114
Views
79
CrossRef citations to date
0
Altmetric
Review

Present and future therapeutic strategies for melioidosis and glanders

, , &
Pages 325-338 | Published online: 10 Jan 2014

References

  • Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei.Nat. Rev. Microbiol.4, 272–282 (2006).
  • Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin. Microbiol. Rev.18, 383–416 (2005).
  • Currie BJ, Jacups SP. Intensity of rainfall and severity of melioidosis, Australia. Emerg. Infec. Dis.9, 1538–1542 (2003).
  • Currie BJ, Dance DA, Cheng AC. The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans. R. Soc. Trop. Med. Hyg.102, S1–S4 (2008).
  • Koponen MA, Zlock D, Palmer DL, Merlin TL. Melioidosis: forgotten, but not gone. Arch. Intern. Med.151, 605–608 (1991).
  • Chaowagul W, Suputtamongkol Y, Dance DA, Rajchanuvong A, Pattara-arechachai J, White NJ. Relapse in melioidosis: incidence and risk factors. J. Infect. Dis.168, 1181–1185 (1993).
  • Holden MT, Titball RW, Peacock SJ et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei.Proc. Natl Acad. Sci. USA101, 14240–14245 (2004).
  • Gan YH, Chua KL, Chua HH et al. Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol. Microbiol.44, 1185–1197 (2002).
  • Howe C, Sampath A, Spotnitz M. The pseudomallei group: a review. J. Infect. Dis.124, 598–606 (1971).
  • Ip M, Osterberg LG, Chau PY, Raffin TA. Pulmonary melioidosis. Chest108, 1420–1424 (1995).
  • Arun S, Neubauer H, Gürel A et al. Equine glanders in turkey. Vet. Rec.144, 255–258 (1999).
  • Lehavi O, Aizenstien O, Katz LH, Hourvitz A. Glanders – a potential disease for biological warfare in humans and animals. Harefuah141, 88–91 (2002).
  • Reckseidler S, DeShazer D, Sokol PA, Woods DE. Detection of bacterial virulence genes by subtractive hybridisation: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect. Immun.69, 34–44 (2001).
  • Whitlock GC, Estes DM, Torres AG. Glanders: off to the races with Burkholderia.FEMS Microbiol. Lett.277, 115–122 (2007).
  • Dance DAB. Meliodiosis and glanders as possible biological weapons. In: Bioterrorism and Infectious Agents. A New Dilemma for the 21st Century. Fong IW, Alibek K (Eds). Springer, USA, 99–145 (2005).
  • Ipatenko NG. Study of the bacteriostatic and bactericidal properties of certain antibiotics. Trudy Moskovskoi Veterinarnoi Akademii61, 142–148 (1972).
  • Al-Izzi SA, Al-Bassam LS. In vitro susceptibility of Pseudomonas mallei to antimicrobial agents. Comp. Immunol. Microbiol. Infect. Dis.12, 5–8 (1989).
  • Antonov IV, Iliukhin VI, Popovtseva LD, Batmanov VP. Sensitivity of Pseudomonas to currently used antibacterial drugs. Antibiot. Khimioter.36, 14–16 (1991).
  • Batmanov VP. Sensitivity of Pseudomonas mallei to fluoroquinolones and their efficacy in experimental glanders. Antibiot. Khimioter.36, 31–34 (1991).
  • Batmanov VP. Treatment of experimental glanders with combinations of sulfazine or sulfamonomethoxine with trimethoprim. Antibiot. Khimioter.38, 18–22 (1993).
  • Batmanov VP. Sensitivity of Pseudomonas mallei to tetracyclines and their effectiveness in experimental glanders. Antibiot. Khimioter.39, 33–37 (1994).
  • Manzeniuk IN, Dorokhin VV, Svetoch EA. The efficacy of antibacterial preparations against Pseudomonas mallei in in-vitro and in-vivo experiments. Antibiot. Khimioter.39, 26–30 (1994).
  • Kenny DJ, Russell P, Rogers D, Eley SM, Titball RW. In vitro susceptibilities of Burkholderia mallei in comparison to those of other pathogenic Burkholderia spp. Antimicrob. Agents Chemother.43, 2773–2775 (1999).
