90
Views
29
CrossRef citations to date
0
Altmetric
Review

Candida parapsilosis and the neonate: epidemiology, virulence and host defense in a unique patient setting

, &
Pages 935-946 | Published online: 10 Jan 2014

References

  • Benjamin DK Jr, Stoll BJ, Fanaroff AA et al.; National Institute of Child Health and Human Development Neonatal Research Network. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 117(1), 84–92 (2006).
  • Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 21(4), 606–625 (2008).
  • van Asbeck EC, Clemons KV, Stevens DA. Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit. Rev. Microbiol. 35(4), 283–309 (2009).
  • Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol. 43(1), 284–292 (2005).
  • Gomez-Lopez A, Alastruey-Izquierdo A, Rodriguez D et al.; Barcelona Candidemia Project Study Group. Prevalence and susceptibility profile of Candida metapsilosis and Candida orthopsilosis: results from population-based surveillance of candidemia in Spain. Antimicrob. Agents Chemother. 52(4), 1506–1509 (2008).
  • Lockhart SR, Messer SA, Pfaller MA, Diekema DJ. Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis. J. Clin. Microbiol. 46(8), 2659–2664 (2008).
  • Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int. J. Infect. Dis. 14(11), e954–e966 (2010).
  • Singhi S, Rao DS, Chakrabarti A. Candida colonization and candidemia in a pediatric intensive care unit. Pediatr. Crit. Care Med. 9(1), 91–95 (2008).
  • Parm U, Metsvaht T, Sepp E et al. Risk factors associated with gut and nasopharyngeal colonization by common Gram-negative species and yeasts in neonatal intensive care units patients. Early Hum. Dev. 87(6), 391–399 (2011).
  • el-Mohandes AE, Johnson-Robbins L, Keiser JF, Simmens SJ, Aure MV. Incidence of Candida parapsilosis colonization in an intensive care nursery population and its association with invasive fungal disease. Pediatr. Infect. Dis. J. 13(6), 520–524 (1994).
  • Gagneur A, Sizun J, Vernotte E et al. Lowrate of Candida parapsilosis-related colonization and infection in hospitalized preterm infants: a one-year prospective study. J. Hosp. Infect. 48(3), 193–197 (2001).
  • Hernández-Castro R, Arroyo-Escalante S, Carrillo-Casas EM et al. Outbreak of Candida parapsilosis in a neonatal intensive care unit: a health care workers source. Eur. J. Pediatr. 169(7), 783–787 (2010).
  • van Asbeck EC, Huang YC, Markham AN, Clemons KV, Stevens DA. Candida parapsilosis fungemia in neonates: genotyping results suggest healthcare workers hands as source, and review of published studies. Mycopathologia 164(6), 287–293 (2007).
  • Huang YC, Su LH, Wu TL, Lin TY. Genotyping analysis of colonizing candidal isolates from very-low-birthweight infants in a neonatal intensive care unit. J. Hosp. Infect. 58(3), 200–203 (2004).
  • Bliss JM, Basavegowda KP, Watson WJ, Sheikh AU, Ryan RM. Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. Pediatr. Infect. Dis. J. 27(3), 231–235 (2008).
  • Carter JE, Laurini JA, Evans TN, Estrada B. Neonatal Candida parapsilosis meningitis and empyema related to epidural migration of a central venous catheter. Clin. Neurol. Neurosurg. 110(6), 614–618 (2008).
  • Huang YC, Lin TY, Lien RI et al. Candidaemia in special care nurseries: comparison of albicans and parapsilosis infection. J. Infect. 40(2), 171–175 (2000).
  • Clerihew L, Lamagni TL, Brocklehurst P, McGuire W. Candida parapsilosis infection in very low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 92(2), F127–F129 (2007).
  • Faix RG. Invasive neonatal candidiasis: comparison of albicans and parapsilosis infection. Pediatr. Infect. Dis. J. 11(2), 88–93 (1992).
  • Levy I, Rubin LG, Vasishtha S, Tucci V, Sood SK. Emergence of Candida parapsilosis as the predominant species causing candidemia in children. Clin. Infect. Dis. 26(5), 1086–1088 (1998).
  • Chow JK, Golan Y, Ruthazer R et al. Factors associated with candidemia caused by non-albicans Candida species versus Candida albicans in the intensive care unit. Clin. Infect. Dis. 46(8), 1206–1213 (2008).
  • Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009). Diagn. Microbiol. Infect. Dis. 68(3), 278–283 (2010).
  • Xess I, Jain N, Hasan F, Mandal P, Banerjee U. Epidemiology of candidemia in a tertiary care centre of north India: 5-year study. Infection 35(4), 256–259 (2007).
  • Fridkin SK, Kaufman D, Edwards JR, Shetty S, Horan T. Changing incidence of Candida bloodstream infections among NICU patients in the United States: 1995-2004. Pediatrics 117(5), 1680–1687 (2006).
  • Clerihew L, Lamagni TL, Brocklehurst P, McGuire W. Invasive fungal infection in very low birthweight infants: national prospective surveillance study. Arch. Dis. Child. Fetal Neonatal Ed. 91(3), F188–F192 (2006).
  • Neu N, Malik M, Lunding A et al. Epidemiology of candidemia at a children’s hospital, 2002 to 2006. Pediatr. Infect. Dis. J. 28(9), 806–809 (2009).
  • Rodriguez D, Almirante B, Park BJ et al.; Barcelona Candidemia Project Study Group. Candidemia in neonatal intensive care units: Barcelona, Spain. Pediatr. Infect. Dis. J. 25(3), 224–229 (2006).
  • Clerihew L, Austin N, McGuire W. Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants. Cochrane Database Syst. Rev. (4), CD003850 (2007).
  • Aydemir C, Oguz SS, Dizdar EA et al. Randomised controlled trial of prophylactic fluconazole versus nystatin for the prevention of fungal colonisation and invasive fungal infection in very low birth weight infants. Arch. Dis. Child. Fetal Neonatal Ed. 96(3), F164–F168 (2011).
  • Austin N, Darlow BA, McGuire W. Prophylactic oral/topical non-absorbed antifungal agents to prevent invasive fungal infection in very low birth weight infants. Cochrane Database Syst. Rev. (4), CD003478 (2009).
  • Manzoni P, Leonessa M, Galletto P et al. Routine use of fluconazole prophylaxis in a neonatal intensive care unit does not select natively fluconazole-resistant Candida subspecies. Pediatr. Infect. Dis. J. 27(8), 731–737 (2008).
  • Poikonen E, Lyytikäinen O, Anttila VJ et al. Secular trend in candidemia and the use of fluconazole in Finland, 2004-2007. BMC Infect. Dis. 10, 312 (2010).
  • Sarvikivi E, Lyytikäinen O, Soll DR et al. Emergence of fluconazole resistance in a Candida parapsilosis strain that caused infections in a neonatal intensive care unit. J.Clin. Microbiol. 43(6), 2729–2735 (2005).
  • Kaufman D, Boyle R, Hazen KC, Patrie JT, Robinson M, Donowitz LG. Fluconazole prophylaxis against fungal colonization and infection in preterm infants. N. Engl. J. Med. 345(23), 1660–1666 (2001).
  • Mann PA, McNicholas PM, Chau AS et al. Impact of antifungal prophylaxis on colonization and azole susceptibility of Candida species. Antimicrob. Agents Chemother. 53(12), 5026–5034 (2009).
  • Yoder BA, Sutton DA, Winter V, Coalson JJ. Resistant Candida parapsilosis associated with long term fluconazole prophylaxis in an animal model. Pediatr. Infect. Dis. J. 23(7), 687–688 (2004).
  • Manzoni P, Stolfi I, Messner H et al.; Italian Task Force for the Study and Prevention of Neonatal Fungal Infections–the Italian Society of Neonatology. Bovine lactoferrin prevents invasive fungal infections in very low birth weight infants: a randomized controlled trial. Pediatrics 129(1), 116–123 (2012).
  • Pappas PG, Kauffman CA, Andes D et al.; Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 48(5), 503–535 (2009).
  • Testoni D, Smith PB, Benjamin DK Jr. The use of antifungal therapy in neonatal intensive care. Clin. Perinatol. 39(1), 83–98 (2012).
  • Yalaz M, Akisu M, Hilmioglu S, Calkavur S, Cakmak B, Kultursay N. Successful caspofungin treatment of multidrug resistant Candida parapsilosis septicaemia in an extremely low birth weight neonate. Mycoses 49(3), 242–245 (2006).
  • Odio CM, Araya R, Pinto LE et al. Caspofungin therapy of neonates with invasive candidiasis. Pediatr. Infect. Dis. J. 23(12), 1093–1097 (2004).
