116
Views
6
CrossRef citations to date
0
Altmetric
Review

Current drug discovery strategies against arenavirus infections

, &
Pages 1297-1309 | Published online: 10 Jan 2014

References

  • Emonet SF, de la Torre JC, Domingo E, Sevilla N. Arenavirus genetic diversity and its biological implications. Infect. Genet. Evol. 9(4), 417–429 (2009).
  • Buchmeier MJ, de la Torre JC, Peters CJ. Arenaviridae: the viruses and their replication. In: Fields Virology. Knipe DL, Howley PM (Eds). Lippincott-Raven, PA, USA, 1791–1828 (2007).
  • McCormick JB, Fisher-Hoch SP. Lassa fever. Curr. Top. Microbiol. Immunol. 262, 75–109 (2002).
  • Peters CJ. Human infection with arenaviruses in the Americas. Curr. Top. Microbiol. Immunol. 262, 65–74 (2002).
  • Charrel RN, de Lamballerie X, Emonet S. Phylogeny of the genus Arenavirus. Curr. Opin. Microbiol. 11(4), 362–368 (2008).
  • Kunz S, de la Torre JC. Arenavirus infection in the nervous system: uncovering principles of virus-host interaction and viral pathogenesis. In: Neurotropic Viral Infections. Reiss CS (Ed.). Cambridge University Press, Cambridge, UK, 75–93 (2008).
  • Bonthius DJ, Nichols B, Harb H, Mahoney J, Karacay B. Lymphocytic choriomeningitis virus infection of the developing brain: critical role of host age. Ann. Neurol. 62(4), 356–374 (2007).
  • Bonthius DJ, Perlman S. Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat. PLoS Pathog. 3(11), e149 (2007).
  • Fischer SA, Graham MB, Kuehnert MJ et al.; LCMV in Transplant Recipients Investigation Team. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med. 354(21), 2235–2249 (2006).
  • Palacios G, Druce J, Du L et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 358(10), 991–998 (2008).
  • McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES. A prospective study of the epidemiology and ecology of Lassa fever. J. Infect. Dis. 155(3), 437–444 (1987).
  • Richmond JK, Baglole DJ. Lassa fever: epidemiology, clinical features, and social consequences. BMJ 327(7426), 1271–1275 (2003).
  • Briese T, Paweska JT, McMullan LK et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5(5), e1000455 (2009).
  • Delgado S, Erickson BR, Agudo R et al. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog. 4(4), e1000047 (2008).
  • Gómez RM, Jaquenod de Giusti C, Sanchez Vallduvi MM, Frik J, Ferrer MF, Schattner M. Junín virus. A XXI century update. Microbes Infect. 13(4), 303–311 (2011).
  • Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges. Nat. Med. 10(12 Suppl.), S110–S121 (2004).
  • de la Torre JC. Molecular and cell biology of the prototypic arenavirus LCMV: implications for understanding and combating hemorrhagic fever arenaviruses. Ann. NY Acad. Sci. 1171(Suppl. 1), E57–E64 (2009).
  • Meyer BJ, de La Torre JC, Southern PJ. Arenaviruses: Genomic RNAs, Transcription, and Replication. In: Arenaviruses I. Oldstone MB (Ed.). Springer-Verlag, Berlin Heidelberg, Germany, 139–149 (2002).
  • Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl Acad. Sci. USA 98(22), 12701–12705 (2001).
  • Rojek JM, Lee AM, Nguyen N, Spiropoulou CF, Kunz S. Site 1 protease is required for proteolytic processing of the glycoproteins of the South American hemorrhagic fever viruses Junin, Machupo, and Guanarito. J. Virol. 82(12), 6045–6051 (2008).
  • Beyer WR, Pöpplau D, Garten W, von Laer D, Lenz O. Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J. Virol. 77(5), 2866–2872 (2003).
  • Borrow P, Oldstone MB. Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus. J. Virol. 66(12), 7270–7281 (1992).
  • Eschli B, Quirin K, Wepf A, Weber J, Zinkernagel R, Hengartner H. Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J. Virol. 80(12), 5897–5907 (2006).
