209
Views
27
CrossRef citations to date
0
Altmetric
Review

Immunomodulatory properties of surfactant preparations

, &
Pages 99-110 | Published online: 10 Jan 2014

References

  • Speer CP, Robertson B, Curstedt T et al. Randomized European multicenter trial of surfactant replacement therapy for severe neonatal respiratory distress syndrome: single versus multiple doses of Curosurf. Pediatrics 89(1), 13–20 (1992).
  • Jobe AH. Pulmonary surfactant therapy. N. Engl. J. Med. 328(12), 861–868 (1993).
  • Halliday HL. Surfactants: past, present and future. J. Perinatol. 28(Suppl. 1), S47–S56 (2008).
  • Speer CP. Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 95(4), 353–361 (2009).
  • Speer CP. Neonatal respiratory distress syndrome: an inflammatory disease? Neonatology 99(4), 316–319 (2011).
  • Wirbelauer J, Speer CP. The role of surfactant treatment in preterm infants and term newborns with acute respiratory distress syndrome. J. Perinatol. 29(Suppl. 2), S18–S22 (2009).
  • Bersani I, Thomas W, Speer CP. Chorioamnionitis – the good or the evil for neonatal outcome? J. Matern. Fetal. Neonatal. Med. 25(Suppl. 1), 12–16 (2012).
  • Speer CP. Inflammation and bronchopulmonary dysplasia: a continuing story. Semin. Fetal Neonatal Med. 11(5), 354–362 (2006).
  • Wright JR. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 5(1), 58–68 (2005).
  • Bancalari E. Surfactant replacement: present and future. Chapter 14. Neonatology: Questions and Controversies (2nd Edition). Speer CP, Sweet D (Eds). Saunders, PA, USA (2011).
  • Kattwinkel J. Synthetic surfactants: the search goes on. Pediatrics 115(4), 1075–1076 (2005).
  • Sinha S, Moya F, Donn SM. Surfactant for respiratory distress syndrome: are there important clinical differences among preparations? Curr. Opin. Pediatr. 19(2), 150–154 (2007).
  • Speer CP, Halliday HL. Surfactant therapy in the newborn. Current Paediatrics 4, 5–9 (1994).
  • Robertson B. Background to neonatal respiratory distress syndrome and treatment with exogenous surfactant. Dev. Pharmacol. Therapeut. 13(2–4), 159–163 (1989).
  • Speer CP, Götze B, Curstedt T, Robertson B. Phagocytic functions and tumor necrosis factor secretion of human monocytes exposed to natural porcine surfactant (Curosurf). Pediatr. Res. 30(1), 69–74 (1991).
  • Baur FM, Brenner B, Goetze-Speer B, Neu S, Speer CP. Natural porcine surfactant (Curosurf) down-regulates mRNA of tumor necrosis factor-alpha (TNF-α) and TNF-α type II receptor in lipopolysaccharide-stimulated monocytes. Pediatr. Res. 44(1), 32–36 (1998).
  • Walti H, Polla BS, Bachelet M. Modified natural porcine surfactant inhibits superoxide anions and proinflammatory mediators released by resting and stimulated human monocytes. Pediatr. Res. 41(1), 114–119 (1997).
  • Tonks AJ, Tonks A, Morris RH, Jones KP, Jackson SK. Regulation of platelet-activating factor synthesis in human monocytes by dipalmitoyl phosphatidylcholine. J. Leukoc. Biol. 74(1), 95–101 (2003).
  • Nagase T, Ishii S, Kume K et al. Platelet-activating factor mediates acid-induced lung injury in genetically engineered mice. J. Clin. Invest. 104(8), 1071–1076 (1999).
  • Geertsma MF, Teeuw WL, Nibbering PH, van Furth R. Pulmonary surfactant inhibits activation of human monocytes by recombinant interferon-γ. Immunology 82(3), 450–456 (1994).
  • Allen JN, Moore SA, Pope-Harman AL, Marsh CB, Wewers MD. Immunosuppressive properties of surfactant and plasma on alveolar macrophages. J. Lab. Clin. Med. 125(3), 356–369 (1995).
