314
Views
61
CrossRef citations to date
0
Altmetric
Review

Potential of the β-glucans to enhance innate resistance to biological agents

, &
Pages 339-352 | Published online: 10 Jan 2014

References

  • Carter J. Food: Your Miracle Medicine. Harper Collins Publishers Inc., NY, USA (1993).
  • Vetvicka V. β-glucans as immunomodulators. J. Am. Nutr. Assoc.3, 31–34 (2001).
  • Brown GD, Gordon S. Fungal β-glucans and mammalian immunity. Immunity19, 311–315 (2003).
  • Yun CH, Estrada A, Van Kessel A, Park BC, Laarveld B. β-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol.35, 67–75 (2003).
  • Gordon M, Bihari B, Goosby E et al. A placebo-controlled trial of the immune modulator, lentinan, in HIV-positive patients: a Phase I/II trial. J. Med.29, 305–330 (1998).
  • Vetvicka V, Terayama K, Mandeville R et al. Pilot study: orally-administered yeast β 1,3-glucan prophylactically protects against anthrax infection and cancer in mice. J. Am. Nutr. Assoc.5, 5–9 (2002).
  • Williams DL, Cook JA, Hoffmann EO, Di Luzio NR. Protective effect of glucan in experimentally induced candidiasis. J. Reticuloendothel. Soc.23, 479–490 (1978).
  • Williams DL, Yaeger RG, Pretus HA et al. Immunization against Trypanosoma cruzi: adjuvant effect of glucan. Int. J. Immunopharmacol.11, 403–410 (1989).
  • Nicolosi R, Bell SJ, Bistrian BR et al. Plasma lipid changes after supplementation with β-glucan fiber from yeast. Am. J. Clin. Nutr.70, 208–212 (1999).
  • Tam SC, Yip KP, Fung KP, Chang ST. Hypotensive and renal effects of an extract of the edible mushroom Pleurotus-sajor-caju. Life Sci.38, 1155–1161 (1986).
  • Mayell M. Maitake extracts and their therapeutic potential. Altern. Med. Rev.6, 48–60 (2001).
  • Liu F, Ooi VEC, Chang ST. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci.60, 763–771 (1997).
  • Xiao ZG, Trincado CA, Murtaugh MP. β-glucan enhancement of T cell IFN-γ response in swine. Vet. Immunol. Immunopathol.102, 315–320 (2004).
  • McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1→3)-β-D-glucans. Appl. Microbiol. Biotechnol.68, 163–173 (2005).
  • Novak M, Vetvicka V. Glucans as biological response modifiers. Curr. Drug Targets Immune Endocr. Metabol.9, 67–75 (2009).
  • Yadomae T. Structure and biological activities of fungal β-1,3-glucans. Yakugaku Zasshi120, 413–431 (2000).
  • Huang HB, Ostroff GR, Lee CK et al. Distinct patterns of dendritic cell cytokine release stimulated by fungal β-glucans and Toll-like receptor agonists. Infect. Immun.77, 1774–1781 (2009).
  • Ishibashi K, Miura NN, Adachi Y, Ohno N, Yadomae T. Relationship between solubility of grifolan, a fungal 1,3-β-D-glucan, and production of tumor necrosis factor by macrophages in vitro. Biosci. Biotechnol. Biochem.65, 1993–2000 (2001).
  • Zhang M, Cheung PCK, Zhang L, Chiu CM, Ooi VEC. Carboxymethylated β-glucans from mushroom sclerotium of Pleurotus tuber-regium as novel water-soluble anti-tumor agent. Carbohydr. Polym.57, 319–325 (2004).
  • Wang YJ, Yu YZ, Mao JW. Carboxymethylated β-glucan derived from Poria cocos with biological activities. J. Agri. Food Chem.57, 10913–10915 (2009).
  • Guo Z, Hu Y, Wang D et al. Sulfated modification can enhance the adjuvanticity of lentinan and improve the immune effect of ND vaccine. Vaccine27, 660–665 (2009).
  • Allendorf DJ, Baran JT, Hansen RD et al. Orally administered β-glucan functions via anti-tumor mAbs and the complement system to recruit CR3+ neutrophils and macrophages that produce tumor regression and tumor-free survival. Mol. Immunol.40, 195–196 (2003).
  • Hong F, Hansen RD, Yan J et al. β-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res.63, 9023–9031 (2003).