  • Igonet S, Vaney MC, Vonhrein C et al. X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. Proc. Natl Acad. Sci. USA 108(50), 19967–19972 (2011).
  • Eichler R, Lenz O, Strecker T, Eickmann M, Klenk HD, Garten W. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep. 4(11), 1084–1088 (2003).
  • Eichler R, Lenz O, Strecker T, Garten W. Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Lett. 538(1-3), 203–206 (2003).
  • Froeschke M, Basler M, Groettrup M, Dobberstein B. Long-lived signal peptide of lymphocytic choriomeningitis virus glycoprotein pGP-C. J. Biol. Chem. 278(43), 41914–41920 (2003).
  • York J, Romanowski V, Lu M, Nunberg JH. The signal peptide of the Junín arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1–G2 complex. J. Virol. 78(19), 10783–10792 (2004).
  • Agnihothram SS, York J, Trahey M, Nunberg JH. Bitopic membrane topology of the stable signal peptide in the tripartite Junín virus GP-C envelope glycoprotein complex. J. Virol. 81(8), 4331–4337 (2007).
  • Agnihothram SS, York J, Nunberg JH. Role of the stable signal peptide and cytoplasmic domain of G2 in regulating intracellular transport of the Junín virus envelope glycoprotein complex. J. Virol. 80(11), 5189–5198 (2006).
  • York J, Nunberg JH. A novel zinc-binding domain is essential for formation of the functional junin virus envelope glycoprotein complex. J. Virol. 10, 10 (2007).
  • Briknarová K, Thomas CJ, York J, Nunberg JH. Structure of a zinc-binding domain in the Junin virus envelope glycoprotein. J. Biol. Chem. 286(2), 1528–1536 (2011).
  • Eichler R, Strecker T, Kolesnikova L et al. Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Res. 100(2), 249–255 (2004).
  • York J, Nunberg JH. Role of the stable signal peptide of Junín arenavirus envelope glycoprotein in pH-dependent membrane fusion. J. Virol. 80(15), 7775–7780 (2006).
  • Cao W, Henry MD, Borrow P et al. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282(5396), 2079–2081 (1998).
  • Oldstone MB, Campbell KP. Decoding arenavirus pathogenesis: essential roles for alpha-dystroglycan-virus interactions and the immune response. Virology 411(2), 170–179 (2011).
  • Shimojima M, Ströher U, Ebihara H, Feldmann H, Kawaoka Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J. Virol. 86(4), 2067–2078 (2012).
  • Radoshitzky SR, Abraham J, Spiropoulou CF et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446(7131), 92–96 (2007).
  • Radoshitzky SR, Kuhn JH, Spiropoulou CF et al. Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc. Natl Acad. Sci. USA 105(7), 2664–2669 (2008).
  • Spiropoulou CF, Kunz S, Rollin PE, Campbell KP, Oldstone MB. New World arenavirus clade C, but not clade A and B viruses, utilizes alpha-dystroglycan as its major receptor. J. Virol. 76(10), 5140–5146 (2002).
  • Martinez MG, Cordo SM, Candurra NA. Characterization of Junin arenavirus cell entry. J. Gen. Virol. 88(Pt 6), 1776–1784 (2007).
  • Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A. Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology 378(1), 21–33 (2008).
  • Rojek JM, Perez M, Kunz S. Cellular entry of lymphocytic choriomeningitis virus. J. Virol. 82(3), 1505–1517 (2008).
  • Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S. Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J. Virol. 82(15), 7677–7687 (2008).
  • Pasqual G, Rojek JM, Masin M, Chatton JY, Kunz S. Old World arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog. 7(9), e1002232 (2011).
  • Nunberg JH, York J. The curious case of arenavirus entry, and its inhibition. Viruses 4(1), 83–101 (2012).
  • Urata S, de la Torre JC. Arenavirus budding. Adv. Virol. 2011, 180326 (2011).
  • Perez M, Craven RC, de la Torre JC. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc. Natl Acad. Sci. USA 100(22), 12978–12983 (2003).
  • Strecker T, Eichler R, Meulen J et al. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J. Virol. 77(19), 10700–10705 (2003).
  • Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J. Cellular factors required for Lassa virus budding. J. Virol. 80(8), 4191–4195 (2006).