  • Raychaudhuri B, Abraham S, Bonfield TL et al. Surfactant blocks lipopolysaccharide signaling by inhibiting both mitogen-activated protein and IκB kinases in human alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 30(2), 228–232 (2004).
  • Cook DN. The role of MIP-1 alpha in inflammation and hematopoiesis. J. Leukoc. Biol. 59(1), 61–66 (1996).
  • Thomassen MJ, Meeker DP, Antal JM, Connors MJ, Wiedemann HP. Synthetic surfactant (Exosurf) inhibits endotoxin-stimulated cytokine secretion by human alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 7(3), 257–260 (1992).
  • Thomassen MJ, Antal JM, Connors MJ, Meeker DP, Wiedemann HP. Characterization of exosurf (surfactant)-mediated suppression of stimulated human alveolar macrophage cytokine responses. Am. J. Respir. Cell Mol. Biol. 10(4), 399–404 (1994).
  • Antal JM, Divis LT, Erzurum SC, Wiedemann HP, Thomassen MJ. Surfactant suppresses NF-κB activation in human monocytic cells. Am. J. Respir. Cell Mol. Biol. 14(4), 374–379 (1996).
  • Kerecman J, Mustafa SB, Vasquez MM, Dixon PS, Castro R. Immunosuppressive properties of surfactant in alveolar macrophage NR8383. Inflamm. Res. 57(3), 118–125 (2008).
  • Tonks A, Morris RH, Price AJ, Thomas AW, Jones KP, Jackson SK. Dipalmitoylphosphatidylcholine modulates inflammatory functions of monocytic cells independently of mitogen activated protein kinases. Clin. Exp. Immunol. 124(1), 86–94 (2001).
  • Kuronuma K, Mitsuzawa H, Takeda K et al. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. J. Biol. Chem. 284(38), 25488–25500 (2009).
  • Numata M, Kandasamy P, Voelker DR. Anionic pulmonary surfactant lipid regulation of innate immunity. Expert Rev. Respir. Med. 6(3), 243–246 (2012).
  • Numata M, Chu HW, Dakhama A, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc. Natl Acad. Sci. USA 107(1), 320–325 (2010).
  • Numata M, Kandasamy P, Nagashima Y et al. Phosphatidylglycerol suppresses influenza A virus infection. Am. J. Respir. Cell Mol. Biol. 46(4), 479–487 (2012).
  • Mittal N, Sanyal SN. In vivo effect of surfactant on inflammatory cytokines during endotoxin-induced lung injury in rodents. J. Immunotoxicol. 8(4), 274–283 (2011).
  • Wemhöner A, Rüdiger M, Gortner L. Inflammatory cytokine mRNA in monocytes is modified by a recombinant (SP-C)-based surfactant and porcine surfactant. Methods Find. Exp. Clin. Pharmacol. 31(5), 317–323 (2009).
  • Speer CP, Götze B, Robertson B, Curstedt T. Effect of natural porcine surfactant (Curosurf) on the function of neutrophilic granulocytes. Monatsschr. Kinderheilkd. 138(11), 737–741 (1990).
  • Rauprich P, Walter G, Jarstrand C, Robertson B, Herting E. Influence of modified natural and synthetic surfactant preparations on bacterial killing by polymorphonuclear leucocytes. Immunobiology 209(8), 609–617 (2004).
  • Scholtes U, Wiegand N, Zwirner J, Herting E. Influence of porcine natural modified surfactant on chemotaxis and oxidative metabolism of polymorphonuclear leukocytes. Immunobiology 205(3), 290–302 (2002).
  • Chacon-Cruz E, Buescher ES, Oelberg DG. Surfactant modulates calcium response of neutrophils to physiologic stimulation via cell membrane depolarization. Pediatr. Res. 47(3), 405–413 (2000).
  • Boston ME, Frech GC, Chacon-Cruz E, Buescher ES, Oelberg DG. Surfactant releases internal calcium stores in neutrophils by G protein-activated pathway. Exp. Biol. Med. (Maywood) 229(1), 99–107 (2004).
