39
Views
1
CrossRef citations to date
0
Altmetric
Review

Clinical implications of molecular markers in follicular cell-derived thyroid cancer

, &
Pages 679-694 | Published online: 09 Jan 2014

References

  • Figge J. Epidemiology of thyroid cancer. In: Thyroid Cancer: A Comprehensive Guide to Clinical Management. Wartofsky L (Ed.). Humana Press, NJ, USA, 77–83 (1999).
  • DeLellis RA, Lloyd RV, Heitz PU, Eng C (Eds.). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs. IARCPress, Lyon, France, 49–80 (2004).
  • Sherman SI. Thyroid carcinoma. Lancet361, 501–511 (2003).
  • Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the US, 1985–1995. Cancer83, 2638–2648 (1998).
  • Al-Brahim N, Asa SL. Papillary thyroid carcinoma: an overview. Arch. Pathol. Lab. Med.130, 1057–1062 (2006).
  • Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd RV. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behaviour. Am. J. Surg. Pathol.25, 1478–1484 (2001).
  • Gilliland FD, Hunt WC, Morris DM, Key CR. Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991. Cancer79, 564–573 (1997).
  • Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer6, 292–306 (2006).
  • Wiseman SM, Loree TR, Rigual NR et al. Anaplastic transformation of thyroid cancer: review of clinical, pathologic, and molecular evidence provides new insights into disease biology and future therapy. Head Neck25, 662–670 (2003).
  • Hunt JL, Tometsko M, LiVolsi VA, Swalsky P, Finkelstein SD, Barnes EL. Molecular evidence of anaplastic transformation in coexisting well-differentiated and anaplastic carcinomas of the thyroid. Am. J. Surg. Pathol.27, 1559–1564 (2003).
  • Wreesmann VB, Ghossein RA, Patel SG et al. Genome-wide appraisal of thyroid cancer progression. Am. J. Pathol.161, 1549–1556 (2002).
  • Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr. Relat. Cancer14, 957–977 (2007).
  • Diehl S, Umbricht CB, Dackiw AP, Zeiger MA. Modern approaches to age-old questions about thyroid tumors. Thyroid15, 575–582 (2005).
  • Prasad NB, Somervell H, Tufano RP et al. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin. Cancer Res.14, 3327–3337 (2008).
  • Lloyd RV, Erickson LA, Casey MB et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am. J. Surg. Pathol.28, 1336–1340 (2004).
  • Tanoue T, Nishida E. Molecular recognitions in the MAP kinase cascades. Cell Signal.15, 455–462 (2003).
  • Kroll TG. Molecular events in follicular thyroid tumors. Cancer Treat. Res.122, 85–105 (2004).
  • Hunt J. Understanding the genotype of follicular thyroid tumors. Endocr. Pathol.16, 311–321 (2005).
  • Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J.351, 289–305 (2000).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002).
  • Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta1653, 25–40 (2003).
  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signalling pathway in papillary thyroid carcinoma. Cancer Res.63, 1454–1457 (2003).
  • Soares P, Trovisco V, Rocha AS et al.BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene22, 4578–4580 (2003).
  • Namba H, Nakashima M, Hayashi T et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab.88, 4393–4397 (2003).
  • Nikiforova MN, Kimura ET, Gandhi M et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab.88, 5399–5404 (2003).
  • Cohen Y, Xing M, Mambo E et al.BRAF mutation in papillary thyroid carcinoma. J. Natl. Cancer Inst.95, 625–627 (2003).
  • Adeniran AJ, Zhu Z, Gandhi M et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am. J. Surg. Pathol.30, 216–222 (2006).
  • Trovisco V, Vieira de Castro I, Soares P et al.BRAF mutations are associated with some histological types of papillary thyroid carcinomas. J. Pathol.202, 247–251 (2004).
  • Trovisco V, Soares P, Preto A et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with the tumour aggressiveness. Virchows Arch.446, 589–595 (2005).
  • Fusco A, Grieco M, Santoro M et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature328, 170–172 (1987).
  • Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J. Clin. Endocrinol. Metab.83, 4116–4122 (1998).
  • Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr. Pathol.13, 3–16 (2002).