  • Capul AA, Perez M, Burke E, Kunz S, Buchmeier MJ, de la Torre JC. Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J. Virol. 81(17), 9451–9460 (2007).
  • Emonet SE, Urata S, de la Torre JC. Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411(2), 416–425 (2011).
  • Sánchez AB, de la Torre JC. Rescue of the prototypic arenavirus LCMV entirely from plasmid. Virology 350(2), 370–380 (2006).
  • de la Torre JC. Reverse genetics approaches to combat pathogenic arenaviruses. Antiviral. Res. 80(3), 239–250 (2008).
  • Albariño CG, Bergeron E, Erickson BR, Khristova ML, Rollin PE, Nichol ST. Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J. Virol. 83(11), 5606–5614 (2009).
  • Emonet SF, Seregin AV, Yun NE et al. Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J. Virol. 85(4), 1473–1483 (2011).
  • Carnec X, Baize S, Reynard S et al. Lassa virus nucleoprotein mutants generated by reverse genetics induce a robust type I interferon response in human dendritic cells and macrophages. J. Virol. 85(22), 12093–12097 (2011).
  • Emonet SF, Garidou L, McGavern DB, de la Torre JC. Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc. Natl Acad. Sci. USA 106(9), 3473–3478 (2009).
  • Gibson RM, Arts EJ. Past, present, and future of entry inhibitors as HIV microbicides. Curr. HIV Res. 10(1), 19–26 (2012).
  • Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol. Ther. 131(3), 309–329 (2011).
  • Schmidt AG, Lee K, Yang PL, Harrison SC. Small-molecule inhibitors of dengue-virus entry. PLoS Pathog. 8(4), e1002627 (2012).
  • Côté M, Misasi J, Ren T et al. Small-molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature 477(7364), 344–348 (2011).
  • Murineddu G, Murruzzu C, Pinna GA. An overview on different classes of viral entry and respiratory syncitial virus (RSV) fusion inhibitors. Curr. Med. Chem. 17(11), 1067–1091 (2010).
  • Abraham J, Corbett KD, Farzan M, Choe H, Harrison SC. Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat. Struct. Mol. Biol. 17(4), 438–444 (2010).
  • Helguera G, Jemielity S, Abraham J et al. An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all New World hemorrhagic fever arenaviruses. J. Virol. 86(7), 4024–4028 (2012).
  • Kunz S. Receptor binding and cell entry of Old World arenaviruses reveal novel aspects of virus–host interaction. Virology 387(2), 245–249 (2009).
  • Lee AM, Rojek JM, Gundersen A et al. Inhibition of cellular entry of lymphocytic choriomeningitis virus by amphipathic DNA polymers. Virology 372(1), 107–117 (2008).
  • Wells JA. Hormone mimicry. Science 273(5274), 449–450 (1996).
  • Wells JA, de Vos AM. Hematopoietic receptor complexes. Annu. Rev. Biochem. 65, 609–634 (1996).
  • Livnah O, Stura EA, Johnson DL et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science 273(5274), 464–471 (1996).
  • Wrighton NC, Farrell FX, Chang R et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273(5274), 458–464 (1996).
  • Boger DL, Desharnais J, Capps K. Solution-phase combinatorial libraries: modulating cellular signaling by targeting protein–protein or protein–DNA interactions. Angew. Chem. Int. Ed. Engl. 42(35), 4138–4176 (2003).
  • Boger DL, Ducray P, Chai W, Jiang W, Goldberg J. Higher order iminodiacetic acid libraries for probing protein–protein interactions. Bioorg. Med. Chem. Lett. 8(17), 2339–2344 (1998).
  • Bolken TC, Laquerre S, Zhang Y et al. Identification and characterization of potent small-molecule inhibitor of hemorrhagic fever New World arenaviruses. Antiviral Res. 69(2), 86–97 (2006).
  • Lee AM, Rojek JM, Spiropoulou CF et al. Unique small-molecule entry inhibitors of hemorrhagic fever arenaviruses. J. Biol. Chem. 283(27), 18734–18742 (2008).