  • González GM, Elizondo M, Ayala J. Trends in species distribution and susceptibility of bloodstream isolates of Candida collected in Monterrey, Mexico, to seven antifungal agents: results of a 3-year (2004 to 2007) surveillance study. J.Clin. Microbiol. 46(9), 2902–2905 (2008).
  • Zaoutis TE, Foraker E, McGowan KL et al. Antifungal susceptibility of Candida spp. isolated from pediatric patients: a survey of 4 children’s hospitals. Diagn. Microbiol. Infect. Dis. 52(4), 295–298 (2005).
  • Moudgal V, Little T, Boikov D, Vazquez JA. Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob. Agents Chemother. 49(2), 767–769 (2005).
  • Ghannoum MA, Chen A, Buhari M et al. Differential in vitro activity of anidulafungin, caspofungin and micafungin against Candida parapsilosis isolates recovered from a burn unit. Clin. Microbiol. Infect. 15(3), 274–279 (2009).
  • Pfaller MA, Boyken L, Hollis RJ et al. Invitro susceptibility of invasive isolates ofCandida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J. Clin. Microbiol. 46(1), 150–156 (2008).
  • Pfaller M, Boyken L, Hollis R et al. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Candida species to anidulafungin, caspofungin, and micafungin. J. Clin. Microbiol. 49(2), 624–629 (2011).
  • Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9(6), 588–594 (2006).
  • Giovanna P, Dimitrios P, Giovanni DD, Fabio R, Rosaria CM. Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm. FEMS Yeast Res. 12(4), 430–438 (2012).
  • Tumbarello M, Posteraro B, Trecarichi EM et al. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J. Clin. Microbiol. 45(6), 1843–1850 (2007).
  • Katragkou A, Chatzimoschou A, Simitsopoulou M, Georgiadou E, Roilides E. Additive antifungal activity of anidulafungin and human neutrophils against Candida parapsilosis biofilms. J. Antimicrob. Chemother. 66(3), 588–591 (2011).
  • Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med. Mycol. 47(7), 681–689 (2009).
  • Laffey SF, Butler G. Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology (Reading, Engl.) 151(Pt 4), 1073–1081 (2005).
  • Kim SK, El Bissati K, Ben Mamoun C. Amino acids mediate colony and cell differentiation in the fungal pathogen Candida parapsilosis. Microbiology (Reading, Engl.) 152(Pt 10), 2885–2894 (2006).
  • Nosek J, Holesova Z, Kosa P, Gacser A, Tomaska L. Biology and genetics of the pathogenic yeast Candida parapsilosis. Curr. Genet. 55(5), 497–509 (2009).
  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 19(5), 241–247 (2011).
  • Gácser A, Schäfer W, Nosanchuk JS, Salomon S, Nosanchuk JD. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet. Biol. 44(12), 1336–1341 (2007).
  • Silva S, Henriques M, Oliveira R et al. Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium. Eur. J. Oral Sci. 117(6), 669–675 (2009).
  • Bramono K, Yamazaki M, Tsuboi R, Ogawa H. Comparison of proteinase, lipase and alpha-glucosidase activities from the clinical isolates of Candida species. Jpn. J. Infect. Dis. 59(2), 73–76 (2006).
  • D’Eça Júnior A, Silva AF, Rosa FC, Monteiro SG, de Maria Silva Figueiredo P, de Andrade Monteiro C. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida. Rev. Soc.Bras. Med. Trop. 44(3), 334–338 (2011).
  • Issa SY, Badran EF, Aqel KF, Shehabi AA. Epidemiological characteristics of Candida species colonizing oral and rectal sites of Jordanian infants. BMC Pediatr. 11, 79 (2011).
  • Horváth P, Nosanchuk JD, Hamari Z, Vágvölgyi C, Gácser A. The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J. Infect. Dis. 205(6), 923–933 (2012).
  • Hrusková-Heidingsfeldová O, Dostál J, Majer F, Havlíkova J, Hradilek M, Pichová I. Two aspartic proteinases secreted by the pathogenic yeast Candida parapsilosis differ in expression pattern and catalytic properties. Biol. Chem. 390(3), 259–268 (2009).
  • Dagdeviren M, Cerikcioglu N, Karavus M. Acid proteinase, phospholipase and adherence properties of Candida parapsilosis strains isolated from clinical specimens of hospitalised patients. Mycoses 48(5), 321–326 (2005).
