. Ear Hear.29(4), 627–637 (2008).
  • Nott P, Cowan R, Brown PM, Wigglesworth G. Early language development in children with profound hearing loss fitted with a device at a young age: part I – the time period taken to acquire first words and first word combinations. Ear Hear.30(5), 526–540 (2009).
  • Klop WM, Briaire JJ, Stiggelbout AM, Frijns JH. Cochlear implant outcomes and quality of life in adults with prelingual deafness. Laryngoscope117(11), 1982–1987 (2007).
  • Arisi E, Forti S, Pagani D et al. Cochlear implantation in adolescents with prelinguistic deafness. Otolaryngol. Head Neck Surg.142(6), 804–808 (2010).
  • Santarelli R, De Filippi R, Genovese E, Arslan E. Cochlear implantation outcome in prelingually deafened young adults. Audiol. Neurootol.13(4), 257–265 (2008).
  • Yoshida H, Kanda Y, Miyamoto I, Fukuda T, Takahashi H. Cochlear implantation on prelingually deafened adults. Auris Nasus Larynx35(3), 349–352 (2008).
  • Kos MI, Deriaz M, Guyot JP, Pelizzone M. What can be expected from a late cochlear implantation? Int. J. Pediatr. Otorhinolaryngol.73(2), 189–193 (2009).
  • Budenz CL, Cosetti MK, Coelho DH et al. The effects of cochlear implantation on speech perception in older adults. J. Am. Geriatr. Soc.59(3), 446–453 (2011).
  • Coelho DH, Yeh J, Kim JT, Lalwani AK. Cochlear implantation is associated with minimal anesthetic risk in the elderly. Laryngoscope, 119(2), 355–358 (2009).
  • Eshraghi AA, Rodriguez M, Balkany TJ et al. Cochlear implant surgery in patients more than seventy-nine years old. Laryngoscope119(6), 1180–1183 (2009).
  • Carlson ML, Breen JT, Gifford RH et al. Cochlear implantation in the octogenarian and nonagenarian. Otol. Neurotol.31(8), 1343–1349 (2010).
  • Mahncke HW, Bronstone A, Merzenich MM. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog. Brain Res.157, 81–109 (2006).
  • Dickstein DL, Kabaso D, Rocher AB, Luebke JI, Wearne SL, Hof PR. Changes in the structural complexity of the aged brain. Aging Cell6(3), 275–284 (2007).
  • Vermeire K, Brokx JP, Wuyts FL, Cochet E, Hofkens A, Van de Heyning PH. Quality-of-life benefit from cochlear implantation in the elderly. Otol. Neurotol.26(2), 188–195 (2005).
  • Rance G, Barker EJ. Speech and language outcomes in children with auditory neuropathy/dys-synchrony managed with either cochlear implants or hearing aids. Int. J. Audiol.48(6), 313–320 (2009).
  • Gibson WP, Sanli H. Auditory neuropathy: an update. Ear Hear.28(Suppl. 2), S102–S106 (2007).
  • Teagle HF, Roush PA, Woodard JS et al. Cochlear implantation in children with auditory neuropathy spectrum disorder. Ear Hear.31(3), 325–335 (2010).
  • Johnson KC, DesJardin JL, Barker DH, Quittner AL, Winter ME. Assessing joint attention and symbolic play in children with cochlear implants and multiple disabilities: two case studies. Otol. Neurotol.29(2), 246–250 (2008).
  • Meinzen-Derr J, Wiley S, Grether S, Choo DI. Language performance in children with cochlear implants and additional disabilities. Laryngoscope120(2), 405–413 (2010).
  • Berrettini S, Forli F, Genovese E et al. Cochlear implantation in deaf children with associated disabilities: challenges and outcomes. Int. J. Audiol.47(4), 199–208 (2008).
  • Daneshi A, Hassanzadeh S. Cochlear implantation in prelingually deaf persons with additional disability. J. Laryngol. Otol.121(7), 635–638 (2007).