  • Santoro M, Carlomagno F, Hay ID et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J. Clin. Invest.89, 1517–1522 (1992).
  • Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The RET/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J. Clin. Endocrinol. Metab.85, 1170–1175 (2000).
  • Tallini G, Santoro M, Helie M et al.RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin. Cancer Res.4, 287–294 (1998).
  • Basolo F, Giannini R, Monaco C et al. Potent mitogenicity of the RET/PTC oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am. J. Pathol.160, 247–254 (2002).
  • Thomas GA, Bunnell H, Cook HA et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J. Clin. Endocrinol. Metab.84, 4232–4238 (1999).
  • Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer3, 459–465 (2003).
  • Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab.88, 2745–2752 (2003).
  • Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An usually high prevalence of ras mutations. Am. J. Clin. Pathol.120, 71–77 (2003).
  • Di Cristofaro J, Marcy M, Vasko V et al. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum. Pathol.37, 824–830 (2006).
  • Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol. Endocrinol.4, 1474–1479 (1990).
  • Sedliarou I, Saenko V, Lantsov D et al. The BRAF1796A transversion is a prevalent mutational event in human thyroid microcarcinoma. Int. J. Oncol.25, 1729–1735 (2004).
  • Santoro M, Chiappetta G, Cerrato A et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene12, 1821–1826 (1996).
  • Knauf JA, Ma X, Smith EP et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res.65, 4238–4245 (2005).
  • Garcia-Rostan G, Zhao H, Camp RL et al.Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J. Clin. Oncol.21, 3226–3235 (2003).
  • Knauf JA, Kuroda H, Basu S, Fagin JA. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene22, 4406–4412 (2003).
  • Frattini M, Ferrario C, Bressan P et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene23, 7436–7440 (2004).
  • Tallini G. Molecular pathobiology of thyroid neoplasms. Endocr. Pathol.13, 271–288 (2002).
  • Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF, Klempnauer J. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery128, 984–993 (2000).
  • Rabes HM, Demidchik EP, Sidorow JD et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res.6, 1093–1103 (2000).
  • Vasko V, Saji M, Hardy E et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J. Med. Genet.41, 161–170 (2004).
  • Garcia-Rostán G, Costa AM, Pereira-Castro I et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res.65, 10199–10207 (2005).
  • Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene18, 7860–7872 (1999).
  • Roque L, Castedo S, Clode A, Soares J. Deletion of 3p25→pter in a primary follicular thyroid carcinoma and its metastasis. Genes Chromosomes Cancer8, 199–203 (1993).
  • Kroll TG, Sarraf P, Pecciarini L et al.PAX8–PPARγ1 fusion oncogene in human thyroid carcinoma. Science289, 1357–1360 (2000).
  • Au AY, McBride C, Wilhelm KG Jr et al. PAX8-peroxisome proliferator-activated receptor gamma (PPARγ) disrupts normal PAX8 or PPARγ transcriptional function and stimulates follicular thyroid cell growth. Endocrinology147, 367–376 (2006).
  • Cheung L, Messina M, Gill A et al. Detection of the PAX8–PPARγ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.88, 354–357 (2003).
  • Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8–PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol.26, 1016–1023 (2002).
  • Marques AR, Espadinha C, Catarino AL et al. Expression of PAX8/PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.87, 3947–3952 (2002).
  • Castro P, Rebocho AP, Soares RJ et al.PAX8–PPARγ rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.91, 213–220 (2006).
  • Asa SL. My approach to oncocytic tumours of the thyroid. J. Clin. Pathol.57, 225–232 (2004).
  • Maximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simões M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology. A study with emphasis on Hürthle cell tumors. Am. J. Pathol.160, 1857–1865 (2002).
  • Yeh JJ, Lunetta KL, van Orsouw NJ et al. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene19, 2060–2066 (2000).
  • Maximo V, Botelho T, Capela J et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br. J. Cancer92, 1892–1898 (2005).
  • Pinto AE, Silva G, Banito A, Leite V, Soares J. Aneuploidy and high S-phase as biomarkers of poor clinical outcome in poorly differentiated and anaplastic thyroid carcinoma. Oncol. Rep.20, 913–919 (2008).