  • Larson RA, Dai D, Hosack VT et al. Identification of a broad-spectrum arenavirus entry inhibitor. J. Virol. 82(21), 10768–10775 (2008).
  • York J, Dai D, Amberg SM, Nunberg JH. pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors. J. Virol. 82(21), 10932–10939 (2008).
  • Thomas CJ, Casquilho-Gray HE, York J et al. A specific interaction of small-molecule entry inhibitors with the envelope glycoprotein complex of the Junín hemorrhagic fever arenavirus. J. Biol. Chem. 286(8), 6192–6200 (2011).
  • York J, Nunberg JH. Intersubunit interactions modulate pH-induced activation of membrane fusion by the Junin virus envelope glycoprotein GPC. J. Virol. 83(9), 4121–4126 (2009).
  • Cashman KA, Smith MA, Twenhafel NA et al. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antiviral Res. 90(1), 70–79 (2011).
  • Parker WB. Metabolism and antiviral activity of ribavirin. Virus Res. 107(2), 165–171 (2005).
  • McCormick JB, King IJ, Webb PA et al. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314(1), 20–26 (1986).
  • Kilgore PE, Peters CJ, Mills JN et al. Prospects for the control of Bolivian hemorrhagic fever. Emerging Infect. Dis. 1(3), 97–100 (1995).
  • Weissenbacher MC, Laguens RP, Coto CE. Argentine hemorrhagic fever. Curr. Top. Microbiol. Immunol. 134, 79–116 (1987).
  • Ruiz-Jarabo CM, Ly C, Domingo E, de la Torre JC. Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308(1), 37–47 (2003).
  • Moreno H, Gallego I, Sevilla N, de la Torre JC, Domingo E, Martín V. Ribavirin can be mutagenic for arenaviruses. J. Virol. 85(14), 7246–7255 (2011).
  • Andrei G, De Clercq E. Molecular approaches for the treatment of hemorrhagic fever virus infections. Antiviral Res. 22(1), 45–75 (1993).
  • Andrei G, De Clercq E. Inhibitory effect of selected antiviral compounds on arenavirus replication in vitro. Antiviral Res. 14(4–5), 287–299 (1990).
  • Candurra NA, Maskin L, Damonte EB. Inhibition of arenavirus multiplication in vitro by phenotiazines. Antiviral Res. 31(3), 149–158 (1996).
  • Wachsman MB, López EM, Ramirez JA, Galagovsky LR, Coto CE. Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antivir. Chem. Chemother. 11(1), 71–77 (2000).
  • García CC, Candurra NA, Damonte EB. Antiviral and virucidal activities against arenaviruses of zinc-finger active compounds. Antivir. Chem. Chemother. 11(3), 231–237 (2000).
  • García CC, Djavani M, Topisirovic I, Borden KL, Salvato MS, Damonte EB. Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds. J. Gen. Virol. 87(Pt 5), 1217–1228 (2006).
  • García CC, Topisirovic I, Djavani M, Borden KL, Damonte EB, Salvato MS. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein. Biochem. Biophys. Res. Commun. 393(4), 625–630 (2010).
  • Furuta Y, Takahashi K, Shiraki K et al. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res. 82(3), 95–102 (2009).
  • Mendenhall M, Russell A, Juelich T et al. T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob. Agents Chemother. 55(2), 782–787 (2011).
  • Gowen BB, Wong MH, Jung KH et al. In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections. Antimicrob. Agents Chemother. 51(9), 3168–3176 (2007).
  • Gowen BB, Smee DF, Wong MH et al. Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin. PLoS ONE 3(11), e3725 (2008).
  • Mendenhall M, Russell A, Smee DF et al. Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic fever. PLoS Negl. Trop. Dis. 5(10), e1342 (2011).
  • Neuman BW, Bederka LH, Stein DA, Ting JP, Moulton HM, Buchmeier MJ. Development of peptide-conjugated morpholino oligomers as pan-arenavirus inhibitors. Antimicrob. Agents Chemother. 55(10), 4631–4638 (2011).
  • Sepúlveda CS, García CC, Fascio ML et al. Inhibition of Junin virus RNA synthesis by an antiviral acridone derivative. Antiviral Res. 93(1), 16–22 (2012).