  • Yiannikouris A, Andre G, Buleon A et al. Comprehensive conformational study of key interactions involved in zearalenone complexation with β-D-glucans. Biomacromolecules5, 2176–2185 (2004).
  • Zhang L, Li XL, Xu XJ, Zeng FB. Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydr. Res.340, 1515–1521 (2005).
  • Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME. Mushrooms, tumors, and immunity. Proc. Soc. Exp. Biol. Med.221, 281–293 (1999).
  • Ikeda Y, Adachi Y, Ishibashi K, Miura N, Ohno N. Activation of Toll-like receptor-mediated NF-κB by Zymosan-derived water-soluble fraction: possible contribution of endotoxin-like substances. Immunopharmacol. Immunotoxicol.27, 285–298 (2005).
  • Benacerraf B, Thorbecke GJ, Jacoby D. Effect of zymosan on endotoxin toxicity in mice. Proc. Soc. Exp. Biol. Med.100, 796–799 (1959).
  • Riggi SJ, Diluzio NR. Identification of a reticuloendothelial stimulating agent in zymosan. Am. J. Physiol.200, 297–300 (1961).
  • Brown GD, Gordon S. Immune recognition of fungal β-glucans. Cell. Microbiol.7, 471–479 (2005).
  • Lull C, Wichers, HJ, Savelkoul HFJ. Antiinflammatory and immunomodulating properties of fungal metabolites. Med. Inflamm.2005(2), 63–80 (2005).
  • Kupfahl C, Geginat G, Hof H. Lentinan has a stimulatory effect on innate and adaptive immunity against murine Listeria monocytogenes infection. Int. Immunopharmacol.6, 686–696 (2006).
  • Chen K, Weng B, Chang M et al. Direct enhancement of the phagocytic and bactericidal capability of abdominal macrophage of chicks by β-1,3–1,6-glucan. Poult. Sci.87, 2242–2249 (2008).
  • Ito K, Masuda Y, Yamasaki Y, Yokota Y, Nanba H. Maitake β-glucan enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF production and modulating CXCR4/SDF-1 expression. Int. Immunopharmacol.9, 1189–1196 (2009).
  • Kasai H, He LM, Kawamura M et al. IL-12 production induced by Agaricus blazei fraction H (ABH) involves Toll-like receptor (TLR). Evid. Based Complement. Alternat. Med.1, 259–267 (2004).
  • Lin YL, Lee SS, Hou SM, Chiang BL. Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper-1 immune response in BALB/c mice. Mol. Pharmacol.70, 637–644 (2006).
  • Vetvicka V, Dvorak B, Vetvickova J et al. Orally administered marine (1→3)-β-D-glucan phycarine stimulates both humoral and cellular immunity. Int. J. Biol. Macromol.40, 291–298 (2007).
  • Harada T, Misaki A, Saito H. Curdlan – a bacterial gel-forming β-1 3-glucan. Arch. Biochem. Biophys.124, 292–300 (1968).
  • Harada T, Harada A. Curdlan and succinoglycan. In: Polysaccharides in Medical Applications. Dekker, NY, USA, 21–57 (1996).
  • Futatsuyama H, Yui T, Ogawa K. Viscometry of curdlan, a linear (1→3)-β-D-glucan, in DMSO or alkaline solutions. Biosci. Biotechnol. Biochem.63, 1481–1483 (1999).
  • Nono I, Ohno N, Masuda A, Oikawa S, Yadomae T. Oxidative-degradation of an antitumor (1–3)-β-D-glucan, grifolan. J. Pharmacobio-dyn.14, 9–19 (1991).
  • Smith PD, Smythies LE, Mosteller-Barnum M et al. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J. Immunol.167, 2651–2656 (2001).
  • Hirotani T, Lee PY, Kuwata H et al. The nuclear licB protein I κ BNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol.174, 3650–3657 (2005).
  • Smythies LE, Sellers M, Clements RH et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest.115, 66–75 (2005).
  • Janusz MJ, Austen KF, Czop JK. Isolation of soluble yeast β-glucans that inhibit human monocyte phagocytosis mediated by β-glucan receptors. J. Immunol.137, 3270–3276 (1986).
  • Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am. J. Surg.183(4), 390–398 (2002).
  • Montgome PC, Rosner BR, Cohn J. Secretory antibody-response – anti-Dnp antibodies induced by dinitrophenylated type-III pneumococcus. Immunol. Commun.3, 143–156 (1974).
