138
Views
44
CrossRef citations to date
0
Altmetric
Review

Molecular microbiological methods in the diagnosis of neonatal sepsis

, , &
Pages 1037-1048 | Published online: 10 Jan 2014

References

  • Stoll BJ, Hansen N, Fanaroff AA et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics110(2 Pt 1), 285–291 (2002).
  • Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr. Opin. Infect. Dis.19(3), 290–297 (2006).
  • Stoll BJ, Hansen NI, Adams-Chapman I et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA292(19), 2357–2365 (2004).
  • Rodriguez-Creixems M, Alcala L, Munoz P, Cercenado E, Vicente T, Bouza E. Bloodstream infections: evolution and trends in the microbiology workload, incidence, and etiology, 1985–2006. Medicine87(4), 234–249 (2008).
  • Mirrett S, Hanson KE, Reller LB. Controlled clinical comparison of VersaTREK and BacT/ALERT blood culture systems. J. Clin. Microbiol.45(2), 299–302 (2007).
  • Isaacman DJ, Karasic RB, Reynolds EA, Kost SI. Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J. Pediatr.128(2), 190–195 (1996).
  • Kaditis AG, O’Marcaigh AS, Rhodes KH, Weaver AL, Henry NK. Yield of positive blood cultures in pediatric oncology patients by a new method of blood culture collection. Pediatr. Infect. Dis. J.15(7), 615–620 (1996).
  • Connell TG, Rele M, Cowley D, Buttery JP, Curtis N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics119(5), 891–896 (2007).
  • Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. J. Pediatr.129(2), 275–278 (1996).
  • Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin. Microbiol. Rev.23(1), 235–251 (2010).
  • Metwally L, Fairley DJ, Coyle PV et al. Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR. J. Med. Microbiol.57(Pt 3), 296–303 (2008).
  • Gescher DM, Kovacevic D, Schmiedel D et al. Fluorescence in situ hybridisation (FISH) accelerates identification of Gram-positive cocci in positive blood cultures. Int. J. Antimicrob. Agents32(Suppl.1), S51–S59 (2008).
  • Kudo M, Matsuo Y, Nakasendo A et al. Potential clinical benefit of the in situ hybridization method for the diagnosis of sepsis. J. Infect. Chemother.15(1), 23–26 (2009).
  • Pellestor F, Paulasova P, Hamamah S. Peptide nucleic acids (PNAs) as diagnostic devices for genetic and cytogenetic analysis. Curr. Pharm. Des.14(24), 2439–2444 (2008).
  • Forrest GN, Roghmann MC, Toombs LS et al. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob.Agents Chemother.52(10), 3558–3563 (2008).
  • Forrest GN, Mankes K, Jabra-Rizk MA et al. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J. Clin. Microbiol.44(9), 3381–3383 (2006).
  • Della-Latta P, Whittier S, Wu F. Impact of rapid identification of C. albicans and C. glabrata directly from blood cultures using PNA FISH technology on selection of antifungal therapy. Presented at: 18th European Congress of Clinical Microbiology and Infectious Diseases. Barcelona, Spain, 19–22 April 2008.
  • Ly T, Gulia J, Pyrgos V, Waga M, Shoham S. Impact upon clinical outcomes of translation of PNA FISH-generated laboratory data from the clinical microbiology bench to bedside in real time. Ther. Clin. Risk Manag.4(3), 637–640 (2008).
  • Forrest GN, Mehta S, Weekes E, Lincalis DP, Johnson JK, Venezia RA. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J. Antimicrob. Chemother.58(1), 154–158 (2006).
  • Woese CR. Bacterial evolution. Microbiol. Rev.51(2), 221–271 (1987).
  • Relman DA. The search for unrecognized pathogens. Science284(5418), 1308–1310 (1999).
  • Lee JH, Park Y, Choi JR, Lee EK, Kim HS. Comparisons of three automated systems for genomic DNA extraction in a clinical diagnostic laboratory. Yonsei Med. J.51(1), 104–110 (2010).
  • Fredricks DN, Relman DA. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis.29(3), 475–486; quiz 487–478 (1999).
