366
Views
42
CrossRef citations to date
0
Altmetric
Review

Novel therapeutic strategies to counter Pseudomonas aeruginosa infections

, &
Pages 219-235 | Published online: 10 Jan 2014

References

  • Stover CK, Pham XQ, Erwin AL et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature406(6799), 959–964 (2000).
  • Carson LA, Favero MS, Bond WW, Petersen NJ. Factors affecting comparative resistance of naturally occurring and subcultured Pseudomonas aeruginosa to disinfectants. Appl. Microbiol.23(5), 863–869 (1972).
  • Wong S, Street D, Delgado SI, Klontz KC. Recalls of foods and cosmetics due to microbial contamination reported to the U.S. Food and Drug Administration. J. Food Prot.63(8), 1113–1116 (2000).
  • Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. Common virulence factors for bacterial pathogenicity in plants and animals. Science268(5219), 1899–1902 (1995).
  • Sarlangue J, Brissaud O, Labreze C. [Clinical features of Pseudomonas aeruginosa infections]. Arch. Pediatr.13(Suppl. 1), S13–S16 (2006).
  • Franzetti F, Cernuschi M, Esposito R, Moroni M. Pseudomonas infections in patients with AIDS and AIDS-related complex. J. Intern. Med.231(4), 437–443 (1992).
  • Lode H, Raffenberg M, Erbes R, Geerdes-Fenge H, Mauch H. Nosocomial pneumonia: epidemiology, pathogenesis, diagnosis, treatment and prevention. Curr. Opin. Infect. Dis.13(4), 377–384 (2000).
  • Thomas P, Moore M, Bell E et al.Pseudomonas dermatitis associated with a swimming pool. JAMA253(8), 1156–1159 (1985).
  • Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect.2(9), 1051–1060 (2000).
  • Saltzstein D, Wachs B, Perroncel R et al. Complicated urinary tract infections treated with extended-release ciprofloxacin with emphasis on Pseudomonas aeruginosa. J. Chemother.19(6), 694–702 (2007).
  • Fleiszig SM, Evans DJ. The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clin. Exp. Optom.85(5), 271–278 (2002).
  • Hart CA, Winstanley C. Persistent and aggressive bacteria in the lungs of cystic fibrosis children. Br. Med. Bull.61, 81–96 (2002).
  • Pasteur MC, Bilton D, Hill AT. British Thoracic Society guideline for non-CF bronchiectasis. Thorax65(Suppl. 1), i1–i58 (2010).
  • Mesaros N, Nordmann P, Plesiat P et al.Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin. Microbiol. Infect.13(6), 560–578 (2007).
  • Zavascki AP, Carvalhaes CG, Picao RC, Gales AC. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev. Anti Infect. Ther.8(1), 71–93 (2010).
  • Vinodkumar CS, Kalsurmath S, Neelagund YF. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J. Pathol. Microbiol.51(3), 360–366 (2008).
  • Spencker FB, Staber L, Lietz T, Schille R, Rodloff AC. Development of resistance in Pseudomonas aeruginosa obtained from patients with cystic fibrosis at different times. Clin. Microbiol. Infect.9(5), 370–379 (2003).
  • Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis.43(Suppl. 2), S49–S56 (2006).
  • Nichols WW, Dorrington SM, Slack MP, Walmsley HL. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob. Agents Chemother.32(4), 518–523 (1988).
  • Pages JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol.6(12), 893–903 (2008).
  • Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. R. Soc. Med.95(Suppl. 41), 22–26 (2002).
  • Piddock LJ. Multidrug-resistance efflux pumps – not just for resistance. Nat. Rev. Microbiol.4(8), 629–636 (2006).
  • Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol.23(2), 345–354 (1997).
  • Masterton RG, Turner PJ. Trends in antimicrobial susceptibility in UK centres: the MYSTIC Programme (1997–2002). Int. J. Antimicrob. Agents27(1), 69–72 (2006).
  • Bendig JW, Kyle PW, Giangrande PL, Samson DM, Azadian BS. Two neutropenic patients with multiple resistant Pseudomonas aeruginosa septicaemia treated with ciprofloxacin. J. R. Soc. Med.80(5), 316–317 (1987).
  • Brazas MD, Hancock RE. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.49(8), 3222–3227 (2005).
  • Aaron SD, Ferris W, Ramotar K, Vandemheen K, Chan F, Saginur R. Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J. Clin. Microbiol.40(11), 4172–4179 (2002).
  • Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest123(5), 1495–1502 (2003).
  • Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol.60(Pt 6), 699–709 (2011).
  • Bateman FL, Moss SM, Trott DJ, Shipstone MA. Biological efficacy and stability of diluted ticarcillin-clavulanic acid in the topical treatment of Pseudomonas aeruginosa infections. Vet. Dermatol. doi:10.1111/j.1365- 3164.2011.01018.x (2011) (Epub ahead of print).
  • Theuretzbacher U. Future antibiotics scenarios: is the tide starting to turn? Int. J. Antimicrob. Agents34(1), 15–20 (2009).
  • Srinivas N, Jetter P, Ueberbacher BJ et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa.Science327(5968), 1010–1013 (2010).
  • Lomovskaya O, Warren MS, Lee A et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother.45(1), 105–116 (2001).
  • Coban AY, Ekinci B, Durupinar B. A multidrug efflux pump inhibitor reduces fluoroquinolone resistance in Pseudomonas aeruginosa isolates. Chemotherapy50(1), 22–26 (2004).
  • Hocquet D, Roussel-Delvallez M, Cavallo JD, Plesiat P. MexAB-OprM- and MexXY-overproducing mutants are very prevalent among clinical strains of Pseudomonas aeruginosa with reduced susceptibility to ticarcillin. Antimicrob. Agents Chemother.51(4), 1582–1583 (2007).
  • Sanchez P, Linares JF, Ruiz-Diez B et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother.50(5), 657–664 (2002).
  • Michalopoulos A, Fotakis D, Virtzili S et al. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir. Med.102(3), 407–412 (2008).
  • Falagas ME, Rafailidis PI. Re-emergence of colistin in today’s world of multidrug-resistant organisms: personal perspectives. Expert Opin. Investig. Drugs17(7), 973–981 (2008).
  • Costerton JW. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol.9(2), 50–52 (2001).
  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407(6805), 762–764 (2000).
  • Hentzer M, Teitzel GM, Balzer GJ et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol.183(18), 5395–5401 (2001).
  • Hoiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol.5(11), 1663–1674 (2011).
  • Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother.48(7), 2659–2664 (2004).
  • Werner E, Roe F, Bugnicourt A et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol.70(10), 6188–6196 (2004).
  • Moreau-Marquis S, Stanton BA, O’Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther.21(4), 595–599 (2008).
  • Whiteley M, Bangera MG, Bumgarner RE et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature413(6858), 860–864 (2001).
  • Wagner VE, Gillis RJ, Iglewski BH. Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine22(Suppl. 1), S15–S20 (2004).
  • Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol.57, 677–701 (2003).
  • Moskowitz SM, Foster JM, Emerson JC, Gibson RL, Burns JL. Use of Pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection. J. Antimicrob. Chemother.56(5), 879–886 (2005).
  • Moskowitz SM, Emerson JC, McNamara S et al. Randomized trial of biofilm testing to select antibiotics for cystic fibrosis airway infection. Pediatr. Pulmonol.46(2), 184–192 (2011).
  • Lewis K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol.322, 107–131 (2008).
  • Hoffmann N, Rasmussen TB, Jensen PO et al. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect. Immun.73(4), 2504–2514 (2005).
  • Nucleo E, Steffanoni L, Fugazza G et al. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol.9, 270 (2009).
  • Sriramulu DD, Lunsdorf H, Lam JS, Romling U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol.54(Pt 7), 667–676 (2005).
  • Ghani M, Soothill JS. Ceftazidime, gentamicin, and rifampicin, in combination, kill biofilms of mucoid Pseudomonas aeruginosa. Can. J. Microbiol.43(11), 999–1004 (1997).
  • Doring G, Conway SP, Heijerman HG et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur. Respir. J.16(4), 749–767 (2000).
  • Hoiby N, Ciofu O, Johansen HK et al. The clinical impact of bacterial biofilms. Int. J. Oral Sci.3(2), 55–65 (2011).
  • Frederiksen B, Pressler T, Hansen A, Koch C, Hoiby N. Effect of aerosolized rhDNase (Pulmozyme) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatr.95(9), 1070–1074 (2006).
  • Hassett DJ, Korfhagen TR, Irvin RT et al.Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin. Ther. Targets14(2), 117–130 (2010).