  • Weiszcarrington P, Grimes SR, Lamm ME. Gut-associated lymphoid tissue as source of an IgA immune-response in respiratory tissues after oral immunization and intrabronchial challenge. Cell. Immunol.106, 132–138 (1987).
  • Moore FA. Common mucosal immunity: a novel hypothesis. Ann. Surg.231, 9–10 (2000).
  • Dewitt RC, Wu Y, Renegar KB et al. Bombesin recovers gut-associated lymphoid tissue and preserves immunity to bacterial pneumonia in mice receiving total parenteral nutrition. Ann. Surg.231, 1–8 (2000).
  • Zhou L, Zhang Q, Zhang Y, Liu J, Cao Y. The shiitake mushroom-derived immuno-stimulant lentinan protects against murine malaria blood-stage infection by evoking adaptive immune-responses. Int. Immunopharmacol.9, 455–462 (2009).
  • Czop JK. The role of β-glucan receptors on blood and tissue leukocytes in phagocytosis and metabolic-activation. Pathol. Immunopathol. Res.5, 286–296 (1986).
  • Williams DL, Mueller A, Browder W. Glucan-based macrophage stimulators – a review of their anti-infective potential. Clin. Immunother.5, 392–399 (1996).
  • Inohara N, Ogura Y, Nunez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr. Opin. Microbiol.5, 76–80 (2002).
  • Janeway CA, Medzhitov R. Innate immune recognition. Ann. Rev. Immunol.20, 197–216 (2002).
  • Janeway CA. The immune-system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today13, 11–16 (1992).
  • Brown GD, Gordon S. Immune recognition – a new receptor for β-glucans. Nature413, 36–37 (2001).
  • Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J. Therapeutic intervention with complement and β-glucan in cancer. Immunopharmacology42, 61–74 (1999).
  • Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood106, 2543–2550 (2005).
  • Vera J, Fenutria R, Canadas O et al. The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc. Natl Acad. Sci. USA106, 1506–1511 (2009).
  • Ariizumi K, Shen GL, Shikano S et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem.275, 20157–20167 (2000).
  • McMahon CW, Raulet DH. Expression and function of NK cell receptors in CD8+ T cells. Curr. Opin. Immunol.13, 465–470 (2001).
  • Willment JA, Gordon S, Brown GD. Characterization of the human β-glucan receptor and its alternatively spliced isoforms. J. Biol. Chem.276, 43818–43823 (2001).
  • Brown GD, Taylor PR, Reid DM et al. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med.196, 407–412 (2002).
  • Adams EL, Rice PJ, Graves B et al. Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J. Pharmacol. Exp. Ther.325, 115–123 (2008).
  • Hida TH, Ishibashi K, Miura NN et al. Cytokine induction by a linear 1,3-glucan, curdlan-oligo, in mouse leukocytes in vitro. Inflamm. Res.58, 9–14 (2009).
  • Dennehy KM, Ferwerda G, Faro-Trindade I et al. Syk kinase is required for collaborative cytokine production induced through dectin-1 and Toll-like receptors. Eur. J. Immunol.38, 500–506 (2008).
  • Goodridge HS, Wolf AJ, Underhill DM. β-glucan recognition by the innate immune system. Immunol. Rev.230, 38–50 (2009).
  • Gross O, Gewies A, Finger K et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature442, 651–656 (2006).
  • Leibund Gut-Landmann S, Gross O, Robinson MJ et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol.8, 630–638 (2007).
  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med.197, 1107–1117 (2003).
  • Dennehy KM, Brown GD. The role of the β-glucan receptor dectin-1 in control of fungal infection. J. Leuk. Biol.82, 253–258 (2007).
  • Tsoni SV, Brown GD. β-glucans and dectin-1. Ann. NY Acad. Sci.1143, 45–60 (2008).
  • Reid D, Gow NAR, Brown G. Pattern recognition: recent insights from dectin-1. Curr. Opin. Immunol.21, 30–37 (2009).
  • Dennehy K, Willment J, Williams D, Brown G. Reciprocal regulation of IL-23 and IL-12 following co-activation of dectin-1 and TLR signaling pathways. Eur. J. Immunol.39, 1379–1386 (2009).
  • Lyakh L, Cardone M, Riboldi E, Trinchieri G. Regulation of IL-1 β and IL-23 production by β-glucan in human dendritic cells. J. Immunol.182, 135–176 (2009).