  • Shrestha NK, Tuohy MJ, Hall GS, Isada CM, Procop GW. Rapid identification of Staphylococcus aureus and the mecA gene from BacT/ALERT blood culture bottles by using the LightCycler system. J. Clin. Microbiol.40(7), 2659–2661 (2002).
  • Millar BC, Xu J, Moore JE. Risk assessment models and contamination management: implications for broad-range ribosomal DNA PCR as a diagnostic tool in medical bacteriology. J. Clin. Microbiol.40(5), 1575–1580 (2002).
  • Hogg GM, McKenna JP, Ong G. Rapid detection of methicillin-susceptible and methicillin-resistant Staphylococcus aureus directly from positive BacT/Alert blood culture bottles using real-time polymerase chain reaction: evaluation and comparison of 4 DNA extraction methods. Diagn. Microbiol. Infect. Dis.61(4), 446–452 (2008).
  • Riemann K, Adamzik M, Frauenrath S et al. Comparison of manual and automated nucleic acid extraction from whole-blood samples. J. Clin. Lab. Anal.21(4), 244–248 (2007).
  • Evertsson U, Monstein HJ, Johansson AG. Detection and identification of fungi in blood using broad-range 28S rDNA PCR amplification and species-specific hybridisation. APMIS108(5), 385–392 (2000).
  • Schabereiter-Gurtner C, Nehr M, Apfalter P, Makristathis A, Rotter ML, Hirschl AM. Evaluation of a protocol for molecular broad-range diagnosis of culture-negative bacterial infections in clinical routine diagnosis. J. Appl. Microbiol.104(4), 1228–1237 (2008).
  • Reier-Nilsen T, Farstad T, Nakstad B, Lauvrak V, Steinbakk M. Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study. BMC Pediatr.9, 5 (2009).
  • Van Burik JA, Myerson D, Schreckhise RW, Bowden RA. Panfungal PCR assay for detection of fungal infection in human blood specimens. J. Clin. Microbiol.36(5), 1169–1175 (1998).
  • Imhof A, Schaer C, Schoedon G et al. Rapid detection of pathogenic fungi from clinical specimens using LightCycler real-time fluorescence PCR. Eur. J. Clin. Microbiol. Infect. Dis.22(9), 558–560 (2003).
  • Jordan JA, Durso MB. Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. J. Clin. Microbiol.38(7), 2574–2578 (2000).
  • Jordan JA, Durso MB, Butchko AR, Jones JG, Brozanski BS. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing. J. Mol. Diagn.8(3), 357–363 (2006).
  • Laforgia N, Coppola B, Carbone R, Grassi A, Mautone A, Iolascon A. Rapid detection of neonatal sepsis using polymerase chain reaction. Acta Paediatr.86(10), 1097–1099 (1997).
  • Yadav AK, Wilson CG, Prasad PL, Menon PK. Polymerase chain reaction in rapid diagnosis of neonatal sepsis. Indian Pediatr.42(7), 681–685 (2005).
  • Wu YD, Shang SQ, Li JP et al. A broad-range 16S rRNA gene real-time PCR assay for the diagnosis of neonatal septicemia. Zhonghua Er Ke Za Zhi45(6), 446–449 (2007).
  • Dutta S, Narang A, Chakraborty A, Ray P. Diagnosis of neonatal sepsis using universal primer polymerase chain reaction before and after starting antibiotic drug therapy. Arch. Pediatr. Adolesc. Med.163(1), 6–11 (2009).
  • Chen LH, Duan QJ, Cai MT, Wu YD, Shang SQ. Rapid diagnosis of sepsis and bacterial meningitis in children with real-time fluorescent quantitative polymerase chain reaction amplification in the bacterial 16S rRNA gene. Clin. Pediatr.48(6), 641–647 (2009).
  • Villanueva-Uy ME, Briones CR, Uy HG. Application of polymerase chain reaction in late-onset neonatal sepsis. Pediatr. Res.53, 313A (2003).
  • Paolucci M, Capretti MG, Dal Monte P et al. Laboratory diagnosis of late-onset sepsis in newborns by multiplex real-time PCR. J. Med. Microbiol.58(Pt 4), 533–534 (2009).