  • Heine HS, England MJ, Waag DM, Byrne WR. In vitro antibiotic susceptibilities of Burkholderia mallei(causative agent of glanders) determined by broth microdilution and E-test. Antimicrob. Agents Chemother.45, 2119–2121 (2001).
  • Nierman WC, DeShazer D, Kim HS et al. Structural flexibility in the Burkholderia mallei genome. Proc. Natl Acad. Sci. USA101, 14246–14251 (2004).
  • Srinivasan A, Kraus CN, DeShazer D et al. Glanders in a military research microbiologist. N. Engl. J. Med.345, 256–258 (2001).
  • Manzeniuk IN, Stepanshin IG, Svetoch EA. Evaluation of the potential of chemotherapy of glanders caused by Pseudomonas mallei strains resistant to sulfanilamides and trimethoprim. Antibiot. Khimioter.39, 30–34 (1994).
  • Leelarasamee A, Bovornkitti S. Melioidosis: a review and update. Rev. Infect. Dis.11, 413–425 (1989).
  • Dance DAB, Wuthiekanun V, Chaowagul WI, White NJ. The antimicrobial susceptibility of Pseudomonas pseudomallei. Emergence of resistance in-vitro and during treatment. J. Antimicrob. Chemother.24, 295–309 (1989).
  • Ashdown LR. In-vitro activities of the newer β-lactam and quinolone agents against Pseudomonas pseudomallei.Antimicrob. Agents Chemother.32, 1435–1436 (1988).
  • Rajchanuvong A, Chaowagul W, Suputtamongkol Y, Smith MD, Dance DA, White NJ. A prospective comparison of co-amoxiclav and the combination of chloramphenicol, doxycycline and co-trimoxazole for the oral maintenance treatment of melioidosis. Trans. R. Soc. Trop. Med. Hyg.89, 546–549 (1995).
  • Simpson AJH, Suputtamongkol Y, Smith MD et al. Comparison of imipenem and ceftazidime as therapy for severe melioidosis. Clin. Infect. Dis.29, 381–387 (1999).
  • Chetchotisakd P, Chaowagul W, Mootsikapun P, Budhsarawong D, Thinkamrop B. Maintenance therapy of melioidosis with ciprofloxacin plus azithromycin compared with co-trimoxazole plus doxycycline. Am. J. Trop. Med. Hyg.64, 24–27 (2001).
  • Russell P, Eley SM, Ellis J et al. Comparison of efficacy of ciprofloxacin and doxycycline against experimental melioidosis and glanders. J. Antimicrob. Chemother.45, 813–818 (2000).
  • White NJ. Melioidosis. Lancet361, 1715–1722 (2003).
  • Cheng AC, Fisher DA, Anstey NM, Stephens DP, Jacups SP, Currie BJ. Outcomes of patients with melioidosis treated with meropenem. Antimicrob. Agents Chemother.48, 1763–1765 (2004).
  • Sivalingam SP, Sim SH, Jasper LC et al. Pre- and post-exposure prophylaxis of experimental Burkholderia pseudomallei infection with doxycycline, amoxicillin/clavulanic acid and co-trimoxazole. J. Antimicrob. Chemother.61, 674–678 (2008).
  • Dance DA. Melioidosis. Curr. Opin. Infect. Dis.15, 127–132 (2002).
  • Chaowagul W. Recent advances in the treatment of severe melioidosis. Acta Trop.74, 133–137 (2000).
  • White NJ, Dance DA, Chaowagul W, Wattanagoon Y, Wuthiekanun V, Pitakwatchara N. Halving of mortality of severe melioidosis by ceftazidime. Lancet2(8665), 697–701 (1989).
  • Sookpranee M, Boonma P, Susaengrat W, Bhuripanyo K, Punyagupta S. Multicenter prospective randomized trial comparing ceftazidime plus co-trimoxazole with chloramphenicol plus doxycycline and co-trimoxazole for treatment of severe melioidosis. Antimicrob. Agents Chemother.36, 158–162 (1992).
  • Samuel M, Ti TY. Interventions for treating melioidosis. Cochrane Database Syst. Rev.2, CD001263 (2001).
  • Dance DA, Wuthiekanun V, Chaowagul W, White NJ. The activity of amoxycillin/clavulanic acid against Pseudomonas pseudomallei.J. Antimicrob. Chemother.24, 1012–1014 (1989).