  • Ezekowitz RAB, Sim RB, Hill M, Gordon S. Local opsonization by secreted macrophage complement components – role of receptors for complement in uptake of zymosan. J. Exp. Med.159, 244–260 (1984).
  • Ross GD, Cain JA, Myones BL, Newman SL, Lachmann PJ. Specificity of membrane complement receptor type 3 (Cr3) for β-glucans. Complement4, 61–74 (1987).
  • Ross GD. Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/α(M)β(2)-integrin glycoprotein. Crit. Rev. Immunol.20, 197–200 (2000).
  • Xia Y, Ross GD. Generation of recombinant fragments of CD11b expressing the functional β-glucan-binding lectin site of CR3 (CD11b/CD18). J. Immunol.162, 7285–7293 (1999).
  • Li B, Allendorf DJ, Hansen R et al. Yeast β-glucan amplifies phagocyte killing of iC3β-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J. Immunol.177, 1661–1669 (2006).
  • Chan GCF, Chan WK, Sze DMY. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol.2, 25 (2009).
  • Chen JZ, Seviour R. Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol. Res.111, 635–652 (2007).
  • Rice PJ, Kelley JL, Kogan G et al. Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-β-D-glucans. J. Leuk. Biol.72, 140–146 (2002).
  • Means TK, Mylonakis E, Tampakakis E et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med.206, 637–653 (2009).
  • Vereschagin EI, van Lambalgen AA, Dushkin MI et al. Soluble glucan protects against endotoxin shock in the rat: the role of the scavenger receptor. Shock9, 193–198 (1998).
  • Lee JN, Lee DY, Ji IH et al. Purification of soluble β-glucan with immune-enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem.65, 837–841 (2001).
  • Sakurai T, Ohno N, Yadomae T. Effects of fungal β-glucan and interferon-γ on the secretory functions of murine alveolar macrophages. J. Leuk. Biol.60, 118–124 (1996).
  • Hunter KW, duPre’ S, Redelman D. Microparticulate β-glucan upregulates the expression of B7.1, B7.2, B7-H1, but not B7-DC on cultured murine peritoneal macrophages. Immunol. Lett.93, 71–78 (2004).
  • Adachi Y, Okazaki M, Ohno N, Yadomae T. Enhancement of cytokine production by macrophages stimulated with (1→3)-β-D-glucan, grifolan (Grn), isolated from Grifola frondosa. Biol. Pharm. Bull.17, 1554–1560 (1994).
  • Olson EJ, Standing JE, GriegoHarper N, Hoffman OA, Limper AH. Fungal β-glucan interacts with vitronectin and stimulates tumor necrosis factor a release from macrophages. Infect. Immun.64, 3548–3554 (1996).
  • Engstad CS, Engstad RE, Olsen JO, Osterud B. The effect of soluble β-1,3-glucan and lipopolysaccharide on cytokine production and coagulation activation in whole blood. Int. Immunopharmacol.2(11), 1585–1597 (2002).
  • Tsukada C, Yokoyama H, Miyaji C et al. Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of β-glucan. Cell. Immunol.221, 1–5 (2003).
  • Shen JW, Ren HW, Tomiyama-Miyaji C et al. Potentiation of intestinal immunity by micellary mushroom extracts. Biomed. Res.28, 71–77 (2007).
  • Suzuki I, Hashimoto K, Ohno N, Tanaka H, Yadomae T. Immunomodulation by orally-administered β-glucan in mice. Int. J. Immunopharmacol.11, 761–769 (1989).
  • Hunter KW, Gault RA, Berner MD. Preparation of microparticulate β-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol.35, 267–271 (2002).
  • Suzuki I, Tanaka H, Kinoshita A et al. Effect of orally-administered β-glucan on macrophage function in mice. Int. J. Immunopharmacol.12, 675–684 (1990).
  • Vetvicka V, Vashishta A, Saraswat-Ohri S, Vetvickova J. Immunological effects of yeast- and mushroom-derived β-glucans. J. Med. Food11, 615–622 (2008).
  • Kournikakis B, Mandeville R, Brousseau P, Ostroff G. Anthrax-protective effects of yeast b 1,3 glucans. MedGenMed5(1), 1 (2003).
