868
Views
288
CrossRef citations to date
0
Altmetric
Review

Role of the gut microbiota in defining human health

, , &
Pages 435-454 | Published online: 10 Jan 2014

References

  • Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA104(3), 979–984 (2007).
  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host–bacterial mutualism in the human intestine. Science307(5717), 1915–1920 (2005).
  • Blaut M, Clavel T. Metabolic diversity of the intestinal microbiota: implications for health and disease. J. Nutr.137(3), 751S–755S (2007).
  • De La Cochetière M, Durand T, Lalande V, Petit J, Potel G, Beaugerie L. Effect of antibiotic therapy on human fecal microbiota and the relation to the development of Clostridium difficile. Microb. Ecol.56(3), 395–402 (2008).
  • Dicksved J, Halfvarson J, Rosenquist M et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J.2(7), 716–727 (2008).
  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA102(31), 11070–11075 (2005).
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature444(7122), 1022–1023 (2006).
  • Li M, Wang B, Zhang M et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl Acad. Sci. USA105(6), 2117–2122 (2008).
  • Manichanh C, Rigottier-Gois L, Bonnaud E et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut55(2), 205–211 (2006).
  • Marchesi JR, Holmes E, Khan F et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res.6(2), 546–551 (2007).
  • Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol.5(7), e177 (2007).
  • Roesch LFW, Lorca GL, Casella G et al. Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J.3(5), 536–548 (2009).
  • Romick-Rosendale LE, Goodpaster AM, Hanwright PJ et al. NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). Magn. Reson. Chem.47(S1), S36–S46 (2009).
  • Scanlan PD, Shanahan F, Clune Y et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ. Microbiol.10(3), 789–798 (2008).
  • Schumann A, Nutten S, Donnicola D et al. Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol. Genomics23(2), 235–245 (2005).
  • Turnbaugh PJ, Hamady M, Yatsunenko T et al. A core gut microbiome in obese and lean twins. Nature457(7228), 480–484 (2009).
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444(7122), 1027–1031 (2006).
  • Collins S, Denou E, Verdu E, Bercik P. The putative role of the intestinal microbiota in the irritable bowel syndrome. Dig. Liver Dis.41(12), 850–853 (2009).
  • Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol.6(11), e280 (2008).
  • Harris JK, De Groote MA, Sagel SD et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc. Natl Acad. Sci. USA104(51), 20529–20533 (2007).
  • Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW. Microbes on the human vaginal epithelium. Proc. Natl Acad. Sci. USA102(22), 7952–7957 (2005).
  • Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl Acad. Sci. USA105(39), 15070–15075 (2008).
  • Yi S, Leiqiong C, Jianqian T, Chen X. Preliminary characterization of vaginal microbiota in healthy Chinese women using cultivation-independent methods. J. Obstet. Gynaecol. Res.35(3), 525–532 (2009).
  • Zhou X, Brown CJ, Abdo Z et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J.1(2), 121–133 (2007).
  • Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J. Clin. Microbiol.44(10), 3665–3673 (2006).
  • Sakamoto M, Huang Y, Ohnishi M, Umeda M, Ishikawa I, Benno Y. Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J. Med. Microbiol.53(Pt 6), 563–571 (2004).
  • Jenzsch A, Eick S, Rassoul F, Purschwitz R, Jentsch H. Nutritional intervention in patients with periodontal disease: clinical, immunological and microbiological variables during 12 months. Br. J. Nutr.101(6), 879–885 (2009).
  • Branch-Mays GL, Dawson DR, Gunsolley JC et al. The effects of a calorie-reduced diet on periodontal inflammation and disease in a non-human primate model. J. Periodontol.79(7), 1184–1191 (2008).
  • Reynolds MA, Dawson DR, Novak KF et al. Effects of caloric restriction on inflammatory periodontal disease. Nutrition25(1), 88–97 (2009).
  • Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes56(7), 1761–1772 (2007).
  • Hildebrandt MA, Hoffmann C, Sherrill-Mix SA et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology137(5), 1716–1724.e1–2 (2009).
  • Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3(4), 213–223 (2008).
  • Nadal I, Santacruz A, Marcos A et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int. J. Obes.33(7), 758–767 (2008).
  • Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog.5(5), e1000423 (2009).
  • Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. Host transmission of Salmonella enterica serovar typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun.76(1), 403–416 (2008).
  • Lawley TD, Clare S, Walker AW et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun.77(9), 3661–3669 (2009).
  • Ivanov II, Atarashi K, Manel N et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139(3), 485–498 (2009).
  • Kobayashi T, Okamoto S, Hisamatsu T et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut57(12), 1682–1689 (2008).
  • Chow J, Mazmanian SK. Getting the bugs out of the immune system: do bacterial microbiota “fix” intestinal T cell responses? Cell Host Microbe5(1), 8–12 (2009).
  • Ege MJ, Bieli C, Frei R et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J. Allergy Clin. Immunol.117(4), 817–823 (2006).
  • Penders J, Thijs C, Vink C et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics118(2), 511–521 (2006).
  • Wegienka G, Havstad S, Zoratti EM et al. Regulatory T cells in prenatal blood samples: variability with pet exposure and sensitization. J. Reprod. Immunol.81(1), 74–81 (2009).
  • Schaub B, Liu J, Höppler S et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol.123(4), 774–782 (2009).
  • Debarry J, Garn H, Hanuszkiewicz A et al.Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J. Allergy Clin. Immunol.119(6), 1514–1521 (2007).
  • de Meer G, Janssen NAH, Brunekreef B. Early childhood environment related to microbial exposure and the occurrence of atopic disease at school age. Allergy60(5), 619–625 (2005).
  • Duramad P, Harley K, Lipsett M et al. Early environmental exposures and intracellular Th1/Th2 cytokine profiles in 24-month-old children living in an agricultural area. Environ. Health Perspect.114(12), 1916–1922 (2006).
  • Aichbhaumik N, Zoratti EM, Strickler R et al. Prenatal exposure to household pets influences fetal immunoglobulin E production. Clin. Exp. Allergy38(11), 1787–1794 (2008).
  • Prescott SL, Macaubas C, Holt BJ et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J. Immunol.160(10), 4730–4737 (1998).
  • Bergmann RL, Edenharter G, Bergmann KE et al. Predictability of early atopy by cord blood-IgE and parental history. Clin. Exp. Allergy,27, 752–760 (1997).
  • Illi S, von Mutius E, Lau S et al. The pattern of atopic sensitization is associated with the development of asthma in childhood. J. Allergy Clin. Immunol.108(5), 709–714 (2001).
  • Tariq SM, Arshad SH, Matthews SM, Hakim EA. Elevated cord serum IgE increases the risk of aeroallergen sensitization without increasing respiratory allergic symptoms in early childhood. Clin. Exp. Allergy29(8), 1042–1048 (1999).
  • McKeever TM, Lewis SA, Smith C, Hubbard R. The importance of prenatal exposures on the development of allergic disease: a birth cohort study using the West Midlands general practice database. Am. J. Respir. Crit. Care Med.166(6), 827–832 (2002).
  • Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J. Clin. Microbiol.47(1), 38–47 (2009).
  • DiGiulio DB, Romero R, Amogan HP et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One3(8), e3056 (2008).
  • Conly JM, Stein K, Worobetz L, Rutledge-Harding S. The contribution of vitamin K2 (menaquinones) produced by the intestinal microflora to human nutritional requirements for vitamin K. Am. J. Gastroenterol.89(6), 915–923 (1994).
  • Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev.6(2), S43–S45 (1997).
  • Xu J, Bjursell MK, Himrod J et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science299(5615), 2074–2076 (2003).
  • Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr. Opin. Hematol.14(1), 48–54 (2007).
  • Rakoff-Nahoum S, Medzhitov R. Innate immune recognition of the indigenous microbial flora. Muc. Immunol.1(Suppl. 1), S10–S14 (2008).
  • Kett K, Baklien K, Bakken A, Kral JG, Fausa O, Brandtzaeg P. Intestinal B-cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology109(3), 819–825 (1995).
  • Apperloo-Renkema HZ, Jagt TG, Tonk RH, van der Waaij D. Healthy individuals possess circulating antibodies against their indigenous faecal microflora as well as against allogenous faecal microflora: an immunomorphometrical study. Epidemiol. Infect.111(2), 273–285 (1993).