  • Finck CM, Hodell MG, Marx WH et al. Endotoxin-stimulated alveolar macrophage recruitment of neutrophils and modulation with exogenous surfactant. Crit. Care Med. 26(8), 1414–1418 (1998).
  • Hoffman RM, Claypool WD, Katyal SL, Singh G, Rogers RM, Dauber JH. Augmentation of rat alveolar macrophage migration by surfactant protein. Am. Rev. Respir. Dis. 135(6), 1358–1362 (1987).
  • Wright JR, Youmans DC. Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophage. Am. J. Physiol. 264(4 Pt 1), L338–L344 (1993).
  • Cai GZ, Griffin GL, Senior RM, Longmore WJ, Moxley MA. Recombinant SP-D carbohydrate recognition domain is a chemoattractant for human neutrophils. Am. J. Physiol. 276(1 Pt 1), L131–L136 (1999).
  • Schwartz LW, Christman CA. Alveolar macrophage migration. Influence of lung lining material and acute lung insult. Am. Rev. Respir. Dis. 120(2), 429–439 (1979).
  • Zeligs BJ, Nerurkar LS, Bellanti JA. Chemotactic and candidacidal responses of rabbit alveolar macrophages during postnatal development and the modulating roles of surfactant in these responses. Infect. Immun. 44(2), 379–385 (1984).
  • Sun Y, Wang YQ, Yang R et al. Exogenous porcine surfactants increase the infiltration of leukocytes in the lung of rats. Pulm. Pharmacol. Ther. 22(3), 253–259 (2009).
  • Willems CH, Urlichs F, Seidenspinner S, Kunzmann S, Speer CP, Kramer BW. Poractant alfa (Curosurf®) increases phagocytosis of apoptotic neutrophils by alveolar macrophages in vivo. Respir. Res. 13, 17 (2012).
  • Geertsma MF, Broos HR, van den Barselaar MT, Nibbering PH, van Furth R. Lung surfactant suppresses oxygen-dependent bactericidal functions of human blood monocytes by inhibiting the assembly of the NADPH oxidase. J. Immunol. 150(6), 2391–2400 (1993).
  • Ahuja A, Oh N, Chao W, Spragg RG, Smith RM. Inhibition of the human neutrophil respiratory burst by native and synthetic surfactant. Am. J. Respir. Cell Mol. Biol. 14(5), 496–503 (1996).
  • Chao W, Spragg RG, Smith RM. Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils. Attenuation of p47phox and p67phox membrane translocation as the mechanism. J. Clin. Invest. 96(6), 2654–2660 (1995).
  • Nibbering PH, van den Barselaar MT, van de Gevel JS, Leijh PC, van Furth R. Deficient intracellular killing of bacteria by murine alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 1(5), 417–422 (1989).
  • Hayakawa H, Myrvik QN, St Clair RW. Pulmonary surfactant inhibits priming of rabbit alveolar macrophage. Evidence that surfactant suppresses the oxidative burst of alveolar macrophage in infant rabbits. Am. Rev. Respir. Dis. 140(5), 1390–1397 (1989).
  • Hayakawa H, Giridhar G, Myrvik QN, Kucera L. Pulmonary surfactant phospholipids modulate priming of rabbit alveolar macrophages for oxidative responses. J. Leukoc. Biol. 51(4), 379–385 (1992).
  • Rüdiger M, von Baehr A, Haupt R, Wauer RR, Rüstow B. Preterm infants with high polyunsaturated fatty acid and plasmalogen content in tracheal aspirates develop bronchopulmonary dysplasia less often. Crit. Care Med. 28(5), 1572–1577 (2000).
  • Rüdiger M, Tölle A, Meier W, Rüstow B. Naturally derived commercial surfactants differ in composition of surfactant lipids and in surface viscosity. Am. J. Physiol. Lung Cell Mol. Physiol. 288(2), L379–L383 (2005).
  • Engstrom PC, Holm BA, Matalon S. Surfactant replacement attenuates the increase in alveolar permeability in hyperoxia. J. Appl. Physiol. 67(2), 688–693 (1989).