  • Jónasson JG, Hrafnkelsson J. Nuclear DNA analysis and prognosis in carcinoma of the thyroid gland. A nationwide study in Iceland on carcinoma diagnosed 1955–1990. Virchows Arch.425, 349–355 (1994).
  • Castro P, Eknaes M, Teixeira MR et al. Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. J. Pathol.206, 305–311 (2005).
  • Castro P, Sansonetty F, Soares P, Dias A, Sobrinho-Simões M. Fetal adenomas and minimally invasive follicular carcinomas of the thyroid frequently display a triploid or near triploid DNA pattern. Virchows Arch.438, 336–342 (2001).
  • Banito A, Pinto AE, Espadinha C, Marques AR, Leite V. Aneuploidy and RAS mutations are mutually exclusive events in the development of well-differentiated thyroid follicular tumours. Clin. Endocrinol.67, 706–711 (2007).
  • Erickson LA, Jin L, Wollan PC, Thompson GB, van Heerden J, Lloyd RV. Expression of p27kip1 and Ki-67 in benign and malignant thyroid tumors. Mod. Pathol.11, 169–174 (1998).
  • Kjellman P, Wallin G, Höög A, Auer G, Larsson C, Zedenius J. MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid13, 371–380 (2003).
  • Khoo ML, Beasley NJ, Ezzat S, Freeman JL, Asa SL. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.87, 1814–1818 (2002).
  • Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA, Khan A. The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod. Pathol.13, 882–887 (2000).
  • Brzezinski J, Migodzinski A, Gosek A, Tazbir J, Dedecjus M. Cyclin E expression in papillary thyroid carcinoma: relation to staging. Int. J. Cancer109, 102–105 (2004).
  • Brzezinski J, Migodzinski A, Toczek A, Tazbir J, Dedecjus M. Patterns of cyclin E, retinoblastoma protein, and p21Cip1/WAF1 immunostaining in the oncogenesis of papillary thyroid carcinoma. Clin. Cancer Res.11, 1037–1043 (2005).
  • Resnick MB, Shacter P, Finkelstein Y, Kellner Y, Cohen O. Immunohistochemical analysis of p27/kip1 expression in thyroid carcinoma. Mod. Pathol.11, 735–739 (1998).
  • Melck A, Masoudi H, Griffith OL et al. Cell cycle regulators show diagnostic and prognostic utility for differentiated thyroid cancer. Ann. Surg. Oncol.14, 3403–3411 (2007).
  • Anwar F, Emond MJ, Schmidt RA, Hwang HC, Bronner MP. Retinoblastoma expression in thyroid neoplasms. Mod. Pathol.13, 562–569 (2000).
  • Malaguarnera R, Vella V, Vigneri R, Frasca F. p53 family proteins in thyroid cancer. Endocr. Relat. Cancer14, 43–60 (2007).
  • Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest.91, 179–184 (1993).
  • Lam KY, Lo CY, Chan KW, Wan KY. Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann. Surg.231, 329–338 (2000).
  • LaPerle KM, Jhiang SM, Capen C. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am. J. Pathol.157, 671–677 (2000).
  • Moretti F, Farsetti A, Sodder S et al. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene14, 729–740 (1997).
  • Rocha AS, Soares P, Fonseca E, Cameselle-Teijeiro J, Oliveira MC, Sobrinho-Simões M. E-cadherin loss rather than β-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology42, 580–587 (2003).
  • Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G. β-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol.158, 987–996 (2001).
  • Rocha AS, Soares P, Seruca R et al. Abnormalities of the E-cadherin/catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. J. Pathol.194, 358–366 (2001).
  • Fluge Ø, Burland O, Akslen LA, Lillehaug JR, Varhaug JE. Gene expression in poorly differentiated papillary thyroid carcinomas. Thyroid16, 161–175 (2006).
  • Hu S, Liu D, Tufano RP et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int. J. Cancer119, 2322–2329 (2006).
  • Kondo T, Asa SL, Ezzat S. Epigenetic dysregulation in thyroid neoplasia. Endocrinol. Metab. Clin. N. Am.37, 389–400 (2008).