  • Kimura K, McCartney AL, McConnell MA, Tannock GW. Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl. Environ. Microbiol.63(9), 3394–3398 (1997).
  • Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr. Opin Immunol.17(4), 338–344 (2005).
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118(2), 229–241 (2004).
  • Butler JE, Weber P, Sinkora M et al. Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens. J. Immunol.169(12), 6822–6830 (2002).
  • Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science313(5790), 1126–1130 (2006).
  • Hazebrouck S, Przybylski-Nicaise L, Ah-Leung S et al. Allergic sensitization to bovine β-lactoglobulin: comparison between germ-free and conventional BALB/c mice. Int. Arch. Allergy Immunol.148(1), 65–72 (2009).
  • Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol.9, 65 (2008).
  • Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science288(5474), 2222–2226 (2000).
  • Wang Y, McCusker C. Neonatal exposure with LPS and/or allergen prevents experimental allergic airways disease: development of tolerance using environmental antigens. J. Allergy Clin. Immunol.118(1), 143–151 (2006).
  • Cebra JJ. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr.69(5), 1046S–1051S (1999).
  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host–microbial relationships in the intestine. Science291(5505), 881–884 (2001).
  • Penders J, Stobberingh EE, van den Brandt PA, Thijs C. The role of the intestinal microbiota in the development of atopic disorders. Allergy62(11), 1223–1236 (2007).
  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol.4(3), 269–273 (2003).
  • Penders J, Thijs C, van den Brandt PA et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut56(5), 661–667 (2007).
  • Alenius H, Pakarinen J, Saris O et al. Contrasting immunological effects of two disparate dusts – preliminary observations. Int. Arch. Allergy Immunol.149(1), 81–90 (2009).
  • Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science307(5717), 1920–1925 (2005).
  • Schaub B, Liu J, Schleich I, Hoppler S, Sattler C, von Mutius E. Impairment of T helper and T regulatory cell responses at birth. Allergy63(11), 1438–1447 (2008).
  • Strachan DP. Hay fever, hygiene, and household size. Br. Med. J.299(6710), 1259–1260 (1989).
  • Yoo J, Tcheurekdjian H, Lynch SV, Cabana M, Boushey HA. Microbial manipulation of immune function for asthma prevention: inferences from clinical trials. Proc. Am. Thorac. Soc.4(3), 277–282 (2007).
  • Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy.38(4), 629–633 (2008).
  • Johnson CC, Ownby DR, Alford SH et al. Antibiotic exposure in early infancy and risk for childhood atopy. J. Allergy Clin. Immunol.115(6), 1218–1224 (2005).
  • Tannock GW, Fuller R, Smith SL, Hall MA. Plasmid profiling of members of the family Enterobacteriaceae, Lactobacilli, and Bifidobacteria to study the transmission of bacteria from mother to infant. J. Clin. Microbiol.28(6), 1225–1228 (1990).
  • Kelly D, Campbell JI, King TP et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol.5(1), 104–112 (2004).
  • Corr SC, Hill C, Gahan CG. Chapter 1 understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Adv. Food Nutr. Res.56, 1–15 (2009).
  • Adlerberth I, Hanson LA, Wold AE. Ontogeny of the intestinal flora. In: Development of the Gastrointestinal Tract. Sanderson I, Walker W (Eds). BC Decker, Hamilton, ON, Canada, 279–292 (1999).
  • Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin. Rev. Allergy Immunol.34(2), 191–204 (2008).
  • Kramer DR, Cebra JJ. Role of maternal antibody in the induction of virus specific and bystander IgA responses in Peyer’s patches of suckling mice. Int. Immunol.7(6), 911–918 (1995).
  • Kramer DR, Cebra JJ. Early appearance of ‘natural’ mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J. Immunol.154(5), 2051–2062 (1995).
  • Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology109(4), 580–587 (2003).
  • Bollinger RR, Everett ML, Wahl SD, Lee Y-H, Orndorff PE, Parker W. Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Mol. Immunol.43(4), 378–387 (2006).