  • Tamayo R, Pratt JT, Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Ann. Rev. Microbiol.61, 131–148 (2007).
  • Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev.73(2), 310–347 (2009).
  • Tielker D, Hacker S, Loris R et al.Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology151(Pt 5), 1313–1323 (2005).
  • Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol.8(6), 1095–1104 (2006).
  • McIver K, Kessler E, Ohman DE. Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J. Bacteriol.173(24), 7781–7789 (1991).
  • Johansson EM, Crusz SA, Kolomiets E et al. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem. Biol.15(12), 1249–1257 (2008).
  • Hauber HP, Schulz M, Pforte A, Mack D, Zabel P, Schumacher U. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J. Med. Sci.5(6), 371–376 (2008).
  • von Bismarck P, Schneppenheim R, Schumacher U. Successful treatment of Pseudomonas aeruginosa respiratory tract infection with a sugar solution – a case report on a lectin based therapeutic principle. Klinische Padiatrie213(5), 285–287 (2001).
  • Mathee K, Ciofu O, Sternberg C et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology145(Pt 6), 1349–1357 (1999).
  • Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J. Ind. Microbiol.15(3), 162–168 (1995).
  • Ghafoor A, Hay ID, Rehm BH. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol.77(15), 5238–5246 (2011).
  • Doggett RG, Harrison GM, Wallis ES. Comparison of some properties of Pseudomonas aeruginosa isolated from infections in persons with and without cystic fibrosis. J. Bacteriol.87, 427–431 (1964).
  • Cobb LM, Mychaleckyj JC, Wozniak DJ, Lopez-Boado YS. Pseudomonas aeruginosa flagellin and alginate elicit very distinct gene expression patterns in airway epithelial cells: implications for cystic fibrosis disease. J. Immunol.173(9), 5659–5670 (2004).
  • Simpson JA, Smith SE, Dean RT. Scavenging by alginate of free radicals released by macrophages. Free Radic. Biol. Med.6(4), 347–353 (1989).
  • Dibdin GH, Assinder SJ, Nichols WW, Lambert PA. Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. J. Antimicrob. Chemother.38(5), 757–769 (1996).
  • Hatch RA, Schiller NL. Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob. Agents Chemother.42(4), 974–977 (1998).
  • Alkawash MA, Soothill JS, Schiller NL. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS114(2), 131–138 (2006).
  • Alipour M, Suntres ZE, Omri A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J. Antimicrob. Chemother.64(2), 317–325 (2009).
  • Bayer AS, Park S, Ramos MC, Nast CC, Eftekhar F, Schiller NL. Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa. Infect. Immun.60(10), 3979–3985 (1992).
  • Lamppa JW, Ackerman ME, Lai JI, Scanlon TC, Griswold KE. Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity. PLoS ONE6(2), e17042 (2011).
  • Kulasakara H, Lee V, Brencic A et al. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3´-5´)-cyclic-GMP in virulence. Proc. Natl Acad. Sci. USA103(8), 2839–2844 (2006).
  • Simm R, Morr M, Kader A, Nimtz M, Romling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol.53(4), 1123–1134 (2004).
  • Sudarsan N, Lee ER, Weinberg Z et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science321(5887), 411–413 (2008).
  • Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl. Microbiol. Biotechnol.85(4), 1095–1104 (2010).
  • Ueda A, Attila C, Whiteley M, Wood TK. Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb. Biotechnol.2(1), 62–74 (2009).
  • Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl. Microbiol. Biotechnol.86(3), 813–823 (2010).
  • Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol.186(21), 7312–7326 (2004).
  • Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol.7(6), 894–906 (2005).
  • Thormann KM, Saville RM, Shukla S, Spormann AM. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J. Bacteriol.187(3), 1014–1021 (2005).
  • Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa.J. Bacteriol.188(21), 7344–7353 (2006).
  • Barraud N, Schleheck D, Klebensberger J et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol.191(23), 7333–7342 (2009).
  • Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol.191(5), 1393–1403 (2009).
  • Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol.186(23), 8066–8073 (2004).
  • Rice SA, Tan CH, Mikkelsen PJ et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J.3(3), 271–282 (2009).
  • Friedman A, Blecher K, Sanchez D et al. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence2(3), 217–221 (2011).
  • Sintim HO, Smith JA, Wang J, Nakayama S, Yan L. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med. Chem.2(6), 1005–1035 (2010).