  • Sakurai T, Suzuki I, Kinoshita A et al. Effect of intraperitoneally administered β-1,3-glucan, Ssg, obtained from Sclerotinia sclerotiorum Ifo-9395 on the functions of murine alveolar macrophages. Chem. Pharm. Bull.39, 214–217 (1991).
  • Rice PJ, Adams EL, Ozment-Skelton T et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J. Pharmacol. Exp. Ther.314, 1079–1086 (2005).
  • White TR, Thompson RCA, Penhale WJ, Chihara G. The effect of lentinan on the resistance of mice to Mesocestoides corti. Parasitol. Res.74, 563–568 (1988).
  • Altuwaijri AS, Mahmoud AA, Almofleh IA, Alkhuwaitir SA. Effect of glucan on Leishmania major infection in Balb/C mice. J. Med. Microbiol.23, 363–365 (1987).
  • Kumar P, Ahmad S. Glucan-induced immunity in mice against Plasmodium berghei. Ann. Trop. Med. Parasitol.79, 211–213 (1985).
  • Havlik I, Looareesuwan S, Vannaphan S et al. Curdlan sulphate in human severe/cerebral Plasmodium falciparum malaria. Trans. Royal Soc. Trop. Med. Hyg.99, 333–340 (2005).
  • Bousquet M, Escoula L, Pipy B et al. 2 β-1–3, β-1–6 polysaccharides (Psat and scleroglucan) induce enhancement of the resistance of mice to Toxoplasma gondii. Ann. Parasitol. Hum. Comp.63, 398–409 (1988).
  • Yun CH, Estrada A, Van Kessel A et al. Immunomodulatory effects of oat β-glucan administered intragastrically or parenterally on mice infected with Eimeria vermiformis. Microbiol. Immunol.42, 457–465 (1998).
  • Wasser S, Weis A. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int. J. Med. Mushrooms1, 31–62 (1999).
  • Hetland G, Lovik M, Wiker HG. Protective effect of β-glucan against Mycobacterium bovis, BCG infection in BALB/c mice. Scand. J. Immunol.47, 548–553 (1998).
  • Liang JS, Melican D, Cafro L et al. Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int. J. Immunopharmacol.20, 595–614 (1998).
  • Dritz SS, Shi J, Kielian TL et al. Influence of dietary β-glucan on growth-performance, nonspecific immunity, and resistance to Streptococcus suis infection in weanling pigs. J. Anim. Sci.73, 3341–3350 (1995).
  • Rasmussen LT, Seljelid R. Dynamics of blood components and peritoneal fluid during treatment of murine Escherichia coli sepsis with β-1,3-D-polyglucose derivatives. I. Cells. Scand. J. Immunol.32, 321–331 (1990).
  • Delville J, Jacques PJ. Therapeutic effect of yeast glucan in mice infected with Mycobacterium leprae. Arch. Int. Physiol. Biochim. Biophys.85, 965–966 (1977).
  • Sullivan R, Smith JE, Rowan NJ. Medicinal mushrooms and cancer therapy – translating a traditional practice into Western medicine. Persp. Biol. Med.49, 159–170 (2006).
  • Kimura Y, Tojima H, Fukase S, Takeda K. Clinical evaluation of sizofilan as assistant immunotherapy in treatment of head and neck cancer. Acta Otolaryngol. Suppl.511, 192–195 (1994).
  • Wasser S, Nevo E, Sokolov D, Reshetnikov S, Timor-Tismenetsky M. Dietary supplements from medicinal mushrooms: diversity of types and variety of regulations. Int. J. Med. Mushrooms2, 1–19 (2000).
  • Babicek K, Cechova I, Simon RR, Harwood M, Cox DJ. Toxicological assessment of a particulate yeast (1,3/1,6)-β-D-glucan in rats. Food Chem. Toxicol.45, 1719–1730 (2007).
  • Takahashi H, Ohno N, Adachi Y, Yadomae T. Association of immunological disorders in lethal side effect of NSAIDs on β-glucan-administered mice. FEMS Immunol. Med. Microbiol.31, 1–14 (2001).
  • Nameda S, Miura NN, Adachi Y, Ohno N. Antibiotics protect against septic shock in mice administered β-glucan and indomethacin. Microbiol. Immunol.51, 851–859 (2007).
  • Vetvicka V, Vetvickova J. β-glucan–indomethacin combination produces no lethal effects. Biomed. Papers153, 111–116 (2009).