  • Nikiforova MN, Chiosea SI, Nikiforov YE. MicroRNA expression profiles in thyroid tumors. Endocr. Pathol.20, 85–91 (2009).
  • Mazzaferri EL. Management of a solitary thyroid nodule. N. Engl. J. Med.328, 553–559 (1993).
  • Ravetto C, Colombo L, Dottorini ME. Usefulness of fine-needle aspiration in the diagnosis of thyroid carcinoma: a retrospective study in 37,895 patients. Cancer Cytopathol.90, 357–363 (2000).
  • Wiseman SM, Baliski C, Irvine R et al. Hemithyroidectomy: the optimal initial surgical approach for individuals undergoing surgery for a cytological diagnosis of follicular neoplasm. Ann. Surg. Oncol.13, 425–432 (2006).
  • Baloch ZW, LiVolsi VA. Follicular-patterned lesions of the thyroid: the bane of the pathologist. Am. J. Clin. Pathol.117, 143–150 (2002).
  • Barden CB, Shister KW, Zhu B et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin. Cancer Res.9, 1792–1800 (2003).
  • Finley DJ, Zhu B, Barden CB, Fahey TJ 3rd. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann. Surg.240, 425–436 (2004).
  • Cerrutti JM, Delcelo R, Amadei MJ et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J. Clin. Invest.113, 1234–1242 (2004).
  • Mazzanti C, Zeiger MA, Costouros NG et al. Using gene-expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res.64, 2898–2903 (2004).
  • Lubitz CC, Ugras SK, Kazam JJ et al. Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J. Mol. Diagn.8, 490–498 (2006).
  • Foukakis T, Gusnanto A, Au AYM et al. A PCR-based expression signature of malignancy in follicular thyroid tumors. Endocr. Relat. Cancer14, 381–391 (2007).
  • Griffith OL, Melck A, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene-expression profiling studies identifies important diagnostic biomarkers. J. Clin. Oncol.24, 5043–5051 (2006).
  • Eszlinger M, Krohn K, Kukulska A, Jarzab B, Paschke R. Perspectives and limitations of microarray-based gene-expression profiling of thyroid tumors. Endocr. Rev.28, 322–338 (2007).
  • Sclabas GM, Staerkel GA, Shapiro SE et al. Fine-needle aspiration of the thyroid and correlation with histopathology in a contemporary series of 240 patients. Am. J. Surg.186, 702–709 (2003).
  • Zeppa P, Benincasa G, Lucariello A, Palombini L. Association of different pathologic processes of the thyroid gland in fine needle aspiration samples. Acta Cytol.45, 347–352 (2001).
  • Salvatore G, Giannini R, Faviana P et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.89, 5175–5180 (2004).
  • Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J. Clin. Endocrinol. Metab.86, 2187–2190 (2001).
  • Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch. Pathol. Lab. Med.132, 359–372 (2008).
  • Castro MR, Gharib H. Continuing controversies in the management of thyroid nodules. Ann. Intern. Med.142, 926–931 (2005).
  • Saggiorato E, De Pompa R, Volante M et al. Characterization of thyroid ‘follicular neoplasms’ in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr. Relat. Cancer12, 305–317 (2005).
  • Nasser SM, Pitman MB, Pilch BZ, Faquin WC. Fine-needle aspiration biopsy of papillary thyroid carcinoma: diagnostic utility of cytokeratin 19 immunostaining. Cancer90, 307–311 (2000).
  • Bartolazzi A, Gasbarri A, Papotti M et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet357, 1644–1650 (2001).
  • Segev DL, Clark DP, Zeiger MA, Umbricht C. Beyond the suspicious thyroid fine needle aspirate. A review. Acta Cytol.47, 709–722 (2003).
  • Umbricht CB, Saji M, Westra WH, Udelsman R, Zeiger MA, Sukumar S. Telomerase activity: a marker to distinguish follicular thyroid adenoma from carcinoma. Cancer Res.57, (1997).
  • Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod. Pathol.18, 48–57 (2005).
  • Bejarano PA, Nikiforov YE, Swenson ES, Biddinger PW. Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl. Immunohistochem. Mol. Morphol.8, 189–194 (2000).