  • Junker LM, Clardy J. High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob. Agents Chemother.51(10), 3582–3590 (2007).
  • Wu H, Lee B, Yang L et al. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol. Med. Microbiol.62(1), 49–56 (2011).
  • Kostenko V, Lyczak J, Turner K, Martinuzzi RJ. Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob. Agents Chemother.54(12), 5120–5131 (2010).
  • Bjarnsholt T, Kirketerp-Moller K, Kristiansen S et al. Silver against Pseudomonas aeruginosa biofilms. APMIS115(8), 921–928 (2007).
  • Kalishwaralal K, BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces79(2), 340–344 (2010).
  • Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol.2, 128 (2011).
  • Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol.6, 635–651 (2011).
  • Lambert C, Fenton AK, Hobley L, Sockett RE. Predatory Bdellovibrio bacteria use gliding motility to scout for prey on surfaces. J. Bacteriol.193(12), 3139–3141 (2011).
  • Atterbury RJ, Hobley L, Till R et al. Studying the effects of orally administered Bdellovibrio on the wellbeing and Salmonella colonization of young chicks. Appl. Environ. Microbiol.77(16), 5794–5803 (2011).
  • Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol.110(2), 431–444 (2011).
  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science260(5111), 1127–1130 (1993).
  • Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol.173(9), 3000–3009 (1991).
  • Girard G, Bloemberg GV. Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol.3(1), 97–106 (2008).
  • Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol.184(23), 6472–6480 (2002).
  • Winstanley C, Fothergill JL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol. Lett.290(1), 1–9 (2009).
  • Bjarnsholt T, Jensen PO, Jakobsen TH et al. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS ONE5(4), e10115 (2010).
  • Kim EJ, Wang W, Deckwer WD, Zeng AP. Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology151(Pt 4), 1127–1138 (2005).
  • Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol.185(7), 2066–2079 (2003).
  • Wagner VE, Iglewski BH. P. aeruginosa biofilms in CF infection. Clin. Rev. Allergy Immunol.35(3), 124–134 (2008).
  • Cornelis P, Aendekerk S. A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology150(Pt 4), 752–756 (2004).
  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280(5361), 295–298 (1998).
  • Bjarnsholt T, Jensen PO, Rasmussen TB et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology151(Pt 12), 3873–3880 (2005).
  • Chapon-Herve V, Akrim M, Latifi A, Williams P, Lazdunski A, Bally M. Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa. Mol. Microbiol.24(6), 1169–1178 (1997).
  • Ochsner UA, Koch AK, Fiechter A, Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol.176(7), 2044–2054 (1994).
  • Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol.179(18), 5756–5767 (1997).
  • Latifi A, Winson MK, Foglino M et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol.17(2), 333–343 (1995).
  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol.21(6), 1137–1146 (1996).
  • Juhas M, Wiehlmann L, Salunkhe P, Lauber J, Buer J, Tummler B. GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol. Lett.242(2), 287–295 (2005).
  • Kaufmann GF, Sartorio R, Lee SH et al. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc. Natl Acad. Sci. USA102(2), 309–314 (2005).
  • Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev.30(2), 274–291 (2006).
  • Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu. Rev. Genet.42, 541–564 (2008).
  • Kong KF, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol.296(2–3), 133–139 (2006).
  • Bjarnsholt T, Jensen PO, Burmolle M et al.Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology151(Pt 2), 373–383 (2005).
  • Wu H, Song Z, Hentzer M et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother.53(6), 1054–1061 (2004).
  • Hoffmann N, Lee B, Hentzer M et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob. Agents Chemother.51(10), 3677–3687 (2007).
  • Skindersoe ME, Alhede M, Phipps R et al. Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.52(10), 3648–3663 (2008).
  • Moriarty TF, McElnay JC, Elborn JS, Tunney MM. Sputum antibiotic concentrations: implications for treatment of cystic fibrosis lung infection. Pediatr. Pulmonol.42(11), 1008–1017 (2007).
  • Smyth AR, Cifelli PM, Ortori CA et al. Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis – a pilot randomized controlled trial. Pediatr. Pulmonol.45(4), 356–362 (2010).
  • Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol.9(2), 143–152 (2006).
  • Gooderham WJ, Hancock RE. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa.FEMS Microbiol. Rev.33(2), 279–294 (2009).