  • Inoue R, Otsuka M, Ushida K. Development of intestinal microbiota in mice and its possible interaction with the evolution of luminal IgA in the intestine. Exp. Anim.54(5), 437–445 (2005).
  • Rautava S, Walker WA. Academy of Breastfeeding Medicine founder’s lecture 2008: breastfeeding – an extrauterine link between mother and child. Breastfeed. Med.4(1), 3–10 (2009).
  • Ruiz-Palacios GM, Calva JJ, Pickering LK et al. Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J. Pediatr.116(5), 707–713 (1990).
  • McGuire W, Anthony MY. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: systematic review. Arch. Dis. Child. Fetal Neonatal Ed.88(1), F11–F14 (2003).
  • Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics115(5), 1367–1377 (2005).
  • Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am. J. Clin. Nutr.84(5), 1043–1054 (2006).
  • Songjinda P, Nakayama J, Tateyama A et al. Differences in developing intestinal microbiota between allergic and non-allergic infants: a pilot study in Japan. Biosci. Biotech. Bioch.71(9), 2338–2342 (2007).
  • Klaassens ES, Boesten RJ, Haarman M et al. Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl. Environ. Microbiol.75(9), 2668–2676 (2009).
  • He F, Morita H, Ouwehand AC et al. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol. Immunol.46(11), 781–785 (2002).
  • Ménard S, Candalh C, Bambou JC, Terpend K, Cerf-Bensussan N, Heyman M. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut53(6), 821–828 (2004).
  • Heuvelin E, Lebreton C, Grangette C, Pot B, Cerf-Bensussan N, Heyman M. Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One4(4), e5184 (2009).
  • Sela DA, Chapman J, Adeuya A et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl Acad. Sci. USA105(48), 18964–18969 (2008).
  • Yang HY, Liu SL, Ibrahim SA et al. Oral administration of live Bifidobacterium substrains isolated from healthy centenarians enhanced immune function in BALB/c mice. Nutr. Res.29(4), 281–289 (2009).
  • Sjögren YM, Jenmalm MC, Böttcher MF, Björkstén B, Sverremark-Ekström E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin. Exp. Allergy39(4), 518–526 (2009).
  • Remes ST, Koskela HO, Iivanainen K, Pekkanen J. Allergen-specific sensitization in asthma and allergic diseases in children: the study on farmers’ and non-farmers’ children. Clin. Exp. Allergy35(2), 160–166 (2005).
  • von Ehrenstein OS, von Mutius E, Illi S, Baumann L, Böhm O, von Kries R. Reduced risk of hay fever and asthma among children of farmers. Clin. Exp. Allergy30(2), 187–193 (2000).
  • Gori A, Tincati C, Rizzardini G et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J. Clin. Microbiol.46(2), 757–758 (2008).
  • Barman M, Unold D, Shifley K et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun.76(3), 907–915 (2008).
  • Baumgart M, Dogan B, Rishniw M et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J.1(5), 403–418 (2007).
  • Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104(34), 13780–13785 (2007).
  • Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J. Clin. Microbiol.44(11), 4136–4141 (2006).
  • Kassinen A, Krogius-Kurikka L, Mäkivuokko H et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology133(1), 24–33 (2007).
  • Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog.4(2), e35 (2008).
  • Lupp C, Robertson ML, Wickham ME et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2(2), 119–129 (2007).
  • Martinez-Medina M, Aldeguer X, Lopez-Siles M et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm. Bowel Dis.15(6), 872–882 (2009).
  • Nadal I, Donant E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J. Med. Microbiol.56(12), 1669–1674 (2007).
  • Ott SJ, Musfeldt M, Ullmann U, Hampe J, Schreiber S. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J. Clin. Microbiol.42(6), 2566–2572 (2004).
  • Sokol H, Lepage P, Seksik P, Dore J, Marteau P. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. J. Clin. Microbiol.44(9), 3172–3177 (2006).
  • Sokol H, Pigneur B, Watterlot L et al.Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA105(43), 16731–16736 (2008).
  • Stecher B, Robbiani R, Walker AW et al.Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol.5(10), e244 (2007).
  • Vaahtovuo J, Munukka E, Korkeamäki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol.35(8), 1500–1505 (2008).