  • D’Avanzo A, Treseler P, Ituarte PH et al. Follicular thyroid carcinoma: histology and prognosis. Cancer100, 1123–1129 (2004).
  • Williams ED. Guest editorial: two proposals regarding the terminology of thyroid tumors. Int. J. Surg. Pathol.8, 181–183 (2000).
  • Lubitz CC, Gallagher LA, Finley DJ, Zhu B, Fahey III TJ. Molecular analysis of minimally invasive follicular carcinomas by gene profiling. Surgery138, 1042–1048 (2005).
  • Roque L, Nunes VM, Ribeiro C, Martins C, Soares J. Karyotypic characterization of papillary thyroid carcinomas. Cancer92, 2529–2538 (2001).
  • Wreesmann VB, Ghossein RA, Hezel M et al. Follicular variant of papillary thyroid carcinoma: genome-wide appraisal of a controversial entity. Genes Chromosomes Cancer40, 355–364 (2004).
  • Liu J, Singh B, Tallini G et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer107, 1255–1264 (2006).
  • Apel RL, Asa SL, LiVolsi VA. Papillary Hürthle cell carcinoma with lymphocytic stroma. ‘Warthin-like tumor’ of the thyroid. Am. J. Surg. Pathol.19, 810–814 (1995).
  • Beckner ME, Heffess CS, Oertel JE. Oxyphilic papillary thyroid carcinomas. Am. J. Clin. Pathol.103, 280–287 (1995).
  • Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL. Molecular basis of Hurthle cell papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.85, 878–882 (2000).
  • Belchetz G, Cheung CC, Freeman J, Rosen IB, Witterick IJ, Asa SL. Hürthle cell tumors: using molecular techniques to define a novel classification system. Arch. Otolaryngol. Head Neck Surg.128, 237–240 (2002).
  • Maxwell EL, Palme CE, Freeman J. Hürthle cell tumors: applying molecular markers to define a new management algorithm. Arch. Otolaryngol. Head Neck Surg.132, 54–58 (2006).
  • McIver B, Hay ID, Giuffrida DF et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery130, 1028–1034 (2001).
  • Wiseman SM, Griffith OL, Deen S et al. Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch. Surg.142, 717–727 (2007).
  • Zeiger MA, Dackiw AP. Follicular thyroid lesions, elements that affect both diagnosis and prognosis. J. Surg. Oncol.89, 108–113 (2005).
  • Cooper DS, Doherty GM, Haugen BR et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. The American Thyroid Association Guidelines Taskforce. Thyroid16, 109–141 (2006).
  • Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev.28, 742–762 (2007).
  • Xing M, Westra WH, Tufano RP et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab.90, 6373–6379 (2005).
  • Marques AR, Espadinha C, Frias MJ et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)γ in PAX8/PPARγ-negative thyroid tumours. Br. J. Cancer91, 732–738 (2004).
  • Sahin M, Allard BL, Yates M et al. PPARγ staining as a surrogate for PAX8/PPARγ fusion oncogene expression in follicular neoplasms: clinocopathological correlation and histopathological diagnostic value. J. Clin. Endocrinol. Metab.90, 463–468 (2005).
  • DeLellis RA. Does the evaluation of proliferative activity predict malignancy of prognosis in endocrine tumors? Hum. Pathol.26, 131–134 (1995).
  • Johannessen JV, Sobrinho-Simões M, Tangen KO, Lindmo T. A flow cytometric deoxyribonucleic acid analysis of papillary thyroid carcinoma. Lab. Invest.45, 336–341 (1981).
  • Joensuu H, Klemi PJ. Comparison of nuclear DNA content in primary and metastatic differentiated thyroid carcinoma. Am. J. Clin. Pathol.89, 35–40 (1988).
  • Sturgis CD, Caraway NP, Johnston DA, Sherman SI, Kidd L, Katz RL. Image analysis of papillary thyroid carcinoma fine-needle aspirates: significant association between aneuploidy and death from disease. Cancer87, 155–160 (1999).