  • Chauhan N, Calderone R. Two-component signal transduction proteins as potential drug targets in medically important fungi. Infect. Immun.76(11), 4795–4803 (2008).
  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr. Opin. Microbiol.13(2), 232–239 (2010).
  • Lee VT, Smith RS, Tummler B, Lory S. Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect. Immun.73(3), 1695–1705 (2005).
  • Goure J, Broz P, Attree O, Cornelis GR, Attree I. Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J. Infect. Dis.192(2), 218–225 (2005).
  • Frank DW, Vallis A, Wiener-Kronish JP et al. Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J. Infect. Dis.186(1), 64–73 (2002).
  • Meyer JM, Neely A, Stintzi A, Georges C, Holder IA. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun.64(2), 518–523 (1996).
  • Handfield M, Lehoux DE, Sanschagrin F, Mahan MJ, Woods DE, Levesque RC. In vivo-induced genes in Pseudomonas aeruginosa. Infect. Immun.68(4), 2359–2362 (2000).
  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA99(10), 7072–7077 (2002).
  • de Chial M, Ghysels B, Beatson SA et al. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology149(Pt 4), 821–831 (2003).
  • Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J. Antimicrob. Chemother.62(6), 1291–1297 (2008).
  • Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie84(5–6), 499–510 (2002).
  • Filiatrault MJ, Munson RS Jr, Campagnari AA. Genetic analysis of a pyocin-resistant lipooligosaccharide (LOS) mutant of Haemophilus ducreyi: restoration of full-length LOS restores pyocin sensitivity. J. Bacteriol.183(19), 5756–5761 (2001).
  • Bakkal S, Robinson SM, Ordonez CL, Waltz DA, Riley MA. Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology156(Pt 7), 2058–2067 (2010).
  • Govan JR. In vivo significance of bacteriocins and bacteriocin receptors. Scand. J. Infect. Dis. Suppl.49, 31–37 (1986).
  • Williams SR, Gebhart D, Martin DW, Scholl D. Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl. Environ. Microbiol.74(12), 3868–3876 (2008).
  • Scholl D, Martin DW Jr. Antibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model. Antimicrob. Agents Chemother.52(5), 1647–1652 (2008).
  • Line JE, Svetoch EA, Eruslanov BV et al. Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother.52(3), 1094–1100 (2008).
  • Cherif A, Chehimi S, Limem F et al. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol.95(5), 990–1000 (2003).
  • Ling H, Saeidi N, Rasouliha BH, Chang MW. A predicted S-type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. FEBS Lett.584(15), 3354–3358 (2010).
  • Montalban-Lopez M, Sanchez-Hidalgo M, Valdivia E, Martinez-Bueno M, Maqueda M. Are bacteriocins underexploited? Novel applications for old antimicrobials. Curr. Pharm. Biotechnol.12(8), 1205–1220 (2011).
  • Svetoch EA, Stern NJ. Bacteriocins to control Campylobacter spp. in poultry – a review. Poult. Sci.89(8), 1763–1768 (2010).
  • Sang Y, Blecha F. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim. Health Res. Rev.9(2), 227–235 (2008).
  • Allaker RP, Douglas CW. Novel anti-microbial therapies for dental plaque-related diseases. Int. J. Antimicrob. Agents33(1), 8–13 (2009).
  • Corr SC, Hill C, Gahan CG. Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Adv. Food Nutr. Res.56, 1–15 (2009).
  • Denayer S, Matthijs S, Cornelis P. Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. J. Bacteriol.189(21), 7663–7668 (2007).
  • Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA96(5), 2192–2197 (1999).
  • Summers WC. Bacteriophage therapy. Annu. Rev. Microbiol.55, 437–451 (2001).
  • Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol.2(2), 166–173 (2004).
  • Stone R. Bacteriophage therapy. Stalin’s forgotten cure. Science298(5594), 728–731 (2002).
  • Cooper CJ, Denyer SP, Maillard JY. Rapid and quantitative automated measurement of bacteriophage activity against cystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol.110(3), 631–640 (2011).
  • Azeredo J, Sutherland IW. The use of phages for the removal of infectious biofilms. Curr. Pharm. Biotechnol.9(4), 261–266 (2008).
  • Harper DR, Enright MC. Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J. Appl. Microbiol.111(1), 1–7 (2011).
  • Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol.67(6), 2746–2753 (2001).