  • Loewen GM, Holm BA, Milanowski L, Wild LM, Notter RH, Matalon S. Alveolar hyperoxic injury in rabbits receiving exogenous surfactant. J. Appl. Physiol. 66(3), 1087–1092 (1989).
  • Matalon S, Holm BA, Loewen GM, Baker RR, Notter RH. Sublethal hyperoxic injury to the alveolar epithelium and the pulmonary surfactant system. Exp. Lung Res. 14(Suppl.), 1021–1033 (1988).
  • Matalon S, Holm BA, Notter RH. Mitigation of pulmonary hyperoxic injury by administration of exogenous surfactant. J. Appl. Physiol. 62(2), 756–761 (1987).
  • Ghio AJ, Fracica PJ, Young SL, Piantadosi CA. Synthetic surfactant scavenges oxidants and protects against hyperoxic lung injury. J. Appl. Physiol. 77(3), 1217–1223 (1994).
  • Gaston B, Drazen JM, Loscalzo J, Stamler JS. The biology of nitrogen oxides in the airways. Am. J. Respir. Crit. Care Med. 149(2 Pt 1), 538–551 (1994).
  • Miles PR, Bowman L, Rao KM, Baatz JE, Huffman L. Pulmonary surfactant inhibits LPS-induced nitric oxide production by alveolar macrophages. Am. J. Physiol. 276(1 Pt 1), L186–L196 (1999).
  • Dani C, Buonocore G, Longini M et al. Superoxide dismutase and catalase activity in naturally derived commercial surfactants. Pediatr. Pulmonol. 44(11), 1125–1131 (2009).
  • Schröder A, Herting E, Speer CP. Superoxide dismutase and catalase activity in tracheobronchial secretions after surfactant treatment of newborn infants with respiratory distress syndrome. Z. Geburtshilfe Neonatol. 203(5), 201–206 (1999).
  • Walti H, Nicolas-Robin A, Assous MV, Polla BS, Bachelet M, Davis JM. Effects of exogenous surfactant and recombinant human copper-zinc superoxide dismutase on oxygen-dependent antimicrobial defenses. Biol. Neonate 82(2), 96–102 (2002).
  • Dizdar EA, Uras N, Oguz S et al. Total antioxidant capacity and total oxidant status after surfactant treatment in preterm infants with respiratory distress syndrome. Ann. Clin. Biochem. 48(Pt 5), 462–467 (2011).
  • Catanzaro A, Richman P, Batcher S, Hallman M. Immunomodulation by pulmonary surfactant. J. Lab. Clin. Med. 112(6), 727–734 (1988).
  • Roth MD, Pinto M, Golub SH, Shau H. Pulmonary surfactant inhibits interleukin-2-induced proliferation and the generation of lymphokine-activated killer cells. Am. J. Respir. Cell Mol. Biol. 9(6), 652–658 (1993).
  • Woerndle S, Bartmann P. The effect of three surfactant preparations on in vitro lymphocyte functions. J. Perinat. Med. 22(2), 119–128 (1994).
  • Ansfield MJ, Kaltreider HB, Benson BJ, Caldwell JL. Immunosuppressive activity of canine pulmonary surface active material. J. Immunol. 122(3), 1062–1066 (1979).
  • Ansfield MJ, Kaltreider HB, Benson BJ, Shalaby MR. Canine surface active material and pulmonary lymphocyte function. Studies with mixed-lymphocyte culture. Exp. Lung Res. 1(1), 3–11 (1980).
  • Ansfield MJ, Benson BJ. Identification of the immunosuppressive components of canine pulmonary surface active material. J. Immunol. 125(3), 1093–1098 (1980).
  • Bartmann P, Gortner L, Pohlandt F, Jaeger H. In vitro lymphocyte functions in the presence of bovine surfactant and its phospholipid fractions. J. Perinat. Med. 20(3), 189–196 (1992).
  • Bartmann P, Bamberger U, Pohlandt F, Gortner L. Immunogenicity and immunomodulatory activity of bovine surfactant (SF-RI 1). Acta Paediatr. 81(5), 383–388 (1992).