  • Suputtamongkol YA, Rajchanuwong W, Chaowagul DA et al. Ceftazidime vs. amoxicillin/clavulanate in the treatment of severe melioidosis. Clin. Infect. Dis.19, 846–853 (1994).
  • Chaowagul W, Simpson AJ, Suputtamongkol Y, Smith MD, Angus BJ, White NJ. A comparison of chloramphenicol, trimethoprim-sulfamethoxazole, and doxycycline with doxycycline alone as maintenance therapy for melioidosis. Clin. Infect. Dis.29, 375–380 (1999).
  • Chaowagul W, Suputtamongkul Y, Smith MD, White NJ. Oral fluoroquinolones for maintenance treatment of melioidosis. Trans. R. Soc. Trop. Med. Hyg.91, 599–601 (1997).
  • Chaowagul W, Chierakul W, Simpson AJ et al. Open-label randomized trial of oral trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol compared with trimethoprim-sulfamethoxazole and doxycycline for maintenance therapy of melioidosis. Antimicrob. Agents Chemother.49, 4020–4025 (2005).
  • Limmathurotsakul D, Chaowagul W, Wongsrikaew P et al. Variable presentation of neurological melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg.77, 118–120 (2007).
  • Owen SJ, Batzloff M, Chehrehasa F et al. Nasal inoculation of mice: colonisation, lymphoid tissue, and a direct route to the brain. Presented at: International Symposium on Inhalation Animal Models for Melioidosis and Glanders. Baltimore, MD, USA, 25 February 2009.
  • Ashdown LR, Currie BJ. Melioidosis: when in doubt leave the quinolone alone! Med. J. Aust.157, 427–428 (1992).
  • Winton MD, Everett ED, Dolan SA. Activities of five new fluoroquinolones against Pseudomonas pseudomallei.Antimicrob. Agents Chemother.32, 928–929 (1988).
  • Ho PL, Cheung TK, Kinoshita R et al. Activity of five fluoroquinolones against 71 isolates of Burkholderia pseudomallei.J. Antimicrob. Chemother.49, 1042–1044 (2002).
  • Steward J, Piercy T, Lever MS et al. Comparison of gatifloxacin, moxifloxacin and ciprofloxacin for treatment of experimental Burkholderia pseudomallei infection. J. Antimicrob. Chemother.55, 523–527 (2005).
  • Wuthiekanun V, Peacock SJ. Management of melioidosis. Expert Rev. Anti Infect. Ther.4, 445–455 (2006).
  • Lumbiganon P, Sookpranee T. Ciprofloxacin therapy for localized melioidosis. Ped. Infect. Dis.11, 418–419 (1992).
  • Koga H. High-performance liquid chromatography measurement of antimicrobial concentrations in polymorphonuclear leukocytes. Antimicrob. Agents Chemother.31, 1904–1908 (1987).
  • Chateau MT, Caravano R. Rapid fluorometric measurement of the intra-cellular concentration of ciprofloxacin in mouse peritoneal macrophages. J. Antimicrob. Chemother.31, 281–287 (1993).
  • LeBel M. Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy8, 3–33 (1988).
  • Peacock SJ, Schweizer HP, Dance DAB et al. Consensus guidelines on the management of accidental laboratory exposure to Burkholderia pseudomallei and Burkholderia mallei.Emerg. Infect. Dis.14(7), e2 (2008).
  • Thibault FM, Hernandez E, Vidal DR, Girardet M, Cavallo JD. Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J. Antimicrob. Chemother.54, 1134–1138 (2004).
  • Lumbiganon P, Tattawasatra U, Chetchotisakd P, Wongratanacheewin S, Thinkhamrop B. Comparison between the antimicrobial susceptibility of Burkholderia pseudomallei to trimethoprim–sulfamethoxazole by standard disk diffusion method and by minimal inhibitory concentration determination. J. Med. Assoc. Thailand83, 856–860 (2000).
  • Wuthiekanun V, Cheng AC, Chierakul W et al. Trimethoprim/sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei.J. Antimicrob. Chemother.55, 1029–1031 (2005).
  • Piliouras P, Ulett GC, Ashhurst-Smith C et al. A comparison of antibiotic susceptibility testing methods for cotrimoxazole with Burkholderia pseudomallei.Int. J. Antimicrob. Agents19, 427–429 (2002).
  • Jenney AW, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int. J. Antimicrob. Agents17, 109–113 (2001).