  • França EJ, Furlaneto-Maia L, Quesada RM, Favero D, Oliveira MT, Furlaneto MC. Haemolytic and proteinase activities in clinical isolates of Candida parapsilosis and Candida tropicalis with reference to the isolation anatomic site. Mycoses 54(4), e44–e51 (2011).
  • Agatensi L, Franchi F, Mondello F et al. Vaginopathic and proteolytic Candida species in outpatients attending a gynaecology clinic. J. Clin. Pathol. 44(10), 826–830 (1991).
  • De Bernardis F, Mondello F, San Millàn R, Pontòn J, Cassone A. Biotyping and virulence properties of skin isolates of Candida parapsilosis. J. Clin. Microbiol. 37(11), 3481–3486 (1999).
  • Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect. Immun. 70(2), 878–888 (2002).
  • Gokce G, Cerikcioglu N, Yagci A. Acid proteinase, phospholipase, and biofilm production of Candida species isolated from blood cultures. Mycopathologia 164(6), 265–269 (2007).
  • Marcos-Arias C, Eraso E, Madariaga L, Quindós G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement. Altern. Med. 11, 119 (2011).
  • Matsumoto FE, Gandra RF, Ruiz LS et al. Yeasts isolated from blood and catheter in children from a public hospital of São Paulo, Brazil. Mycopathologia 154(2), 63–69 (2002).
  • Gácser A, Trofa D, Schäfer W, Nosanchuk JD. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J. Clin. Invest. 117(10), 3049–3058 (2007).
  • Trofa D, Soghier L, Long C, Nosanchuk JD, Gacser A, Goldman DL. A rat model of neonatal candidiasis demonstrates the importance of lipases as virulence factors for Candida albicans and Candida parapsilosis. Mycopathologia 172(3), 169–178 (2011).
  • Nagy I, Filkor K, Németh T, Hamari Z, Vágvölgyi C, Gácser A. In vitro interactions of Candida parapsilosis wild type and lipase deficient mutants with human monocyte derived dendritic cells. BMC Microbiol. 11, 122 (2011).
  • Seneviratne CJ, Wong SS, Yuen KY et al. Antifungal susceptibility and virulence attributes of bloodstream isolates of Candida from Hong Kong and Finland. Mycopathologia 172(5), 389–395 (2011).
  • Nguyen LN, Trofa D, Nosanchuk JD. Fatty acid synthase impacts the pathobiology of Candida parapsilosis invitro and during mammalian infection. PLoS ONE 4(12), e8421 (2009).
  • Nguyen LN, Nosanchuk JD. Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase Ole1. Cell Cycle 10(18), 3159–3167 (2011).
  • Nguyen LN, Hamari Z, Kadereit B et al. Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microbes Infect. 13(7), 663–672 (2011).
  • Netea MG, Maródi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol. 31(9), 346–353 (2010).
  • Dutta A, Palazzi DL. Candida non-albicans versus Candida albicans fungemia in the non-neonatal pediatric population. Pediatr. Infect. Dis. J. 30(8), 664–668 (2011).
  • Mahieu LM, Van Gasse N, Wildemeersch D, Jansens H, Ieven M. Number of sites of perinatal Candida colonization and neutropenia are associated with nosocomial candidemia in the neonatal intensive care unit patient. Pediatr. Crit. Care Med. 11(2), 240–245 (2010).
  • Linden JR, Maccani MA, Laforce-Nesbitt SS, Bliss JM. High efficiency opsonin-independent phagocytosis of Candida parapsilosis by human neutrophils. Med.Mycol. 48(2), 355–364 (2010).
  • Destin KG, Linden JR, Laforce-Nesbitt SS, Bliss JM. Oxidative burst and phagocytosis of neonatal neutrophils confronting Candida albicans and Candida parapsilosis. Early Hum. Dev. 85(8), 531–535 (2009).
  • Kennedy AD, Willment JA, Dorward DW, Williams DL, Brown GD, DeLeo FR. Dectin-1 promotes fungicidal activity of human neutrophils. Eur. J. Immunol. 37(2), 467–478 (2007).
  • Li X, Utomo A, Cullere X et al. The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 10(6), 603–615 (2011).