  • Willing B, Halfvarson J, Dicksved J et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm. Bowel Dis.15(5), 653–660 (2009).
  • Claud EC, Walker WA. Bacterial colonization, probiotics, and necrotizing enterocolitis. J. Clin. Gastroenterol.42(Suppl. 2), S46–S52 (2008).
  • Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des.14(12), 1225–1230 (2008).
  • Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease: Crohn’s disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol.157(3), 1261–1270 (1996).
  • Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut52(1), 65–70 (2003).
  • Fuss IJ, Heller F, Boirivant M et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Invest.113(10), 1490–1497 (2004).
  • Heller F, Florian P, Bojarski C et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology129(2), 550–564 (2005).
  • Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu. Rev. Med.51(1), 289–298 (2000).
  • Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm. Bowel Dis.12(5), S3-S9 (2006).
  • Bollinger RR, Barbas AS, Bush EL, Lin SS, Parker W. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. J. Theor. Biol.249(4), 826–831 (2007).
  • Danese S, Sans M, Fiocchi C. Inflammatory bowel disease: the role of environmental factors. Autoimmun. Rev.3(5), 394–400 (2004).
  • Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet369(9573), 1641–1657 (2007).
  • Fisher SA, Tremelling M, Anderson CA et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat. Genet.40(6), 710–712 (2008).
  • Hugot J-P, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature411(6837), 603–606 (2001).
  • Latiano A, Palmieri O, Valvano MR et al. Evaluating the role of the genetic variations of PTPN22, NFKB1, and FcGRIIIA genes in inflammatory bowel disease: a meta-analysis. Inflamm. Bowel Dis.13(10), 1212–1219 (2007).
  • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39(2), 207–211 (2007).
  • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39(5), 596–604 (2007).
  • The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447(7145), 661–678 (2007).
  • Glas J, Török H-P, Tonenchi L et al. Role of the NFKB1 -94ins/delATTG promoter polymorphism in IBD and potential interactions with polymorphisms in the CARD15/NOD2, IKBL, and IL-1RN genes. Inflamm. Bowel Dis.12(7), 606–611 (2006).
  • Borm MEA, Bodegraven AA, Mulder CJJ, Kraal G, Bouma G. A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int. J. Immunogenet.32(6), 401–405 (2005).
  • Mirza MM, Fisher SA, Onnie C et al. No association of the NFKB1 promoter polymorphism with ulcerative colitis in a British case control cohort. Gut54(8), 1205–1206 (2005).
  • Karban AS, Okazaki T, Panhuysen CIM et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum. Mol. Genet.13(1), 35–45 (2004).
  • Macfarlane GT, Blackett KL, Nakayama T, Steed H, Macfarlane S. The gut microbiota in inflammatory bowel disease. Curr. Pharm. Des.15(13), 1528–1536 (2009).
  • Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut53(1), 1–4 (2004).
  • Conte MP, Schippa S, Zamboni I et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut55(12), 1760–1767 (2006).
  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther.27(2), 104–119 (2008).
  • Pajak B, Orzechowski A, Gajkowska B. Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Adv. Med. Sci.52, 83–88 (2007).
  • Scheppach W, Weiler F. The butyrate story: old wine in new bottles? Curr. Opin. Clin. Nutr. Metab. Care7(5), 563–567 (2004).
  • Sokol H, Seksik P, Furet JP et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis.15(8), 1183–1189 (2009).
  • Jansson J, Willing B, Lucio M et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One4(7), e6386 (2009).
  • Balasubramanian K, Kumar S, Singh RR et al. Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magn. Reson. Imaging27(1), 79–86 (2009).
  • Alm B, Erdes L, Mollborg P et al. Neonatal antibiotic treatment is a risk factor for early wheezing. Pediatrics121(4), 697–702 (2008).
  • Alam S, Mushtaq M. Antibiotic associated diarrhea in children. Indian Pediatr.46(6), 491–496 (2009).
  • Surawicz CM. Antibiotic-associated diarrhea and pseudomembranous colitis: are they less common with poorly absorbed antimicrobials? Chemotherapy51(Suppl. 1), 81–89 (2005).
  • Caramia G. Metchnikoff and the centenary of probiotics: an update of their use in gastroenteric pathology during the age of development. Minerva Pediatr.60(6), 1417–1435 (2008).
  • Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut52(7), 988–997 (2003).
  • Servin AL, Coconnier MH. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol.17(5), 741–754 (2003).
  • Resta-Lenert SC, Barrett KE. Modulation of intestinal barrier properties by probiotics: role in reversing colitis. Ann. NY Acad. Sci.1165, 175–182 (2009).
  • Dembele T, Obdrzalek V, Votava M. Inhibition of bacterial pathogens by lactobacilli. Zentralbl. Bakteriol.288(3), 395–401 (1998).
  • Ocana VS, Elena Nader-Macias M. Production of antimicrobial substances by lactic acid bacteria II: screening bacteriocin-producing strains with probiotic purposes and characterization of a Lactobacillus bacteriocin. Methods Mol. Biol.268, 347–353 (2004).
  • Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S, Arvilommi H. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr. Res.32(2), 141–144 (1992).
  • Di Caro S, Tao H, Grillo A et al. Effects of Lactobacillus GG on genes expression pattern in small bowel mucosa. Dig. Liver Dis.37(5), 320–329 (2005).
  • Dotan I, Rachmilewitz D. Probiotics in inflammatory bowel disease: possible mechanisms of action. Curr. Opin Gastroenterol.21(4), 426–430 (2005).
  • Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J. Biol. Chem.277(52), 50959–50965 (2002).
  • Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr.125(6), 1401–1412 (1995).
  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev.17(02), 259–275 (2004).
  • Saulnier DMA, Spinler JK, Gibson GR, Versalovic J. Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Curr. Opin. Biotechnol.20(2), 135–141 (2009).
  • Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology136(6), 2015–2031 (2009).
  • Sellon RK, Tonkonogy S, Schultz M et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun.66(11), 5224–5231 (1998).
  • Taurog JD, Richardson JA, Croft JT et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med.180(6), 2359–2364 (1994).
  • Mileti E, Matteoli G, Iliev ID, Rescigno M. Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One4(9), e7056 (2009).
  • Fedorak RN. Probiotics in the management of inflammatory bowel diseases? Am. J. Gastroenterol.102(s1), S22–S28 (2007).
  • Isaacs K, Herfarth H. Role of probiotic therapy in IBD. Inflamm. Bowel Dis.14(11), 1597–1605 (2008).
  • Fellermann K, Wehkamp J, Herrlinger KR, Stange EF. Crohn’s disease: a defensin deficiency syndrome? Eur. J. Gastroenterol. Hepatol.15, 627–634 (2003).
  • Tursi A, Brandimarte G, Giorgetti GM, Forti G, Modeo ME, Gigliobianco A. Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med. Sci. Monit.10(11), PI126–PI131 (2004).
  • Bibiloni R, Fedorak RN, Tannock GW et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am. J. Gastroenterol.100(7), 1539–1546 (2005).
  • Sood A, Midha V, Makharia GK et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin. Gastroenterol. H7(11), 1202–1209 (2009).
  • Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur. J. Gastroenterol. Hepatol.15(6), 697–698 (2003).
  • Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig. Dis. Sci.45(7), 1462–1464 (2000).
  • AlFaleh K, Anabrees J, Bassler D. Probiotics reduce the risk of necrotizing enterocolitis in preterm infants: a meta-analysis. Neonatology97(2), 93–99 (2009).
  • Barclay AR, Stenson B, Simpson JH, Weaver LT, Wilson DC. Probiotics for necrotizing enterocolitis: a systematic review. J. Pediatr. Gastroenterol. Nutr.45(5), 569–576 (2007).
  • Bin-Nun A, Bromiker R, Wilschanski M et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J. Pediatr.147(2), 192–196 (2005).
  • Caplan MS. Probiotic and prebiotic supplementation for the prevention of neonatal necrotizing enterocolitis. J. Perinatol.29(S2), S2–S6 (2009).
  • Deshpande G, Rao S, Patole S. Probiotics for prevention of necrotising enterocolitis in preterm neonates with very low birthweight: a systematic review of randomised controlled trials. Lancet369(9573), 1614–1620 (2007).