  • Briones CR, Villanueva-Uy ME, Uy HG. The use of polymerase chain reaction in neonatal candidemia. Pediatr. Res.53, 396A (2003).
  • Fenollar F, Raoult D. Molecular diagnosis of bloodstream infections caused by non-cultivable bacteria. Int. J. Antimicrob. Agents30(Suppl. 1), S7–S15 (2007).
  • Klingspor L, Jalal S. Molecular detection and identification of Candida and Aspergillus spp. from clinical samples using real-time PCR. Clin. Microbiol. Infect.12(8), 745–753 (2006).
  • Klingspor L, Loeffler J. Aspergillus PCR formidable challenges and progress. Med. Mycol.47(Suppl. 1), S241–S247 (2009).
  • Bergseng H, Bevanger L, Rygg M, Bergh K. Real-time PCR targeting the sip gene for detection of group B Streptococcus colonization in pregnant women at delivery. J. Med. Microbiol.56(Pt 2), 223–228 (2007).
  • Thomas LC, Gidding HF, Ginn AN, Olma T, Iredell J. Development of a real-time Staphylococcus aureus and MRSA (SAM-) PCR for routine blood culture. J. Microbiol. Methods68(2), 296–302 (2007).
  • Makhoul IR, Smolkin T, Sujov P et al. PCR-based diagnosis of neonatal staphylococcal bacteremias. J. Clin. Microbiol.43(9), 4823–4825 (2005).
  • Makhoul IR, Sprecher H, Smolkin T et al. Approach to term neonates born after maternal intrapartum fever and unknown maternal group B Streptococcus status: value of serum C-reactive protein and 16S rRNA gene PCR amplification. Pediatr. Infect. Dis. J.26(11), 1064–1066 (2007).
  • Makhoul IR, Yacoub A, Smolkin T, Sujov P, Kassis I, Sprecher H. Values of C-reactive protein, procalcitonin, and Staphylococcus-specific PCR in neonatal late-onset sepsis. Acta Paediatr.95(10), 1218–1223 (2006).
  • Enomoto M, Morioka I, Morisawa T, Yokoyama N, Matsuo M. A novel diagnostic tool for detecting neonatal infections using multiplex polymerase chain reaction. Neonatology, 96(2), 102–108 (2009).
  • Carroll NM, Jaeger EE, Choudhury S et al. Detection of and discrimination between Gram-positive and Gram-negative bacteria in intraocular samples by using nested PCR. J. Clin. Microbiol.38(5), 1753–1757 (2000).
  • Chan KY, Lam HS, Cheung HM et al. Rapid identification and differentiation of Gram-negative and Gram-positive bacterial bloodstream infections by quantitative polymerase chain reaction in preterm infants. Crit. Care Med.37(8), 2441–2447 (2009).
  • Pryce TM, Palladino S, Kay ID, Coombs GW. Rapid identification of fungi by sequencing the ITS1 and ITS2 regions using an automated capillary electrophoresis system. Med. Mycol.41(5), 369–381 (2003).
  • Mancini N, Perotti M, Ossi CM et al. Rapid molecular identification of fungal pathogens in corneal samples from suspected keratomycosis cases. J. Med. Microbiol.55(Pt 11), 1505–1509 (2006).
  • Mancini N, Carletti S, Ghidoli N et al. Molecular diagnosis of polymicrobial sepsis. J. Clin. Microbiol.47(4), 1274–1275 (2009).
  • Westh H, Lisby G, Breysse F et al. Multiplex real-time PCR and blood culture for identification of bloodstream pathogens in patients with suspected sepsis. Clin. Microbiol. Infect.15(6), 544–551 (2009).
  • Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect. Dis.9, 126 (2009).
  • Shang S, Chen Z, Yu X. Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemia. Acta Paediatr.90(2), 179–183 (2001).
  • Tong MQ, Shang SQ, Wu YD, Zhao ZY. Rapid diagosis of neonatal sepsis by 16SrRNA genes PCR amplification and genechip hybridization. Zhonghua Er Ke Za Zhi42(9), 663–667 (2004).
  • Jordan JA, Butchko AR, Durso MB. Use of pyrosequencing of 16S rRNA fragments to differentiate between bacteria responsible for neonatal sepsis. J. Mol. Diagn.7(1), 105–110 (2005).