  • Chen K, Sun GW, Chua KL et al. Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob. Agents Chemother.49, 1002–1009 (2005).
  • Haussler S, Rohde M, Steinmetz I. Highly resistant Burkholderia pseudomallei small colony variants isolated in vitro and in experimental melioidosis. Med. Microbiol. Immunol.188, 91–97 (1999).
  • Pruksachartvuthi S, Aswapokee N, Thankerngpol K. Survival of Pseudomonas pseudomallei in human phagocytes. J. Med. Microbiol.31, 109–114 (1990).
  • Tribuddharat C, Moore RA, Baker P, Woods DE. Burkholderia pseudomallei class a β-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition. Antimicrob. Agents Chemother.47, 2082–2087 (2003).
  • Karunakaran R, Puthucheary SD.Burkholderia pseudomallei: in vitro susceptibility to some new and old antimicrobials. Scand. J. Infect. Dis.39, 858–861 (2009).
  • Sam I-C, See KH, Puthucheary SD. Variations in ceftazidime and amoxicillin–clavulanate susceptibilities within a clonal infection of Burkholderia pseudomallei.J. Clin. Microbiol.47, 1556–1558 (2009).
  • Thamlikitkul V, Trakulsomboon S. In vitro activity of tigecycline against Burkholderia pseudomallei and Burkholderia thailandensis.Antimicrob. Agents Chemother.50, 1555–1557 (2006).
  • Feterl M, Govan B, Engler C et al. Activity of tigecycline in the treatment of acute Burkholderia pseudomallei infection in a murine model. Int. J. Antimicrob. Agents28, 460–464 (2006).
  • Thamlikitkul V, Trakulsomboon S. In vitro activity of ceftobiprole against Burkholderia pseudomallei.J. Antimicrob. Chemother.61, 460–461 (2008).
  • Mima T, Desarbre E, Page MGP, Schweizer HP. In vitro activity of BAL30072 against Burkholderia pseudomallei. Presented at: 49th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, USA, 12–15 September 2009 (Abstract F1–1478).
  • Judy BM, Whitlock GC, Torres AG, Estes DM. Comparison of the in vitro and in vivo susceptibilities of Burkholderia mallei to ceftazidime and levofloxacin. BMC Microbiol.9, 88 (2009).
  • Titball RW, Russell P, Cuccui J et al.Burkholderia pseudomallei: animal models of infection. Trans. R. Soc. Trop. Med. Hyg.102, S111–S116 (2008).
  • Onyeji CO, Bui KQ, Nicolau DP, Nightingale CH, Bow L, Quintiliani R. Influence of adjunctive interferon-γ on treatment of gentamicin- and vancomycin-resistant Enterococcus faecalis infection in mice. Int. J. Antimicrob. Agents12, 301–309 (1999).
  • Onyeji CO, Nicolau DP, Nightingale CH, Bow L. Interferon-γ effects on activities of gentamicin and vancomycin against Enterococcus faecalis resistant to the drugs: an in vitro study with human neutrophils. Int. J. Antimicrob. Agents11, 31–37 (1999).
  • Pammit MA, Budhavarapu VN, Raulie EK et al. Intranasal interleukin-12 treatment promotes antimicrobial clearance and survival in pulmonary Francisella tularensis subsp. novicida infection. Antimicrob. Agents Chemother.48, 4513–4519 (2004).
  • Cheng AC, Stephens DP, Anstey NM et al. Adjunctive granulocyte colony-stimulating factor for treatment of septic shock due to melioidosis. Clin. Infect. Dis.38, 32–37 (2004).
  • Powell K, Ulett G, Hirst R et al. G-CSF immunotherapy for treatment of acute disseminated murine melioidosis. FEMS Microbiol. Lett.224(2), 315–318 (2003).
  • Propst KL, Troyer RM, Kellihan LM, Schweizer HP, Dow SW. Immunotherapy markedly increases the effectiveness of antimicrobial therapy for treatment of Burkholderia pseudomallei infection. Antimicrob. Agents Chemother. (2010)(In Press).
  • Perry MB, MacLean LL, Schollaardt T, Bryan LE, Ho M. Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei.Infect. Immun.63, 3348–3352 (1995).
  • Reckseidler-Zenteno SL, DeVinney R, Woods DE. The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect. Immun.73, 1106–1115 (2005).