  • Wilsher ML, Hughes DA, Haslam PL. Immunoregulatory properties of pulmonary surfactant: effect of lung lining fluid on proliferation of human blood lymphocytes. Thorax 43(5), 354–359 (1988).
  • Shimizu M, Vayuvegula B, Ellis M, Gluck L, Gupta S. Regulation of immune functions by human surfactant. Ann. Allergy 61(6), 459–462 (1988).
  • Kremlev SG, Umstead TM, Phelps DS. Effects of surfactant protein A and surfactant lipids on lymphocyte proliferation in vitro. Am. J. Physiol. 267(4 Pt 1), L357–L364 (1994).
  • Wilsher ML, Hughes DA, Haslam PL. Immunoregulatory properties of pulmonary surfactant: influence of variations in the phospholipid profile. Clin. Exp. Immunol. 73(1), 117–122 (1988).
  • Sitrin RG, Ansfield MJ, Kaltreider HB. The effect of pulmonary surface-active material on the generation and expression of murine B- and T-lymphocyte effector functions in vitro. Exp. Lung Res. 9(1–2), 85–97 (1985).
  • Richman PS, Batcher S, Catanzaro A. Pulmonary surfactant suppresses the immune lung injury response to inhaled antigen in guinea pigs. J. Lab. Clin. Med. 116(1), 18–26 (1990).
  • Wilsher ML, Hughes DA, Haslam PL. Immunomodulatory effects of pulmonary surfactant on natural killer cell and antibody-dependent cytotoxicity. Clin. Exp. Immunol. 74(3), 465–470 (1988).
  • Bersani I, Speer CP, Kunzmann S. Surfactant proteins A and D in pulmonary diseases of preterm infants. Expert Rev. Anti. Infect. Ther. 10(5), 573–584 (2012).
  • Akei H, Whitsett JA, Buroker M et al. Surface tension influences cell shape and phagocytosis in alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 291(4), L572–L579 (2006).
  • Epaud R, Ikegami M, Whitsett JA, Jobe AH, Weaver TE, Akinbi HT. Surfactant protein B inhibits endotoxin-induced lung inflammation. Am. J. Respir. Cell Mol. Biol. 28(3), 373–378 (2003).
  • Ikegami M, Whitsett JA, Martis PC, Weaver TE. Reversibility of lung inflammation caused by SP-B deficiency. Am. J. Physiol. Lung Cell Mol. Physiol. 289(6), L962–L970 (2005).
  • Augusto L, Le Blay K, Auger G, Blanot D, Chaby R. Interaction of bacterial lipopolysaccharide with mouse surfactant protein C inserted into lipid vesicles. Am. J. Physiol. Lung Cell Mol. Physiol. 281(4), L776–L785 (2001).
  • Augusto LA, Li J, Synguelakis M, Johansson J, Chaby R. Structural basis for interactions between lung surfactant protein C and bacterial lipopolysaccharide. J. Biol. Chem. 277(26), 23484–23492 (2002).
  • Augusto LA, Synguelakis M, Johansson J, Pedron T, Girard R, Chaby R. Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide. Infect. Immun. 71(1), 61–67 (2003).
  • Augusto LA, Synguelakis M, Espinassous Q, Lepoivre M, Johansson J, Chaby R. Cellular antiendotoxin activities of lung surfactant protein C in lipid vesicles. Am. J. Respir. Crit. Care Med. 168(3), 335–341 (2003).
  • Garcia-Verdugo I, Garcia de Paco E, Espinassous Q et al. Synthetic peptides representing the N-terminal segment of surfactant protein C modulate LPS-stimulated TNF-α production by macrophages. Innate Immun. 15(1), 53–62 (2009).
  • Hallman M, Merritt TA, Akino T, Bry K. Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid. Correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants. Am. Rev. Respir. Dis. 144(6), 1376–1384 (1991).
  • Beresford MW, Shaw NJ. Bronchoalveolar lavage surfactant protein a, B, and d concentrations in preterm infants ventilated for respiratory distress syndrome receiving natural and synthetic surfactants. Pediatr. Res. 53(4), 663–670 (2003).