  • Pasieka JL, Zedenius J, Auer G et al. Addition of nuclear DNA content to the AMES-risk group classification for papillary thyroid cancer. Surgery112, 1154–1159 (1992).
  • Khoo ML, Ezzat S, Freeman JL, Asa SL. Cyclin D1 protein expression predicts metastatic behaviour in thyroid papillary microcarcinomas but is not associated with gene amplification. J. Clin. Endocrinol. Metab.87, 1810–1813 (2002).
  • Nishida T, Nakao K, Hamaji M, Nakahara MA, Tsujimoto M. Overexpression of p53 protein and DNA content are important biologic prognostic factors for thyroid cancer. Surgery119, 568–575 (1996).
  • Hosal SA, Apel RL, Freeman JL et al. Immunohistochemical localization of p53 in human thyroid neoplasms: correlation with biological behavior. Endocr. Pathol.8, 21–28 (1997).
  • Scheumann GF, Hoang-Vu C, Cetin Y et al. Clinical significance of E-cadherin as a prognostic marker in thyroid carcinomas. J. Clin. Endocrinol. Metab.80, 2168–2172 (1995).
  • Carlomagno F, Anaganti S, Guida T et al. BAY 43–9006 inhibition of oncogenic RET mutants. J. Natl. Cancer Inst.98, 326–334 (2006).
  • Gupta-Abramson V, Troxel AB, Nellore A et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol.26, 4701–4704 (2008).
  • Salvatore G, De Falco V, Salerno P et al. BRAF is a therapeutic target in aggressive thyroid carcinoma. Clin. Cancer Res.12, 1623–1629 (2006).
  • Kohno M, Pouyssegur J. Targeting the ERK signaling pathway in cancer therapy. Ann. Med.38, 200–211 (2006).
  • Mandal M, Kim S, Younes MN et al. The Akt inhibitor KP372–1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br. J. Cancer92, 1899–1905 (2005).
  • Pennell NA, Daniels GH, Haddad RI et al. A Phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid18, 317–323 (2008).
  • Schoenberger J, Grimm D, Kossmehl P, Infanger M, Kurth E, Eilles C. Effects of PTK787/ZK222584, a tyrosine kinase inhibitor, on the growth of a poorly differentiated thyroid carcinoma: an animal study. Endocrinology145, 1027–1030 (2004).
  • O’Neill JP, O’Neill B, Condron C, Walsh M, Bouchier-Hayes D. Anaplastic (undifferentiated) thyroid cancer: improved insight and therapeutic strategy into a highly aggressive disease. J. Laryngol. Otol.119, 585–591 (2005).
  • Nagayama Y, Yokoi H, Takeda K et al. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J. Clin. Endocrinol. Metab.85, 4081–4086 (2000).
  • Jeong H, Kim YR, Kim KN, Choe JG, Chung JK, Kim MK. Effect of all-trans retinoic acid on sodium/iodide symporter expression, radioiodine uptake and gene expression profiles in a human anaplastic thyroid carcinoma cell line. Nucl. Med. Biol.33, 875–882 (2006).
  • Park JW, Zarnegar R, Kanauchi H et al. Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid15, 222–231 (2005).
  • Aiello A, Pandini G, Frasca F et al. Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology147, 4463–4475 (2006).
  • Podtcheko A, Ohtsuru A, Tsuda S et al. The selective tyrosine kinase inhibitor, STI571, inhibits growth of anaplastic thyroid cancer cells. J. Clin. Endocrinol. Metab.88, 1889–1896 (2003).
  • Liu W, Asa SL, Ezzat S. 1α,25-Dihydroxyvitamin D3 targets PTEN-dependent fibronectin expression to restore thyroid cancer cell adhesiveness. Mol. Endocrinol.19, 2349–2357 (2005).
  • Iten F, Muller B, Schindler C et al. [90Yttrium-DOTA]-TOC response is associated with survival benefit in iodine-refractory thyroid cancer. Long-term results of a Phase 2 clinical trial. Cancer115, 2052–2062 (2009).
  • Mooney CJ, Nagaiah G, Fu P et al. A Phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid19, 233–240 (2009).
  • McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies. J. Clin. Oncol.23, 9067–9072 (2005).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.