  • Lin H-C, Su B-H, Chen A-C et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics115(1), 1–4 (2005).
  • Martin CR, Walker WA. Probiotics: role in pathophysiology and prevention in necrotizing enterocolitis. Semin. Perinatol.32(2), 127–137 (2008).
  • Cox MJ, Huang YJ, Fujimura KE et al.Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One5(1), e8745 (2010).
  • Brodie EL, DeSantis TZ, Joyner DC et al. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol.72(9), 6288–6298 (2006).
  • Besselink MG, van Santvoort HC, Buskens E et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet371(9613), 651–659 (2008).
  • Kunz AN, Noel JM, Fairchok MP. Two cases of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. J. Pediatr. Gastroenterol. Nutr.38(4), 457–458 (2004).
  • Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK. Lactobacillus sepsis associated with probiotic therapy. Pediatrics115(1), 178–181 (2005).
  • Winkler J, Butler R, Symonds E. Fructo-oligosaccharide reduces inflammation in a dextran sodium sulphate mouse model of colitis. Digest. Dis. Sci.52(1), 52–58 (2007).
  • Lewis S, Brazier J, Beard D, Nazem N, Proctor D. Effects of metronidazole and oligofructose on faecal concentrations of sulphate-reducing bacteria and their activity in human volunteers. Scand. J. Gastroenterol.40(11), 1296–1303 (2005).
  • Kanauchi O, Oshima T, Andoh A, Shioya M, Mitsuyama K. Germinated barley foodstuff ameliorates inflammation in mice with colitis through modulation of mucosal immune system. Scand. J. Gastroenterol.43(11), 1346–1352 (2008).
  • Le Leu RK, Hu Y, Brown IL, Woodman RJ, Young GP. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis31(2), 246–251 (2010).
  • Pool-Zobel BL. Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br. J. Nutr.93(Suppl. S1), S73–S90 (2005).
  • Roller M, Pietro Femia A, Caderni G, Rechkemmer G, Watzl B. Intestinal immunity of rats with colon cancer is modulated by oligofructose-enriched inulin combined with Lactobacillus rhamnosus and Bifidobacterium lactis. Br. J. Nutr.92(6), 931–938 (2004).
  • Rowland IR, Rumney CJ, Coutts JT, Lievense LC. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis19(2), 281–285 (1998).
  • Rafter J, Bennett M, Caderni G et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr.85(2), 488–496 (2007).
  • Furrie E, Macfarlane S, Kennedy A et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut54(2), 242–249 (2005).
  • Fujimori S, Tatsuguchi A, Gudis K et al. High dose probiotic and prebiotic cotherapy for remission induction of active Crohn’s disease. J. Gastroenterol. Hepatol.22(8), 1199–1204 (2007).
  • Alfvén T, Braun-Fahrländer C, Brunekreef B et al. Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle – the PARSIFAL study. Allergy61(4), 414–421 (2006).
  • Bråbäck L, Hjern A, Rasmussen F. Trends in asthma, allergic rhinitis and eczema among Swedish conscripts from farming and non-farming environments. A nationwide study over three decades. Clin. Exp. Allergy34(1), 38–43 (2004).
  • Brussee JE, Smit HA, van Strien RT et al. Allergen exposure in infancy and the development of sensitization, wheeze, and asthma at 4 years. J. Allergy Clin. Immunol.115(5), 946–952 (2005).
  • Korppi M, Hyvarinen M, Kotaniemi-Syrjanen A, Piippo-Savolainen E, Reijonen T. Early exposure and sensitization to cat and dog: different effects on asthma risk after wheezing in infancy. Pediatr. Allergy Immunol.19(8), 696–701 (2008).
  • Perzanowski MS, Chew GL, Divjan A et al. Cat ownership is a risk factor for the development of anti-cat IgE but not current wheeze at age 5 years in an inner-city cohort. J. Allergy Clin. Immunol.121(4), 1047–1052 (2008).
  • Radon K, Schulze A, Nowak D. Inverse association between farm animal contact and respiratory allergies in adulthood: protection, underreporting or selection? Allergy61(4), 443–446 (2006).