  • van Bruggen R, Drewniak A, Jansen M et al. Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for beta-glucan-bearing particles. Mol. Immunol. 47(2–3), 575–581 (2009).
  • van Bruggen R, Zweers D, van Diepen A et al. Complement receptor 3 and Toll-like receptor 4 act sequentially in uptake and intracellular killing of unopsonized Salmonella enterica serovar Typhimurium by human neutrophils. Infect. Immun. 75(6), 2655–2660 (2007).
  • Demmert M, Faust K, Bohlmann MK et al. Galectin-3 in cord blood of term and preterm infants. Clin. Exp. Immunol. 167(2), 246–251 (2012).
  • Gow NA, Netea MG, Munro CA et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J. Infect. Dis. 196(10), 1565–1571 (2007).
  • Nguyen LN, Gacser A, Nosanchuk JD. The stearoyl-coenzyme A desaturase 1 is essential for virulence and membrane stressin Candida parapsilosis through unsaturated fatty acid production. Infect. Immun. 79(1), 136–145 (2011).
  • d’Ostiani CF, Del Sero G, Bacci A et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191(10), 1661–1674 (2000).
  • Rizzetto L, Kuka M, De Filippo C et al. Differential IL-17 production and mannan recognition contribute to fungal pathogenicity and commensalism. J.Immunol. 184(8), 4258–4268 (2010).
  • Robinson MJ, Osorio F, Rosas M et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206(9), 2037–2051 (2009).
  • Saijo S, Ikeda S, Yamabe K et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32(5), 681–691 (2010).
  • Neumann AK, Jacobson K. A novel pseudopodial component of the dendritic cell anti-fungal response: the fungipod. PLoS Pathog. 6(2), e1000760 (2010).
  • Lima-Neto RG, Beltrão EI, Oliveira PC, Neves RP. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates. Mycoses 54(1), 23–29 (2011).
  • Moyes DL, Runglall M, Murciano C et al. Abiphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8(3), 225–235 (2010).
  • Moyes DL, Murciano C, Runglall M, Kohli A, Islam A, Naglik JR. Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Med. Microbiol. Immunol. 201(1), 93–101 (2012).
  • Bahri R, Curt S, Saidane-Mosbahi D, Rouabhia M. Normal human gingival epithelial cells sense C.parapsilosis by toll-like receptors and module its pathogenesis through antimicrobial peptides and proinflammatory cytokines. Mediators Inflamm. 2010, 940383 (2010).
  • Phan QT, Fratti RA, Prasadarao NV, Edwards JE Jr, Filler SG. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J. Biol. Chem. 280(11), 10455–10461 (2005).
  • Phan QT, Myers CL, Fu Y et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5(3), e64 (2007).
  • Sun JN, Solis NV, Phan QT et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 6(11), e1001181 (2010).
  • Liu Y, Mittal R, Solis NV, Prasadarao NV, Filler SG. Mechanisms of Candida albicans trafficking to the brain. PLoS Pathog. 7(10), e1002305 (2011).
  • Saiman L, Ludington E, Pfaller M et al. Risk factors for candidemia in neonatal intensive care unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr. Infect. Dis. J. 19(4), 319–324 (2000).
  • Shetty SS, Harrison LH, Hajjeh RA et al. Determining risk factors for candidemia among newborn infants from population-based surveillance: Baltimore, Maryland, 1998–2000. Pediatr. Infect. Dis. J. 24(7), 601–604 (2005).
  • Benjamin DK Jr, DeLong ER, Steinbach WJ, Cotton CM, Walsh TJ, Clark RH. Empirical therapy for neonatal candidemia in very low birth weight infants. Pediatrics 112(3 Pt 1), 543–547 (2003).
  • Huang YC, Li CC, Lin TY et al. Association of fungal colonization and invasive disease in very low birth weight infants. Pediatr. Infect. Dis. J. 17(9), 819–822 (1998).
  • Pera A, Byun A, Gribar S, Schwartz R, Kumar D, Parimi P. Dexamethasone therapy and Candida sepsis in neonates less than 1250 grams. J. Perinatol. 22(3), 204–208 (2002).
  • Benjamin DK Jr, Ross K, McKinney RE Jr, Benjamin DK, Auten R, Fisher RG. When to suspect fungal infection in neonates: Aclinical comparison of Candida albicans and Candida parapsilosis fungemia with coagulase-negative staphylococcal bacteremia. Pediatrics 106(4), 712–718 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.