372
Views
22
CrossRef citations to date
0
Altmetric
Review

Gene-expression profiling in pancreatic cancer

&
Pages 591-601 | Published online: 09 Jan 2014

References

  • Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res.67(3), 1030–1037 (2007).
  • Maitra A, Hruban RH. Pancreatic cancer. Annu. Rev. Pathol.3, 157–188 (2008).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Lau MK, Davila JA, Shaib YH. Incidence and survival of pancreatic head and body and tail cancers: a population-based study in the United States. Pancreas39(4), 458–462 (2010).
  • Mueller MT, Hermann PC, Heeschen C. Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis. Front Biosci.2, 602–613 (2010).
  • Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev.20(10), 1218–1249 (2006).
  • Buchholz M, Gress TM. Molecular changes in pancreatic cancer. Expert Rev. Anticancer Ther.9(10), 1487–1497 (2009).
  • Kern SE, Hruban RH, Hidalgo M, Yeo CJ. An introduction to pancreatic adenocarcinoma genetics, pathology and therapy. Cancer Biol. Ther.1(6), 607–613 (2002).
  • Hruban RH, Bishop Pitman M, Klimstra DS. Atlas of Tumor Pathology: Tumors of the Pancreas. Fourth Series Sobin LH, Albores-Saavedra J (Eds). ARP Press, Washington, DC, USA (2006).
  • Kwei KA, Bashyam MD, Kao J et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet.4(5), e1000081 (2008).
  • Kimmelman AC, Hezel AF, Aguirre AJ et al. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc. Natl Acad. Sci. USA105(49), 19372–19377 (2008).
  • Jones S, Zhang X, Parsons DW et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321(5897), 1801–1806 (2008).
  • Eckel F, Schneider G, Schmid RM. Pancreatic cancer: a review of recent advances. Expert Opin. Investig. Drugs15(11), 1395–1410 (2006).
  • Crnogorac-Jurcevic T, Efthimiou E, Capelli P et al. Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene20(50), 7437–7446 (2001).
  • Shi L, Reid LH, Jones WD et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol.24(9), 1151–1161 (2006).
  • Brazma A, Hingamp P, Quackenbush J et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet.29(4), 365–371 (2001).
  • Edgar R, Barrett T. NCBI GEO standards and services for microarray data. Nat. Biotechnol.24(12), 1471–1472 (2006).
  • Barrett T, Troup DB, Wilhite SE et al. NCBI GEO: mining tens of millions of expression profiles – database and tools update. Nucleic Acids Res.35(Database issue), D760–D765 (2007).
  • Parkinson H, Kapushesky M, Kolesnikov N et al. ArrayExpress update – from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res.37(Database issue), D868–D872 (2009).
  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia9(2), 166–180 (2007).
  • Chelala C, Hahn SA, Whiteman HJ et al. Pancreatic expression database: a generic model for the organization, integration and mining of complex cancer datasets. BMC Genomics8, 439 (2007).
  • Vilardell F, Iacobuzio-Donahue CA. Cancer gene profiling in pancreatic cancer. Methods Mol. Biol.576, 279–292 (2010).
  • Argani P, Iacobuzio-Donahue C, Ryu B et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin. Cancer Res.7(12), 3862–3868 (2001).
  • Han H, Bearss DJ, Browne LW, Calaluce R, Nagle RB, Von Hoff DD. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res.62(10), 2890–2896 (2002).
  • Mahadevan D, Von Hoff DD. Tumor–stroma interactions in pancreatic ductal adenocarcinoma. Mol. Cancer Ther.6(4), 1186–1197 (2007).
  • Crnogorac-Jurcevic T, Efthimiou E, Nielsen T et al. Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene21(29), 4587–4594 (2002).
  • Logsdon CD, Simeone DM, Binkley C et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res.63(10), 2649–2657 (2003).
  • Grutzmann R, Pilarsky C, Ammerpohl O et al. Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia6(5), 611–622 (2004).
  • Buchholz M, Braun M, Heidenblut A et al. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene24(44), 6626–6636 (2005).