  • Bartell PF, Orr TE, Lam GK. Polysaccharide depolymerase associated with bacteriophage infection. J. Bacteriol.92(1), 56–62 (1966).
  • Reese JF, Dimitracopoulos G, Bartell PF. Factors influencing the adsorption of bacteriophage 2 to cells of Pseudomonas aeruginosa. J. Virol.13(1), 22–27 (1974).
  • Verma V, Harjai K, Chhibber S. Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling26(6), 729–737 (2010).
  • Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother.54(1), 397–404 (2010).
  • Garbe J, Wesche A, Bunk B et al. Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol.10, 301 (2010).
  • Heo YJ, Lee YR, Jung HH, Lee J, Ko G, Cho YH. Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob. Agents Chemother.53(6), 2469–2474 (2009).
  • McVay CS, Velasquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother.51(6), 1934–1938 (2007).
  • Debarbieux L, Leduc D, Maura D et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J. Infect. Dis.201(7), 1096–1104 (2010).
  • Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS ONE6(2), e16963 (2011).
  • Hawkins C, Harper D, Burch D, Anggard E, Soothill J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet. Microbiol.146(3–4), 309–313 (2010).
  • Wright A, Hawkins CH, Anggard EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol.34(4), 349–357 (2009).
  • Merabishvili M, Pirnay JP, Verbeken G et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE4(3), e4944 (2009).
  • Golshahi L, Lynch KH, Dennis JJ, Finlay WH. In vitro lung delivery of bacteriophages KS4-M and PhiKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol.110(1), 106–117 (2011).
  • Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay JP. European regulatory conundrum of phage therapy. Future Microbiol.2(5), 485–491 (2007).
  • Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA104(27), 11197–11202 (2007).
  • Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl Acad. Sci. USA106(12), 4629–4634 (2009).
  • Hagens S, Habel A, von Ahsen U, von Gabain A, Blasi U. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob. Agents Chemother.48(10), 3817–3822 (2004).
  • Wang Y, Lu C. [Bacteriophage lysins: progress and perspective – a review]. Wei Sheng Wu Xue Bao49(10), 1277–1281 (2009).
  • Borysowski J, Weber-Dabrowska B, Gorski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. (Maywood)231(4), 366–377 (2006).
  • Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl Acad. Sci. USA98(7), 4107–4112 (2001).
  • Briers Y, Walmagh M, Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J. Appl. Microbiol.110(3), 778–785 (2011).
  • Paradis-Bleau C, Cloutier I, Lemieux L et al. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol. Lett.266(2), 201–209 (2007).
  • Rashel M, Uchiyama J, Ujihara T et al. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J. Infect. Dis.196(8), 1237–1247 (2007).
  • Fischetti VA. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol.11(5), 393–400 (2008).
  • Doring G, Pier GB. Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine26(8), 1011–1024 (2008).
  • Pennington JE, Reynolds HY, Wood RE, Robinson RA, Levine AS. Use of a Pseudomonas aeruginosa vaccine in pateints with acute leukemia and cystic fibrosis. Am. J. Med.58(5), 629–636 (1975).
  • Cryz SJ Jr, Furer E, Que JU, Sadoff JC, Brenner M, Schaad UB. Clinical evaluation of an octavalent Pseudomonas aeruginosa conjugate vaccine in plasma donors and in bone marrow transplant and cystic fibrosis patients. Antibiot. Chemother.44, 157–162 (1991).
  • Lang AB, Rudeberg A, Schoni MH, Que JU, Furer E, Schaad UB. Vaccination of cystic fibrosis patients against Pseudomonas aeruginosa reduces the proportion of patients infected and delays time to infection. Pediatr. Infect. Dis. J.23(6), 504–510 (2004).
  • Doring G, Meisner C, Stern M. A double-blind randomized placebo-controlled Phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc. Natl Acad. Sci. USA104(26), 11020–11025 (2007).
  • Palliyil S, Broadbent ID. Novel immunotherapeutic approaches to the treatment of infections caused by Gram-negative bacteria. Curr. Opin. Pharmacol.9(5), 566–570 (2009).
  • Donta ST, Peduzzi P, Cross AS et al. Immunoprophylaxis against Klebsiella and Pseudomonas aeruginosa infections. The Federal Hyperimmune Immunoglobulin Trial Study Group. J. Infect. Dis.174(3), 537–543 (1996).