  • Lanson BG, Green JE, Roland JT Jr, Lalwani AK, Waltzman SB. Cochlear implantation in children with CHARGE syndrome: therapeutic decisions and outcomes. Laryngoscope117(7), 1260–1266 (2007).
  • Lorens A, Polak M, Piotrowska A, Skarzynski H. Outcomes of treatment of partial deafness with cochlear implantation: a DUET study. Laryngoscope118(2), 288–294 (2008).
  • Helbig S, Baumann U, Helbig M, von Malsen-Waldkirch N, Gstoettner W. A new combined speech processor for electric and acoustic stimulation – eight months experience. ORL J. Otorhinolaryngol. Relat. Spec.70(6), 359–365 (2008).
  • Skarzynski H, Lorens A. Electric acoustic stimulation in children. Adv. Otorhinolaryngol.67, 135–143 (2010).
  • Buchner A, Schussler M, Battmer RD, Stover T, Lesinski-Schiedat A, Lenarz T. Impact of low-frequency hearing. Audiol. Neurootol.14(Suppl. 1), 8–13 (2009).
  • Roland JT, Shapiro WS, Waltzman SB. Preliminary results of Nucleus L24 in the United States. Presented at: International Conference on Cochlear Implants and Other Implantable Auditory Technologies. Stockholm, Sweden, 30 June – 3 July 2010.
  • Helbig S, Baumann U. Acceptance and fitting of the DUET device – a combined speech processor for electric acoustic stimulation. Adv. Otorhinolaryngol.67, 81–87 (2010).
  • Zeitler DM, Kessler MA, Terushkin V et al. Speech perception benefits of sequential bilateral cochlear implantation in children and adults: a retrospective analysis. Otol. Neurotol.29(3), 314–325 (2008).
  • Litovsky R, Harris S, Born M. Acquisition of spatial hearing abilities in two-year-old children: role of auditory experience and bilateral cochlear implantation. J. Acoust. Soc. Am.128(4), 2425 (2010).
  • Litovsky R, Misurelli S, Godar S. Source segregation in noisy environments by children with normal hearing and bilateral cochlear implants. J. Acoust. Soc. Am.128(4), 2425 (2010).
  • Litovsky RY, Parkinson A, Arcaroli J. Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear Hear.30(4), 419–431 (2009).
  • Grieco-Calub TM, Litovsky RY. Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing. Ear Hear.31(5), 645–656 (2010).
  • Laske RD, Veraguth D, Dillier N, Binkert A, Holzmann D, Huber AM. Subjective and objective results after bilateral cochlear implantation in adults. Otol. Neurotol.30(3), 313–318 (2009).
  • Koch DB, Soli SD, Downing M, Osberger MJ. Simultaneous bilateral cochlear implantation: prospective study in adults. Cochlear Implants Int. DOI: 10.1002/cii.413 (2009) (Epub ahead of print).
  • Godar SP, Litovsky RY. Experience with bilateral cochlear implants improves sound localization acuity in children. Otol. Neurotol.31(8), 1287–1292 (2010).
  • Sparreboom M, van Schoonhoven J, van Zanten BG et al. The effectiveness of bilateral cochlear implants for severe-to-profound deafness in children: a systematic review. Otol. Neurotol.31(7), 1062–1071 (2010).
  • Mok M, Galvin KL, Dowell RC, McKay CM. Speech perception benefit for children with a cochlear implant and a hearing aid in opposite ears and children with bilateral cochlear implants. Audiol. Neurootol.15(1), 44–56 (2010).
  • Van Deun L, van Wieringen A, Scherf F et al. Earlier intervention leads to better sound localization in children with bilateral cochlear implants. Audiol. Neurootol.15(1), 7–17 (2010).
  • Dunn CC, Noble W, Tyler RS, Kordus M, Gantz BJ, Ji H. Bilateral and unilateral cochlear implant users compared on speech perception in noise. Ear Hear.31(2), 296–298 (2010).