  • Reckseidler-Zenteno SL, Moore R, Woods DE. Genetics and function of the capsules of Burkholderia pseudomallei and their potential as therapeutic targets. Mini Rev. Med. Chem.9, 265–271 (2009).
  • Ulrich RL, Deshazer D, Hines HB, Jeddeloh JA. Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei.Infect. Immun.72, 6589–6596 (2004).
  • Ulrich RL, Deshazer D, Brueggemann EE, Hines HB, Oyston PC, Jeddeloh JA. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei.J. Med. Microbiol.53, 1053–1064 (2004).
  • Eberl L. Quorum sensing in the genus Burkholderia.Int. J. Med. Microbiol.296, 103–110 (2006).
  • Sokol PA, Malott RJ, Riedel K, Eberl L. Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs. Future Microbiol.2, 555–563 (2007).
  • Sokol PA, Sajjan U, Visser MB, Gingues S, Forstner J, Kooi C. The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology149, 3649–3658 (2003).
  • Kiratisin P, Sanmee S. Roles and interactions of Burkholderia pseudomallei BpsIR quorum-sensing system determinants. J. Bacteriol.190, 7291–7297 (2008).
  • Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev.62, 379–433 (1998).
  • Yahr TL. A critical new pathway for toxin secretion? N. Engl. J. Med.355, 1171–1172 (2006).
  • Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol.28, 1381–1389 (1998).
  • Winstanley C, Hales BA, Hart CA. Evidence for the presence in Burkholderia pseudomallei of a type III secretion system-associated gene cluster. J. Med. Microbiol.48, 649–656 (1999).
  • Stevens MP, Friebel A, Taylor LA et al. A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J. Bacteriol.185, 4992–4996 (2003).
  • Winstanley C, Hart CA. Presence of type III secretion genes in Burkholderia pseudomallei correlates with Ara(-) phenotypes. J. Clin. Microbiol.38, 883–885 (2000).
  • Rainbow L, Hart CA, Winstanley C. Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei.J. Med. Microbiol.51, 374–384 (2002).
  • Russmann H, Shams H, Poblete F, Fu Y, Galan JE, Donis RO. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science281, 565–568 (1998).
  • Potter AA, Klashinsky S, Li Y et al. Decreased shedding of Escherichia coliO157:H7 by cattle following vaccination with type III secreted proteins. Vaccine22, 362–369 (2004).
  • Rosqvist R, Hakansson S, Forsberg A, Wolf-Watz H. Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J.14, 4187–4195 (1995).
  • Russmann H, Igwe EI, Sauer J, Hardt WD, Bubert A, Geginat G. Protection against murine listeriosis by oral vaccination with recombinant Salmonella expressing hybrid Yersinia type III proteins. J. Immunol.167, 357–365 (2001).
  • Whitlock GC, Estes DM, Young GM et al. Construction of a reporter system to study Burkholderia mallei type III secretion and identification of the BopA effector protein function in intracellular survival. Trans. R. Soc. Trop. Med. Hyg.102, S127–S133 (2008).
  • Fleischmann RD, Alland D, Eisen JA et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol.184, 5479–5490 (2002).
  • Munoz-Elias EJ, McKinney JD. Mycobacterium tuberculosis isocitrate lyase 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med.11, 638–644 (2005).
  • Sharma V, Sharma S. Hoener zu Bentrup K et al. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis.Nat. Struct. Biol.7, 663–668 (2000).
  • van Schaik E, Tom M, DeVinney R, Woods DE. Development of novel animal infection models for the study of acute and chronic Burkholderia pseudomallei pulmonary infections. Microbes Infect.10, 1291–1299 (2008).
  • van Schaik EJ, Tom M, Woods DE. Burkholderia pseudomallei isocitrate lyase is a persistence factor in pulmonary melioidosis: implications for the development of isocitrate lyase inhibitors as novel antimicrobials. Infect. Immun.77, 4275–4283 (2009).
  • McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature406, 735–738 (2000).
  • Endsley JJ, Furrer JL, Endsley MA et al. Characterization of bovine homologues of granulysin and NK-lysin. J. Immunol.173, 2607–2614 (2004).
  • Stenger S, Rosat JP, Bloom BR, Krensky AM, Modlin RL. Granulysin: a lethal weapon of cytolytic T cells. Immunol. Today20, 390–394 (1999).