  • Roponen M, Hyvärinen A, Hirvonen M-R, Keski-Nisula L, Pekkanen J. Change in IFN-γ-producing capacity in early life and exposure to environmental microbes. J. Allergy Clin. Immunol.116(5), 1048–1052 (2005).
  • Schafer T, Stieger B, Polzius R, Krauspe A. Associations between cat keeping, allergen exposure, allergic sensitization and atopic diseases: results from the Children of Lubeck Allergy and Environment Study (KLAUS). Pediatr. Allergy Immunol.20(4), 353–357 (2009).
  • Takkouche B, Gonzalez-Barcala FJ, Etminan M, Fitzgerald M. Exposure to furry pets and the risk of asthma and allergic rhinitis: a meta-analysis. Allergy63(7), 857–864 (2008).
  • Maitra A, Sherriff A, Strachan D, Henderson J. Mode of delivery is not associated with asthma or atopy in childhood. Clin. Exp. Allergy34(9), 1349–1355 (2004).
  • Mikami K, Takahashi H, Kimura M et al. Influence of maternal bifidobacteria on the establishment of bifidobacteria colonizing the gut in infants. Pediatr. Res.65(6), 669–674 (2009).
  • Turroni F, Marchesi JR, Foroni E et al. Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME J.3(6), 745–751 (2009).
  • Campo P, Kalra HK, Levin L et al. Influence of dog ownership and high endotoxin on wheezing and atopy during infancy. J. Allergy Clin. Immunol.118(6), 1271–1278 (2006).
  • Pohlabeln H, Jacobs S, Bohmann J. Exposure to pets and the risk of allergic symptoms during the first 2 years of life. J. Investig. Allergol. Clin. Immunol.17(5), 302–308 (2007).
  • Adlerberth I, Lindberg E, Aberg N et al. Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr. Res.59(1), 96–101 (2006).
  • Bertini I, Calabrò A, De Carli V et al. The metabonomic signature of celiac disease. J. Proteome Res.8(1), 170–177 (2008).
  • Wen L, Ley RE, Volchkov PY et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature455(7216), 1109–1113 (2008).
  • Dumas M-E, Barton RH, Toye A et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA103(33), 12511–12516 (2006).
  • Brugman S, Klatter FA, Visser JT et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia49(9), 2105–2108 (2006).
  • Bibiloni R, Membrez M, Chou CJ. Gut microbiota, obesity and diabetes. Ann. Nestle (English ed.)67(1), 39–47 (2009).
  • Cani P, Neyrinck A, Fava F et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia50(11), 2374–2383 (2007).
  • Cani PD, Bibiloni R, Knauf C et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes57(6), 1470–1481 (2008).
  • Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr. Opin Clin. Nutr. Metab. Care10(6), 729–734 (2007).
  • Bäckhed F. Changes in intestinal microflora in obesity: cause or consequence? J. Pediatr. Gastroenterol. Nutr.48, S56–S57 (2009).
  • Membrez M, Blancher F, Jaquet M et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J.22(7), 2416–2426 (2008).
  • Monteleone G, Monteleone I, Fina D et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-γ production in Crohn’s disease. Gastroenterology128(3), 687–694 (2005).
  • Bibiloni R, Mangold M, Madsen KL, Fedorak RN, Tannock GW. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J. Med. Microbiol.55(8), 1141–1149 (2006).
  • Macfarlane S, Furrie E, Kennedy A, Cummings JH, Macfarlane GT. Mucosal bacteria in ulcerative colitis. Br. J. Nutr.93(Suppl. S1), S67–S72 (2005).
  • Sokol H, Seksik P, Rigottier-Gois L et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel Dis.12(2), 106–111 (2006).
  • Zhang M, Liu B, Zhang Y, Wei H, Lei Y, Zhao L. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J. Clin. Microbiol.45(2), 496–500 (2007).
  • Lin PW, Nasr TR, Stoll BJ. Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin. Perinatol.32(2), 70–82 (2008).
  • Henry MCW, Moss RL. Necrotizing enterocolitis. Annu. Rev. Med.60(1), 111–124 (2009).
  • Wang Y, Hoenig JD, Malin KJ et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J.3(8), 944–954 (2009).
  • Zhang H, DiBaise JK, Zuccolo A et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA106(7), 2365–2370 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.