  • Baer M, Sawa T, Flynn P et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect. Immun.77(3), 1083–1090 (2009).
  • Imamura Y, Yanagihara K, Fukuda Y et al. Effect of anti-PcrV antibody in a murine chronic airway Pseudomonas aeruginosa infection model. Eur. Respir. J.29(5), 965–968 (2007).
  • Holder IA, Neely AN, Frank DW. PcrV immunization enhances survival of burned Pseudomonas aeruginosa-infected mice. Infect. Immun.69(9), 5908–5910 (2001).
  • Faezi S, Sattari M, Mahdavi M, Roudkenar MH. Passive immunisation against Pseudomonas aeruginosa recombinant flagellin in an experimental model of burn wound sepsis. Burns37(5), 864–871 (2011).
  • Moskwa P, Lorentzen D, Excoffon KJ et al. A novel host defense system of airways is defective in cystic fibrosis. Am. J. Respir. Crit. Care Med.175(2), 174–183 (2007).
  • Woodford N, Wareham DW. Tackling antibiotic resistance: a dose of common antisense? J. Antimicrob. Chemother.63(2), 225–229 (2009).
  • Hong-Geller E, Micheva-Viteva SN. Functional gene discovery using RNA interference-based genomic screens to combat pathogen infection. Curr. Drug Discov. Technol.7(2), 86–94 (2010).
  • Bai H, Xue X, Hou Z, Zhou Y, Meng J, Luo X. Antisense antibiotics: a brief review of novel target discovery and delivery. Curr. Drug Discov. Technol.7(2), 76–85 (2010).
  • Metzker ML. Sequencing technologies – the next generation. Nat. Rev. Genet.11(1), 31–46 (2010).
  • Gross H. Genomic mining – a concept for the discovery of new bioactive natural products. Curr. Opin. Drug Discov. Devel.12(2), 207–219 (2009).
  • Eberl L, Riedel K. Mining quorum sensing regulated proteins – role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics. Proteomics11(15), 3070–3085 (2011).
  • Davies J. How to discover new antibiotics: harvesting the parvome. Curr. Opin. Chem. Biol.15(1), 5–10 (2010).
  • Yacoby I, Benhar I. Targeted anti bacterial therapy. Infect. Disord. Drug Targets7(3), 221–229 (2007).
  • Winsor GL, Van Rossum T, Lo R et al. Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res.37(Database issue), D483–D488 (2009).
  • Cheng K, Smyth RL, Govan JR et al. Spread of β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet348(9028), 639–642 (1996).
  • Anthony M, Rose B, Pegler MB et al. Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J. Clin. Microbiol.40(8), 2772–2778 (2002).
  • O’Carroll MR, Syrmis MW, Wainwright CE et al. Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur. Respir. J.24(1), 101–106 (2004).
  • Scott FW, Pitt TL. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J. Med. Microbiol.53(Pt 7), 609–615 (2004).
  • Jones AM, Govan JR, Doherty CJ et al. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet358(9281), 557–558 (2001).
  • Winstanley C, Langille MG, Fothergill JL et al. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res.19(1), 12–23 (2009).
  • Parsons YN, Panagea S, Smart CH, Walshaw MJ, Hart CA, Winstanley C. Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J. Clin. Microbiol.40(12), 4607–4611 (2002).
  • Fothergill JL, Mowat E, Ledson MJ, Walshaw MJ, Winstanley C. Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J. Med. Microbiol.59(Pt 4), 472–481 (2010).
  • Mowat E, Paterson S, Fothergill JL et al.Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am. J. Respir. Crit. Care Med.183, 1674–1679 (2011).
  • Armougom F, Bittar F, Stremler N et al. Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing. Eur. J. Clin. Microbiol. Infect. Dis.28(9), 1151–1154 (2009).
  • Caporaso JG, Lauber CL, Costello EK et al. Moving pictures of the human microbiome. Genome Biol.12(5), R50 (2011).
  • Tunney MM, Field TR, Moriarty TF et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am. J. Respir. Crit. Care Med.177(9), 995–1001 (2008).
  • Cox MJ, Allgaier M, Taylor B et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE5(6), e11044 (2011).
  • Zemanick ET, Sagel SD, Harris JK. The airway microbiome in cystic fibrosis and implications for treatment. Curr. Opin. Pediatr.23(3), 319–324 (2011).
  • Friswell M, Campbell B, Rhodes J. The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver4(3), 295–306 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.