540
Views
16
CrossRef citations to date
0
Altmetric
Editorial

Interspecies bacterial communication as a target for therapy in otitis media

&
Pages 1067-1070 | Published online: 10 Jan 2014

References

  • Costerton JW, Cheng KJ, Geesey GG et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol.41(1), 435–464 (1987).
  • Hendolin PH, Markkanen A, Ylikoski J, Wahlfors JJ. Use of multiplex PCR for simultaneous detection of four bacterial species in middle ear effusions. J. Clin. Microbiol.35(11), 2854–2858 (1997).
  • Maddocks JL, May JR. ‘Indirect pathogenicity’ of penicillinase-producing enterobacteria in chronic bronchial infections. Lancet1(7599), 793–795 (1969).
  • Armbruster CE, Hong W, Pang B et al. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. MBio1(3), e00102–e00110 (2010).
  • Finkelstein JA, Davis RL, Dowell SF et al. Reducing antibiotic use in children: a randomized trial in 12 practices. Pediatrics108(1), 1–7 (2001).
  • Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD. Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA279(4), 296–299 (1998).
  • Wardle JK. Branhamella catarrhalis as an indirect pathogen. Drugs31(Suppl. 3), 93–96 (1986).
  • Brook I. Direct and indirect pathogenicity of Branhamella catarrhalis. Drugs31(Suppl. 3), 97–102 (1986).
  • Maddocks JL. Indirect pathogenicity. J. Antimicrob. Chemother.6(3), 307–309 (1980).
  • Hol C, Van Dijke EE, Verduin CM, Verhoef J, van Dijk H. Experimental evidence for Moraxella-induced penicillin neutralization in pneumococcal pneumonia. J. Infect. Dis.170(6), 1613–1616 (1994).
  • Budhani RK, Struthers JK. Interaction of Streptococcus pneumoniae and Moraxella catarrhalis: investigation of the indirect pathogenic role of β-lactamase-producing moraxellae by use of a continuous-culture biofilm system. Antimicrob. Agents Chemother.42(10), 2521–2526 (1998).
  • Pichichero ME. Recurrent and persistent otitis media. Pediatr. Infect. Dis. J.19(9), 911–916 (2000).
  • St Geme JW. Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell Microbiol.4(4), 191–200 (2002).
  • Grevers G. Challenges in reducing the burden of otitis media disease: an ENT perspective on improving management and prospects for prevention. Int. J. Pediatr. Otorhinolaryngol.74(6), 572–577 (2010).
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science284, 1318–1322 (1999).
  • Bakaletz LO. Bacterial biofilms in otitis media: evidence and relevance. Pediatr. Infect. Dis. J.26(10 Suppl.), S17–S19 (2007).
  • Post JC, Hiller NL, Nistico L, Stoodley P, Ehrlich GD. The role of biofilms in otolaryngologic infections: update 2007. Curr. Opin. Otolaryngol. Head Neck Surg.15(5), 347–351 (2007).
  • Weimer KED, Armbruster CE, Juneau RA, Hong W, Pang B, Swords WE. Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease. J. Infect. Dis.202(7), 1068–1075 (2010).
  • Grijalva CG, Nuorti JP, Griffin MR. Antibiotic prescription rates for acute respiratory tract infections in US ambulatory settings. JAMA302(7), 758–766 (2009).
  • Grubb MS, Spaugh DC. Treatment failure, recurrence, and antibiotic prescription rates for different acute otitis media treatment methods. Clin. Pediatr. (Phila). DOI: 10.1177/0009922810370363 (2010) (Epub ahead of print).
  • Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect. Dis.2(10), 593–604 (2002).
  • Pelton SIMD, Leibovitz EMD. Recent advances in otitis media. Pediatric Infectious Disease Journal28(10) Supplement, Childhood respiratory (diseases), management in an era of antibiotic resistance: S133–S137 (2009).
  • Williams RL, Chalmers TC, Stange KC, Chalmers FT, Bowlin SJ. Use of antibiotics in preventing recurrent acute otitis media and in treating otitis media with effusion. A meta-analytic attempt to resolve the brouhaha. JAMA270(11), 1344–1351 (1993).
  • Anderson GG, O’Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr. Top. Microbiol. Immunol.322, 85–105 (2008).
  • Schuerman L, Borys D, Hoet B, Forsgren A, Prymula R. Prevention of otitis media: now a reality? Vaccine27(42), 5748–5754 (2009).
  • Eskola J, Kilpi T, Palmu A et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med.344(6), 403–409 (2001).
  • Hardie KR, Heurlier K. Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nat. Rev. Microbiol.6(8), 635–643 (2008).