  • Krensky AM, Clayberger C, Krensky AM, Clayberger C. Granulysin: a novel host defense molecule. Am. J. Transplant.5, 1789–1792 (2005).
  • Krensky AM, Clayberger C. Biology and clinical relevance of granulysin. Tiss. Ant.73, 193–198 (2009).
  • Linde CM, Grundstrom S, Nordling E et al. Conserved structure and function in the granulysin and NK-lysin peptide family. Infect. Immun.73, 6332–6339 (2005).
  • Endsley JJ, Torres AG, Gonzales CM et al. Comparative antimicrobial activity of granulysin against bacterial biothreat agents. Open Microbiol. J.3, 92–96 (2009).
  • Andreu D, Carreno C, Linde C, Boman HG, Andersson M. Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem. J.344, 845–849 (1999).
  • Ernst WA, Thoma-Uszynski S, Teitelbaum R et al. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J. Immunol.165, 7102–7108 (2000).
  • Wang Z, Choice E, Kaspar A et al. Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J. Immunol.165, 1486–1490 (2000).
  • Wheelis M. First shots fired in biological warfare. Nature395, 213 (1998).
  • Horn PA, Thomasson BM, Wood BL, Andrews RG, Morris JC, Kiem H-P. Distinct hematopoietic stem/progenitor cell populations are responsible for repopulating NOD/SCID mice compared with nonhuman primates. Blood102, 4329–4335 (2003).
  • Vollmer J, Krieg AM, Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev.61, 195–204 (2009).
  • Krieg AM, Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov.5, 471–484 (2006).
  • Waag DM, McCluskie MJ, Zhang N, Krieg AM. A CpG oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei.Infect. Immun.74, 1944–1948 (2006).
  • Utaisincharoen P, Kespichayawattana W, Anuntagool N et al. CpG ODN enhances uptake of bacteria by mouse macrophages. Clin. Exp. Immunol.132, 70–75 (2003).
  • Elvin SJ, Healey GD, Westwood A, Knight SC, Eyles JE, Williamson ED. Protection against heterologous Burkholderia pseudomallei strains by dendritic cell immunization. Infect. Immun.74, 1706–1711 (2006).
  • Chen YS, Hsiao YS, Lin HH, Liu Y, Chen YL. CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Infect. Immun.74, 1699–1705 (2006).
  • Wongratanacheewin S, Kespichayawattana W, Intachote P et al. Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei.Infect. Immun.72, 4494–4502 (2004).
  • Coenye T, Vandamme P. Overrepresentation of immunostimulatory CpG motifs in Burkholderia genomes. J. Cyst. Fibros.4, 193–196 (2005).
  • Whitlock GC, Lukaszewski RA, Judy BM, Paessler S, Torres AG, Estes DM. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei.BMC Immunol.9, 55 (2008).
  • Harland DN, Chu K, Haque A et al. Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Infect. Immun.75, 4173–4180 (2007).
  • Goodyear A, Kellihan L, Bielefeldt-Ohmann H et al. Protection from pneumonic infection with Burkholderia species by inhalational immunotherapy. Infect. Immun.77, 1579–1588 (2009).
  • Kascatan-Nebioglu A, Melaiye A, Hindi K et al. Synthesis from caffeine of a mixed N-heterocyclic carbene-silver acetate complex active against resistant respiratory pathogens. J. Med. Chem.49, 6811–6818 (2006).
  • Cannon CL, Hogue LA, Vajravelu RK et al.In vitro and murine efficacy and toxicity studies of nebulized SCC1, a methylated caffeine-silver(I) complex, for treatment of pulmonary infections. Antimicrob. Agents Chemother.53, 3285–3293 (2009).
  • Hindi KM, Ditto AJ, Panzner MJ et al. The antimicrobial efficacy of sustained release silver-carbene complex-loaded l-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials30, 3771–3779 (2009).
  • Hindi KM, Panzner MJ, Tessier CA et al. The medicinal applications of imidazolium carbene-metal complexes. Chem. Rev.109, 3859–3884 (2009).
  • Wright BD, Panzner MJ, Deeraksa A et al. Synthesis and in vitro efficacy studies of silver carbene complexes on biosafety level 3 bacteria. Eur. J. Inorganic Chem.13, 1739–1745 (2009).
  • Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother.52, 1 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.