  • Grutzmann R, Boriss H, Ammerpohl O et al. Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes. Oncogene24(32), 5079–5088 (2005).
  • Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology55(88), 2016–2027 (2008).
  • Pilarsky C, Ammerpohl O, Sipos B et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J. Cell. Mol. Med.12(6B), 2823–2835 (2008).
  • Chelala C, Lemoine NR, Hahn SA, Crnogorac-Jurcevic T. A web-based platform for mining pancreatic expression datasets. Pancreatology9(4), 340–343 (2009).
  • Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol.7(9), R80 (2006).
  • Anderson NL, Polanski M, Pieper R et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell Proteomics3(4), 311–326 (2004).
  • Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V et al. Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology129(5), 1454–1463 (2005).
  • Crnogorac-Jurcevic T, Missiaglia E, Blaveri E et al. Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J. Pathol.201(1), 63–74 (2003).
  • Friess H, Ding J, Kleeff J et al. Microarray-based identification of differentially expressed growth- and metastasis-associated genes in pancreatic cancer. Cell. Mol. Life Sci.60(6), 1180–1199 (2003).
  • Hu L, Evers S, Lu ZH, Shen Y, Chen J. Two-dimensional protein database of human pancreas. Electrophoresis25(3), 512–518 (2004).
  • Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am. J. Pathol.160(4), 1239–1249 (2002).
  • Lu Z, Hu L, Evers S, Chen J, Shen Y. Differential expression profiling of human pancreatic adenocarcinoma and healthy pancreatic tissue. Proteomics4(12), 3975–3988 (2004).
  • Maitra A, Hansel DE, Argani P et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin. Cancer Res.9(16 Pt 1), 5988–5995 (2003).
  • Nakamura T, Furukawa Y, Nakagawa H et al. Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene23(13), 2385–2400 (2004).
  • Shen J, Person MD, Zhu J, Abbruzzese JL, Li D. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res.64(24), 9018–9026 (2004).
  • Tan ZJ, Hu XG, Cao GS, Tang Y. Analysis of gene expression profile of pancreatic carcinoma using cDNA microarray. World J. Gastroenterol.9(4), 818–823 (2003).
  • Terris B, Blaveri E, Crnogorac-Jurcevic T et al. Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am. J. Pathol.160(5), 1745–1754 (2002).
  • Van Heek NT, Maitra A, Koopmann J et al. Gene expression profiling identifies markers of ampullary adenocarcinoma. Cancer Biol. Ther.3(7), 651–656 (2004).
  • Segara D, Biankin AV, Kench JG et al. Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia. Clin. Cancer Res.11(9), 3587–3596 (2005).
  • Iacobuzio-Donahue CA, Maitra A, Olsen M et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am. J. Pathol.162(4), 1151–1162 (2003).
  • Ishikawa M, Yoshida K, Yamashita Y et al. Experimental trial for diagnosis of pancreatic ductal carcinoma based on gene expression profiles of pancreatic ductal cells. Cancer Sci.96(7), 387–393 (2005).
  • Nakata K, Nagai E, Ohuchida K et al. S100P is a novel marker to identify intraductal papillary mucinous neoplasms. Hum. Pathol.41(6), 824–831 (2010).
  • Harsha HC, Kandasamy K, Ranganathan P et al. A compendium of potential biomarkers of pancreatic cancer. PLoS Med.6(4), e1000046 (2009).
  • Yeo CJ, Cameron JL, Lillemoe KD et al. Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann. Surg.221(6), 721–731 (1995).
  • Brugge WR, Lauwers GY, Sahani D, Fernandez-del Castillo C, Warshaw AL. Cystic neoplasms of the pancreas. N. Engl. J. Med.351(12), 1218–1226 (2004).
  • Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv. Anat. Pathol.12(2), 81–91 (2005).
  • Deng H, Shi J, Wilkerson M, Meschter S, Dupree W, Lin F. Usefulness of S100P in diagnosis of adenocarcinoma of pancreas on fine-needle aspiration biopsy specimens. Am. J. Clin. Pathol.129(1), 81–88 (2008).