  • Galvin KL, Mok M, Dowell RC, Briggs RJ. Speech detection and localization results and clinical outcomes for children receiving sequential bilateral cochlear implants before four years of age. Int. J. Audiol.47(10), 636–646 (2008).
  • Summerfield AQ, Lovett RE, Bellenger H, Batten G. Estimates of the cost–effectiveness of pediatric bilateral cochlear implantation. Ear Hear.31(5), 611–624 (2010).
  • Scherf F, Van Deun L, van Wieringen A et al. Subjective benefits of sequential bilateral cochlear implantation in young children after 18 months of implant use. ORL J. Otorhinolaryngol. Relat. Spec.71(2), 112–121 (2009).
  • Gordon KA, Papsin BC. Benefits of short interimplant delays in children receiving bilateral cochlear implants. Otol. Neurotol.30(3), 319–331 (2009).
  • Mok M, Galvin KL, Dowell RC, McKay CM. Spatial unmasking and binaural advantage for children with normal hearing, a cochlear implant and a hearing aid, and bilateral implants. Audiol. Neurootol.12(5), 295–306 (2007).
  • Bond M, Mealing S, Anderson R et al. The effectiveness and cost–effectiveness of cochlear implants for severe to profound deafness in children and adults: a systematic review and economic model. Health Technol. Assess.13(44), 1–330 (2009).
  • Arndt S, Aschendorff A, Laszig R et al. Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol. Neurotol.32(1), 39–47 (2011).
  • Vermeire K, Nobbe A, Schleich P, Nopp P, Voormolen MH, Van de Heyning PH. Neural tonotopy in cochlear implants: an evaluation in unilateral cochlear implant patients with unilateral deafness and tinnitus. Hear. Res.245(1–2), 98–106 (2008).
  • Vermeire K, Van de Heyning P. Binaural hearing after cochlear implantation in subjects with unilateral sensorineural deafness and tinnitus. Audiol. Neurootol.14(3), 163–171 (2009).
  • Kleinjung T, Steffens T, Strutz J, Langguth B. Curing tinnitus with a cochlear implant in a patient with unilateral sudden deafness: a case report. Cases J.2, 7462 (2009).
  • Loh C, Jiang D, Dezso A, Fitzgerald O’Connor A. Non-sutured fixation of cochlear implants using a minimally-invasive approach. Clin. Otolaryngol.33(3), 259–261 (2008).
  • Balkany TJ, Whitley M, Shapira Y et al. The temporalis pocket technique for cochlear implantation: an anatomic and clinical study. Otol. Neurotol.30(7), 903–907 (2009).
  • Adunka OF, Buchman CA. Cochlear implant fixation in children using periosteal sutures. Otol. Neurotol.28(6), 768–770 (2007).
  • Molony TB, Giles JE, Thompson TL, Motamedi KK. Device fixation in cochlear implantation: is bone anchoring necessary? Laryngoscope120(9), 1837–1839 (2010).
  • Souter MA, Briggs RJ, Wright CG, Roland PS. Round window insertion of precurved perimodiolar electrode arrays: how successful is it? Otol. Neurotol.32(1), 58–63 (2011).
  • Adunka OF, Buchman CA. Scala tympani cochleostomy I: results of a survey. Laryngoscope117(12), 2187–2194 (2007).
  • Shapira Y, Eshraghi AA, Balkany TJ. The perceived angle of the round window affects electrode insertion trauma in round window insertion – an anatomical study. Acta Otolaryngol.131(3), 284–289 (2010).
  • Cosetti MK, Shapiro WH, Green JE et al. Intraoperative neural response telemetry as a predictor of performance. Otol. Neurotol.31(7), 1095–1099 (2010).
  • Shapiro WH, Huang T, Shaw T, Roland JT Jr, Lalwani AK. Remote intraoperative monitoring during cochlear implant surgery is feasible and efficient. Otol. Neurotol.29(4), 495–498 (2008).