  • Ecker DJ, Massire C, Blyn LB et al. Molecular genotyping of microbes by multilocus PCR and mass spectrometry: a new tool for hospital infection control and public health surveillance. Methods Mol. Biol.551, 71–87 (2009).
  • Ecker DJ, Sampath R, Massire C et al. Ibis T5000: a universal biosensor approach for microbiology. Nat. Rev. Microbiol.6(7), 553–558 (2008).
  • Chakravorty S, Aladegbami B, Burday M et al. Rapid universal identification of bacterial pathogens from clinical cultures by using a novel sloppy molecular beacon melting temperature signature technique. J. Clin. Microbiol.48(1), 258–267 (2010).
  • Luna RA, Fasciano LR, Jones SC, Boyanton BL Jr, Ton TT, Versalovic J. DNA pyrosequencing-based bacterial pathogen identification in a pediatric hospital setting. J. Clin. Microbiol.45(9), 2985–2992 (2007).
  • Cleven BE, Palka-Santini M, Gielen J, Meembor S, Kronke M, Krut O. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. J. Clin. Microbiol.44(7), 2389–2397 (2006).
  • Palka-Santini M, Putzfeld S, Cleven BE, Kronke M, Krut O. Rapid identification, virulence analysis and resistance profiling of Staphylococcus aureus by gene segment-based DNA microarrays: application to blood culture post-processing. J. Microbiol. Methods68(3), 468–477 (2007).
  • Shang S, Chen G, Wu Y, Du L, Zhao Z. Rapid diagnosis of bacterial sepsis with PCR amplification and microarray hybridization in 16S rRNA gene. Pediatr.Res.58(1), 143–148 (2005).
  • Palka-Santini M, Cleven BE, Eichinger L, Kronke M, Krut O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol.9, 1 (2009).
  • Tissari P, Zumla A, Tarkka E et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet375(9710), 224–230 (2010).
  • Inacio J, Flores O, Spencer-Martins I. Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J. Clin. Microbiol.46(2), 713–720 (2008).
  • Marlowe EM, Hogan JJ, Hindler JF, Andruszkiewicz I, Gordon P, Bruckner DA. Application of an rRNA probe matrix for rapid identification of bacteria and fungi from routine blood cultures. J. Clin. Microbiol.41(11), 5127–5133 (2003).
  • Marvin LF, Delatour T, Tavazzi I, Fay LB, Cupp C, Guy PA. Quantification of o,o’-dityrosine, o-nitrotyrosine, and o-tyrosine in cat urine samples by LC/electrospray ionization-MS/MS using isotope dilution. Anal. Chem.75(2), 261–267 (2003).
  • Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin. Chim. Acta337(1–2), 11–21 (2003).
  • van Baar BL. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol. Rev.24(2), 193–219 (2000).
  • von Wintzingerode F, Bocker S, Schlotelburg C et al. Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc. Natl Acad. Sci. USA99(10), 7039–7044 (2002).
  • Maquelin K, Kirschner C, Choo-Smith LP et al. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol.41(1), 324–329 (2003).
  • Hackett SJ, Guiver M, Marsh J et al. Meningococcal bacterial DNA load at presentation correlates with disease severity. Arch. Dis. Child86(1), 44–46 (2002).
  • van Haeften R, Palladino S, Kay I, Keil T, Heath C, Waterer GW. A quantitative LightCycler PCR to detect Streptococcus pneumoniae in blood and CSF. Diagn. Microbiol. Infect. Dis.47(2), 407–414 (2003).
  • Jordan JA, Durso MB. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J. Mol. Diagn.7(5), 575–581 (2005).
  • Wu YD, Chen LH, Wu XJ et al. Gram stain-specific-probe-based real-time PCR for diagnosis and discrimination of bacterial neonatal sepsis. J. Clin. Microbiol.46(8), 2613–2619 (2008).
  • Tirodker UH, Nataro JP, Smith S, LasCasas L, Fairchild KD. Detection of fungemia by polymerase chain reaction in critically ill neonates and children. J. Perinatol.23(2), 117–122 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.