  • Bowers GJ, Patchen ML, Macvittie TJ, Hirsch EF, Fink MP. A comparative evaluation of particulate and soluble glucan in an endotoxin model. Int. J. Immunopharmacol.8, 313–321 (1986).
  • Hetland G, Ohno N, Aaberge IS, Lovik M. Protective effect of β-glucan against systemic Streptococcus pneumoniae infection in mice. FEMS Immunol. Med. Microbiol.27, 111–116 (2000).
  • Cook JA, Dougherty WJ, Holt TM. Enhanced sensitivity to endotoxin induced by the restimulant, glucan. Circulat. Shock7, 225–238 (1980).
  • Jones ML, Warren JS. Monocyte chemoattractant protein-1 in a rat model of pulmonary granulomatosis. Lab. Invest.66, 498–503 (1992).
  • Zekovic DB, Kwiatkowski S, Vrvic MM, Jakovljevic D, Moran CA. Natural and modified (1→3)-β-D-glucans in health promotion and disease alleviation. Crit. Rev. Biotechnol.25, 205–230 (2005).
  • Valdes-Ramos R, Itez-Arciniega AD. Nutrition and immunity in cancer. Br. J. Nutr.98, S127–S132 (2007).
  • LeBlanc BW, Albina JE, Reichner JS. The effect of PGG-β-glucan on neutrophil chemotaxis in vivo. J. Leuk. Biol.79, 667–675 (2006).
  • Tari K, Satake I, Nakagomi K et al. [Effect of lentinan for advanced prostate carcinoma]. Hinyokika Kiyo40, 119–123 (1994).
  • Nakano H, Namatame K, Nemoto H et al. A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: effect on prolongation of survival and improvement of quality of life. Hepatogastroenterology46, 2662–2668 (1999).
  • Fujimoto S. [Clinical efficacies of schizophyllan (SPG) on advanced gastric cancer]. Nippon Geka Gakkai Zasshi90, 1447–1450 (1989).
  • Hamuro J. [Anticancer immunotherapy with perorally effective lentinan]. Gan. To Kagaku Ryoho32, 1209–1215 (2005).
  • Yoshino S, Oka M. [Clinical trial of non-specific immunotherapy using Lentinan in advanced or recurrent gastric cancer]. Gan. To Kagaku Ryoho35, 2239–2243 (2008).
  • Yang P, Liang MH, Zhang YX, Shen BZ. Clinical application of a combination therapy of lentinan, multi-electrode RFA and TACE in HCC. Adv. Ther.25, 787–794 (2008).
  • Defelippe J, Silva MDE, Maciel FMB, Soares AD, Mendes NF. Infection prevention in patients with severe multiple trauma with the immunomodulator β-1–3 polyglucose (glucan). Surg. Gynecol. Obstet.177, 383–388 (1993).
  • Babineau TJ, Hackford A, Kenler A et al. A Phase-II multicenter, double-blind, randomized, placebo-controlled study of 3 dosages of an immunomodulator(Pgg-glucan) in high-risk surgical patients. Arch. Surg.129, 1204–1210 (1994).
  • Babineau TJ, Marcello P, Swails W et al. Randomized Phase I/II trial of a macrophage-specific immunomodulator (Pgg-glucan) in high-risk surgical patients. Ann. Surg.220, 601–609 (1994).
  • Dellinger EP, Babineau TJ, Bleicher P et al. Effect of PGG-glucan on the rate of serious postoperative infection or death observed after high-risk gastrointestinal operations. Arch. Surg.134, 977–983 (1999).
  • Gordon M, Guralnik M, Kaneko Y et al. Further clinical studies of curdlan sulfate (Crds) – an anti-HIV agent. J. Med.26, 97–131 (1995).
  • Gordon M, Guralnik M, Kaneko Y et al. A Phase II controlled study of a combination of the immune modulator, lentinan, with didanosine (DDI) in HIV patients with CD4 cells of 200–500/mm3. J. Med.26, 193–207 (1995).
  • Gordon M, Deeks S, DeMarzo C et al. Curdlan sulfate (CRDS) in a 21-day intravenous tolerance study in human immunodeficiency virus (HIV) and cytomegalovirus (CMV) infected patients: anti-CMV activity with low toxicity. J. Med.28, 108–128 (1997).
  • Nieman DC, Henson DA, McMahon M et al. β-glucan, immune function, and upper respiratory tract infections in athletes. Med. Sci. Sports Exerc.40, 1463–1471 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.