  • Trotter MI, Backhouse S, Wagstaff S, Hollow R, Briggs RJ. Classification of cochlear implant failures and explantation: the Melbourne experience, 1982–2006. Cochlear Implants Int.10(Suppl. 1), 105–110 (2009).
  • Zeitler DM, Lalwani AK, Roland JT Jr, Habib MG, Gudis D, Waltzman SB. The effects of cochlear implant electrode deactivation on speech perception and in predicting device failure. Otol. Neurotol.30(1), 7–13 (2009).
  • Zeitler DM, Budenz CL, Roland JT Jr. Revision cochlear implantation. Curr. Opin. Otolaryngol. Head Neck Surg.17(5), 334–338 (2009).
  • Gosepath J, Lippert K, Keilmann A, Mann WJ. Analysis of fifty-six cochlear implant device failures. ORL J. Otorhinolaryngol. Relat. Spec.71(3), 142–147 (2009).
  • Venail F, Sicard M, Piron JP et al. Reliability and complications of 500 consecutive cochlear implantations. Arch. Otolaryngol. Head Neck Surg.134(12), 1276–1281 (2008).
  • Battmer RD, Backous DD, Balkany TJ et al. International classification of reliability for implanted cochlear implant receiver stimulators. Otol. Neurotol.31(8), 1190–1193 (2010).
  • Battmer RD, Linz B, Lenarz T. A review of device failure in more than 23 years of clinical experience of a cochlear implant program with more than 3,400 implantees. Otol. Neurotol.30(4), 455–463 (2009).
  • Carlson ML, Archibald DJ, Dabade TS et al. Prevalence and timing of individual cochlear implant electrode failures. Otol. Neurotol.31(6), 893–898 (2010).
  • Fu QJ, Galvin JJ 3rd. Perceptual learning and auditory training in cochlear implant recipients. Trends Amplif.11(3), 193–205 (2007).
  • Fu QJ, Galvin JJ 3rd. Maximizing cochlear implant patients’ performance with advanced speech training procedures. Hear. Res.242(1–2), 198–208 (2008).
  • Chen JK, Chuang AY, McMahon C, Hsieh JC, Tung TH, Li LP. Music training improves pitch perception in prelingually deafened children with cochlear implants. Pediatrics125(4), e793–e800 (2010).
  • Nogaki G, Fu QJ, Galvin JJ 3rd. Effect of training rate on recognition of spectrally shifted speech. Ear Hear.28(2), 132–140 (2007).
  • Tremblay KL, Shahin AJ, Picton T, Ross B. Auditory training alters the physiological detection of stimulus-specific cues in humans. Clin. Neurophysiol.120(1), 128–135 (2009).
  • Cohen N. The totally implantable cochlear implant. Ear Hear.28(Suppl. 2), S100–S101 (2007).
  • Briggs RJ, Eder HC, Seligman PM et al. Initial clinical experience with a totally implantable cochlear implant research device. Otol. Neurotol.29(2), 114–119 (2008).
  • Tajudeen BA, Waltzman SB, Jethanamest D, Svirsky MA. Speech perception in congenitally deaf children receiving cochlear implants in the first year of life. Otol. Neurotol.31(8), 1254–1260 (2010).
  • Zhang J, Wei W, Ding J, Roland JT Jr, Manolidis S, Simaan N. Inroads toward robot-assisted cochlear implant surgery using steerable electrode arrays. Otol. Neurotol.31(8), 1199–1206 (2010).
  • Klenzner T, Ngan CC, Knapp FB et al. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur. Arch. Otorhinolaryngol.266(7), 955–960 (2009).
  • Schurzig D, Webster RJ 3rd, Dietrich MS, Labadie RF. Force of cochlear implant electrode insertion performed by a robotic insertion tool: comparison of traditional versus Advance Off-Stylet techniques. Otol. Neurotol.31(8), 1207–1210 (2010).
  • Wilson BS, Dorman MF. Cochlear implants: current designs and future possibilities. J. Rehabil. Res. Dev.45(5), 695–730 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.