  • Bae YM, Bae CW, Oh MH, Lee SH, Woo KM, Jung KB. Effect of exogenous surfactant therapy on levels of pulmonary surfactant proteins A and D in preterm infants with respiratory distress syndrome. J. Perinat. Med. 37(5), 561–564 (2009).
  • Thomassen MJ, Antal JM, Barna BP, Divis LT, Meeker DP, Wiedemann HP. Surfactant downregulates synthesis of DNA and inflammatory mediators in normal human lung fibroblasts. Am. J. Physiol. 270(1 Pt 1), L159–L163 (1996).
  • Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SK. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J. Lipid Res. 51(2), 334–344 (2010).
  • Zhu Y, Miller TL, Chidekel A, Shaffer TH. KL4-surfactant (Lucinactant) protects human airway epithelium from hyperoxia. Pediatr. Res. 64(2), 154–158 (2008).
  • Godfrey RW. Human airway epithelial tight junctions. Microsc. Res. Tech. 38(5), 488–499 (1997).
  • Wemhöner A, Jennings P, Haller T, Rüdiger M, Simbruner G. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells. BMC Pulm. Med. 11, 11 (2011).
  • Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial growth factor in acute and resolving lung injury. Am. J. Respir. Crit. Care Med. 166(10), 1332–1337 (2002).
  • Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 164(10 Pt 1), 1971–1980 (2001).
  • Mittal N, Sanyal SN. Exogenous surfactant protects against endotoxin induced acute respiratory distress syndrome in rodents via vascular endothelial growth factor. Pathol. Res. Pract. 207(5), 279–284 (2011).
  • Monick MM, Hunninghake GW. Second messenger pathways in pulmonary host defense. Annu. Rev. Physiol. 65, 643–667 (2003).
  • Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).
  • Hashimoto M, Asai Y, Ogawa T. Treponemal phospholipids inhibit innate immune responses induced by pathogen-associated molecular patterns. J. Biol. Chem. 278(45), 44205–44213 (2003).
  • Kandasamy P, Zarini S, Chan ED, Leslie CC, Murphy RC, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits Mycoplasma pneumoniae-stimulated eicosanoid production from human and mouse macrophages. J. Biol. Chem. 286(10), 7841–7853 (2011).
  • Nguyen HA, Rajaram MV, Meyer DA, Schlesinger LS. Pulmonary surfactant protein A and surfactant lipids upregulate IRAK-M, a negative regulator of TLR-mediated inflammation in human macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 303(7), L608–L616 (2012).
  • Carter AB, Monick MM, Hunninghake GW. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am. J. Respir. Cell Mol. Biol. 20(4), 751–758 (1999).
  • West MA, Clair L, Bellingham J. Role of calcium in lipopolysaccharide-stimulated tumor necrosis factor and interleukin-1 signal transduction in naive and endotoxin-tolerant murine macrophages. J. Trauma 41(4), 647–652 (1996).
  • Castro R, Sun XH, Liu XB, Martinez JR, Zhang GH. Inhibition of Ca2+ influx by surfactant in NR8383 alveolar macrophages. Inflamm. Res. 57(10), 489–496 (2008).
  • Korchak HM, Vienne K, Rutherford LE, Weissmann G. Neutrophil stimulation: receptor, membrane, and metabolic events. Fed. Proc. 43(12), 2749–2754 (1984).
  • Krause KH, Campbell KP, Welsh MJ, Lew DP. The calcium signal and neutrophil activation. Clin. Biochem. 23(2), 159–166 (1990).
  • Pinot F, Walti H, Haagsman HP, Polla BS, Bachelet M. Curosurf modulates cAMP accumulation in human monocytes through a membrane-controlled mechanism. Am. J. Physiol. Lung Cell Mol. Physiol. 278(1), L99–L104 (2000).
  • Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-γ as a regulator of lung inflammation and repair. Proc. Am. Thorac. Soc. 2(3), 226–231 (2005).
  • Mittal N, Sanyal SN. Effect of exogenous surfactant on phosphatidylinositol 3-kinase-Akt pathway and peroxisome proliferator activated receptor-γ during endotoxin induced acute respiratory distress syndrome. Mol. Cell Biochem. 361(1–2), 135–141 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.