  • Samuel CE. Antiviral actions of interferons. Clin. Microbiol. Rev. 14(4), 778–809, table of contents (2001).
  • Bartholdy C, Christensen JP, Wodarz D, Thomsen AR. Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus. J. Virol. 74(22), 10304–10311 (2000).
  • Huang S, Hendriks W, Althage A et al. Immune response in mice that lack the interferon-gamma receptor. Science 259(5102), 1742–1745 (1993).
  • Baize S, Kaplon J, Faure C, Pannetier D, Georges-Courbot MC, Deubel V. Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J. Immunol. 172(5), 2861–2869 (2004).
  • Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J. Immunol. 170(6), 2797–2801 (2003).
  • Groseth A, Hoenen T, Weber M et al. Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages. PLoS Negl. Trop. Dis. 5(5), e1137 (2011).
  • Borrow P, Martínez-Sobrido L, de la Torre JC. Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2(11), 2443–2480 (2010).
  • Martínez-Sobrido L, Zúñiga EI, Rosario D, García-Sastre A, de la Torre JC. Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 80(18), 9192–9199 (2006).
  • Martínez-Sobrido L, Giannakas P, Cubitt B, García-Sastre A, de la Torre JC. Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J. Virol. 81(22), 12696–12703 (2007).
  • Martínez-Sobrido L, Emonet S, Giannakas P, Cubitt B, García-Sastre A, de la Torre JC. Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 83(21), 11330–11340 (2009).
  • Qi X, Lan S, Wang W et al. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468(7325), 779–783 (2010).
  • Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3´ to 5´ exonuclease activity essential for immune suppression. Proc. Natl Acad. Sci. USA 108(6), 2396–2401 (2011).
  • Gowen BB, Barnard DL, Smee DF et al. Interferon alfacon-1 protects hamsters from lethal pichinde virus infection. Antimicrob. Agents Chemother. 49(6), 2378–2386 (2005).
  • Gowen BB, Smee DF, Wong MH et al. Combinatorial ribavirin and interferon alfacon-1 therapy of acute arenaviral disease in hamsters. Antivir. Chem. Chemother. 17(4), 175–183 (2006).
  • Gowen BB, Ennis J, Russell A, Sefing EJ, Wong MH, Turner J. Use of recombinant adenovirus vectored consensus IFN-α to avert severe arenavirus infection. PLoS ONE 6(10), e26072 (2011).
  • Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360(6402), 358–361 (1992).
  • Walker JA, Molloy SS, Thomas G et al. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J. Virol. 68(2), 1213–1218 (1994).
  • Horimoto T, Kawaoka Y. The hemagglutinin cleavability of a virulent avian influenza virus by subtilisin-like endoproteases is influenced by the amino acid immediately downstream of the cleavage site. Virology 210(2), 466–470 (1995).
  • Vincent MJ, Sanchez AJ, Erickson BR et al. Crimean–Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J. Virol. 77(16), 8640–8649 (2003).
  • Kunz S, Edelmann KH, de la Torre JC, Gorney R, Oldstone MB. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology 314(1), 168–178 (2003).
  • Touré BB, Munzer JS, Basak A et al. Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment. J. Biol. Chem. 275(4), 2349–2358 (2000).
  • Sakai J, Rawson RB, Espenshade PJ et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 2(4), 505–514 (1998).
  • Espenshade PJ, Cheng D, Goldstein JL, Brown MS. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J. Biol. Chem. 274(32), 22795–22804 (1999).
  • Ye J, Rawson RB, Komuro R et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6(6), 1355–1364 (2000).
  • Raggo C, Rapin N, Stirling J et al. Luman, the cellular counterpart of herpes simplex virus VP16, is processed by regulated intramembrane proteolysis. Mol. Cell. Biol. 22(16), 5639–5649 (2002).
  • Marschner K, Kollmann K, Schweizer M, Braulke T, Pohl S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science 333(6038), 87–90 (2011).
  • Pasquato A, Pullikotil P, Asselin MC et al. The proprotein convertase SKI-1/S1P. In vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors. J. Biol. Chem. 281(33), 23471–23481 (2006).