  • Suomela S, Cao L, Bowcock A, Saarialho-Kere U. Interferon a-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers. J. Invest. Dermatol.122(3), 717–721 (2004).
  • Chen R, Brentnall TA, Pan S et al. Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer. Mol. Cell Proteomics6(8), 1331–1342 (2007).
  • Orchekowski R, Hamelinck D, Li L et al. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res.65(23), 11193–11202 (2005).
  • Ingvarsson J, Wingren C, Carlsson A et al. Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics8(11), 2211–2219 (2008).
  • Shi WD, Meng ZQ, Chen Z, Lin JH, Zhou ZH, Liu LM. Identification of liver metastasis-related genes in a novel human pancreatic carcinoma cell model by microarray analysis. Cancer Lett.283(1), 84–91 (2009).
  • Campagna D, Cope L, Lakkur SS, Henderson C, Laheru D, Iacobuzio-Donahue CA. Gene expression profiles associated with advanced pancreatic cancer. Int. J. Clin. Exp. Pathol.1(1), 32–43 (2008).
  • Nakahira S, Nakamori S, Tsujie M et al. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int. J. Cancer120(6), 1355–1363 (2007).
  • Ina S, Hirono S, Noda T, Yamaue H. Identifying molecular markers for chemosensitivity to gemcitabine in pancreatic cancer: increased expression of interferon-stimulated gene 15 kd is associated with intrinsic chemoresistance. Pancreas39(4), 473–485 (2010).
  • Bai J, Sata N, Nagai H. Gene expression analysis for predicting gemcitabine sensitivity in pancreatic cancer patients. HPB (Oxford)9(2), 150–155 (2007).
  • Messersmith WA, Rajeshkumar NV, Tan AC et al. Efficacy and pharmacodynamic effects of bosutinib (SKI-606), a Src/Abl inhibitor, in freshly generated human pancreas cancer xenografts. Mol. Cancer Ther.8(6), 1484–1493 (2009).
  • Li S, Couet J, Lisanti MP. Src tyrosine kinases, Ga subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem.271(46), 29182–29190 (1996).
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5), 843–854 (1993).
  • Navon R, Wang H, Steinfeld I, Tsalenko A, Ben-Dor A, Yakhini Z. Novel rank-based statistical methods reveal microRNAs with differential expression in multiple cancer types. PLoS ONE4(11), e8003 (2009).
  • Wang L, Tang H, Thayanithy V et al. Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res.69(24), 9490–9497 (2009).
  • Cheng C, Fu X, Alves P, Gerstein M. mRNA expression profiles show differential regulatory effects of microRNAs between estrogen receptor-positive and estrogen receptor-negative breast cancer. Genome Biol.10(9), R90 (2009).
  • Arndt GM, Dossey L, Cullen LM et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer9, 374 (2009).
  • Bloomston M, Frankel WL, Petrocca F et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA297(17), 1901–1908 (2007).
  • Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg.12(12), 2171–2176 (2008).
  • Greither T, Grochola LF, Udelnow A, Lautenschlager C, Wurl P, Taubert H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer126(1), 73–80 (2010).
  • Lee EJ, Gusev Y, Jiang J et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer120(5), 1046–1054 (2007).
  • Zhang Y, Li M, Wang H et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J. Surg.33(4), 698–709 (2009).
  • Szafranska AE, Davison TS, John J et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene26(30), 4442–4452 (2007).
  • Cardinali B, Castellani L, Fasanaro P et al. MicroRNA-221 and microRNA-222 modulate differentiation and maturation of skeletal muscle cells. PLoS ONE4(10), e7607 (2009).
  • Li Y, VandenBoom TG 2nd, Kong D et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res.69(16), 6704–6712 (2009).
  • Park JK, Lee EJ, Esau C, Schmittgen TD. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas38(7), e190–e199 (2009).
  • Wang J, Chen J, Chang P et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res.2(9), 807–813 (2009).
  • Capurso G, Lattimore S, Crnogorac-Jurcevic T et al. Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr. Relat. Cancer13(2), 541–558 (2006).
  • Missiaglia E, Dalai I, Barbi S et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol.28(2), 245–255 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.