  • Jayaraman A, Wood TK. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu. Rev. Biomed. Eng.10, 145–167 (2008).
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu. Rev. Microbiol.55, 165–199 (2001).
  • Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol.21, 319–346 (2005).
  • Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu. Rev. Genet.43, 197–222 (2009).
  • Njoroge J, Sperandio V. Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol. Med.1(4), 201–210 (2009).
  • Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl. Microbiol. Biotechnol.86(3), 813–823 (2010).
  • Alexander HR, Robert JP Jr, David SB et al. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol.60(6), 1446–1456 (2006).
  • Rickard AH, Campagna SR, Kolenbrander PE. Autoinducer-2 is produced in saliva-fed flow conditions relevant to natural oral biofilms. J. Appl. Microbiol.105(6), 2096–2103 (2008).
  • Armbruster CE, Hong W, Pang B et al. LuxS promotes biofilm maturation and persistence of nontypeable Haemophilus influenzaein vivo via modulation of lipooligosaccharides on the bacterial surface. Infect. Immun.77(9), 4081–4091 (2009).
  • Daines DA, Bothwell M, Furrer J et al.Haemophilus influenzae luxS mutants form a biofilm and have increased virulence. Microb. Pathog.39(3), 87–96 (2005).
  • Joyce EA, Kawale A, Censini S, Kim CC, Covacci A, Falkow S. LuxS is required for persistent pneumococcal carriage and expression of virulence and biosynthesis genes. Infect. Immun.72(5), 2964–2975 (2004).
  • Stroeher UH, Paton AW, Ogunniyi AD, Paton JC. Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model. Infect. Immun.71(6), 3206–3212 (2003).
  • Bassler BL, Wright M, Silverman MR. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol.13(2), 273–286 (1994).
  • Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol.186(20), 6902–6914 (2004).
  • Pereira CS, McAuley JR, Taga ME, Xavier KB, Miller ST. Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria. Mol. Microbiol.70, 1223–1235 (2008).
  • Taga ME, Semmelhack JL, Bassler BL. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol. Microbiol.42(3), 777–793 (2001).
  • Xavier KB, Bassler BL. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol.187(1), 238–248 (2005).
  • Shao H, Lamont RJ, Demuth DR. Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect. Immun.75(9), 4211–4218 (2007).
  • Shao H, James D, Lamont RJ, Demuth DR. Differential interaction of Aggregatibacter (Actinobacillus) actinomycetemcomitans LsrB and RbsB proteins with autoinducer 2. J. Bacteriol.189(15), 5559–5565 (2007).
  • James D, Shao H, Lamont RJ, Demuth DR. The Actinobacillus actinomycetemcomitans ribose binding protein RbsB interacts with cognate and heterologous autoinducer 2 signals. Infect. Immun.74(7), 4021–4029 (2006).
  • Brackman G, Celen S, Baruah K et al. AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ. Microbiology155(Pt 12), 4114–4122 (2009).
  • Lowery CA, Park J, Kaufmann GF, Janda KD. An unexpected switch in the modulation of AI-2-based quorum sensing discovered through synthetic 4,5-dihydroxy-2,3-pentanedione analogues. J. Am. Chem. Soc.130(29), 9200–9201 (2008).
  • Lowery CA, Abe T, Park J et al. Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide. J. Am. Chem. Soc.131(43), 15584–15585 (2009).
  • Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making ‘sense’ of metabolism: autoinducer-2, LUXS and pathogenic bacteria. Nat. Rev. Micro.3(5), 383–396 (2005).
  • Gopishetty B, Zhu J, Rajan R et al. Probing the catalytic mechanism of S-ribosylhomocysteinase (LuxS) with catalytic intermediates and substrate analogues. J. Am. Chem. Soc.131(3), 1243–1250 (2009).
  • Roy V, Fernandes R, Tsao C-Y, Bentley WE. Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem. Biol.5(2), 223–232 (2009).
  • Siller M, Janapatla R, Pirzada Z, Hassler C, Zinkl D, Charpentier E. Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells. BMC Microbiol.8(1), 188 (2008).
  • Zhao L, Xue T, Shang F, Sun H, Sun B. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect. Immun.78(8), 3506–3515 (2010).
  • Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol.50(5), 1477–1491 (2003).
  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA100(15), 8951–8956 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.