  • Pasquato A, Burri DJ, Traba EG, Hanna-El-Daher L, Seidah NG, Kunz S. Arenavirus envelope glycoproteins mimic autoprocessing sites of the cellular proprotein convertase subtilisin kexin isozyme-1/site-1 protease. Virology 417(1), 18–26 (2011).
  • Mohottalage D, Goto N, Basak A. Subtilisin kexin isozyme-1 (SKI-1): production, purification, inhibitor design and biochemical applications. Adv. Exp. Med. Biol. 611, 83–84 (2009).
  • Rojek JM, Pasqual G, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S. Targeting the proteolytic processing of the viral glycoprotein precursor is a promising novel antiviral strategy against arenaviruses. J. Virol. 84(1), 573–584 (2010).
  • Maisa A, Ströher U, Klenk HD, Garten W, Strecker T. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1)-antitrypsin variants. PLoS Negl. Trop. Dis. 3(6), e446 (2009).
  • Hay BA, Abrams B, Zumbrunn AY et al. Aminopyrrolidineamide inhibitors of site-1 protease. Bioorg. Med. Chem. Lett. 17(16), 4411–4414 (2007).
  • Hawkins JL, Robbins MD, Warren LC et al. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J. Pharmacol. Exp. Ther. 326(3), 801–808 (2008).
  • Pasquato A, Rochat C, Burri DJ, Pasqual G, de la Torre JC, Kunz S. Evaluation of the anti-arenaviral activity of the subtilisin kexin isozyme-1/site-1 protease inhibitor PF-429242. Virology 423(1), 14–22 (2012).
  • Urata S, Yun N, Pasquato A, Paessler S, Kunz S, de la Torre JC. Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J. Virol. 85(2), 795–803 (2011).
  • Oldstone MB, Buchmeier MJ. Restricted expression of viral glycoprotein in cells of persistently infected mice. Nature 300(5890), 360–362 (1982).
  • Olmstead AD, Knecht W, Lazarov I, Dixit SB, Jean F. Human subtilase SKI-1/S1P is a master regulator of the HCV lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog. 8(1), e1002468 (2012).
  • Burri DJ, Pasqual G, Rochat C, Seidah NG, Pasquato A, Kunz S. Molecular characterization of the processing of arenavirus envelope glycoprotein precursors by subtilisin kexin isozyme-1/site-1 protease. J. Virol. 86(9), 4935–4946 (2012).
  • Ortiz-Riaño E, Cheng BY, de la Torre JC, Martínez-Sobrido L. Self-association of lymphocytic choriomeningitis virus nucleoprotein is mediated by its N-terminal region and is not required for its anti-interferon function. J. Virol. 86(6), 3307–3317 (2012).
  • Ortiz-Riaño E, Cheng BY, de la Torre JC, Martínez-Sobrido L. The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP–Z interaction and counteraction of the type I interferon response. J. Virol. 85(24), 13038–13048 (2011).
  • Perez M, Greenwald DL, de la Torre JC. Myristoylation of the RING finger Z protein is essential for arenavirus budding. J. Virol. 78(20), 11443–11448 (2004).
  • Strecker T, Maisa A, Daffis S, Eichler R, Lenz O, Garten W. The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol. J. 3, 93 (2006).
  • Cordo SM, Candurra NA, Damonte EB. Myristic acid analogs are inhibitors of Junin virus replication. Microbes Infect. 1(8), 609–614 (1999).
  • Saunders AA, Ting JP, Meisner J et al. Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J. Virol. 81(11), 5649–5657 (2007).
  • Urata S, Ngo N, de la Torre JC. The PI3K/Akt pathway contributes to arenavirus budding. J. Virol. 86(8), 4578–4585 (2012).
  • Artuso MC, Ellenberg PC, Scolaro LA, Damonte EB, García CC. Inhibition of Junín virus replication by small interfering RNAs. Antiviral Res. 84(1), 31–37 (2009).
  • Sánchez AB, Perez M, Cornu T, de la Torre JC. RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 79(17), 11071–11081 (2005).
  • Capul AA, de la Torre JC. A cell-based luciferase assay amenable to high-throughput screening of inhibitors of arenavirus budding. Virology 382(1), 107–114 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.