914
Views
17
CrossRef citations to date
0
Altmetric
Editorial

Recent progress in genetic variants associated with cancer and their implications in diagnostics development

Pages 699-703 | Published online: 09 Jan 2014

References

  • Dimas AS, Dermitzakis ET. Genetic variation of regulatory systems. Curr. Opin. Genet. Dev.1(6), 586–590 (2009).
  • Ku CS, Chia KS. The success of the genome-wide association approach: a brief story of a long struggle. Eur. J. Hum. Genet.16(5), 554–564 (2008).
  • Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).
  • Wain LV, Armour JA, Tobin MD. Genomic copy number variation, human health, and disease.Lancet374(9686), 340–350 (2009).
  • Zhang F, Gu W, Hurles ME et al. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet.10, 451–481 (2009).
  • Shlien A, Tabori U, Marshall CR et al. Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proc. Natl Acad. Sci. USA105(32), 11264–11269 (2008).
  • Dear PH. Copy-number variation: the end of the human genome? Trends Biotechnol.27(8), 448–454 (2009).
  • Wu X, Hildebrandt MA, Chang DW. Genome-wide association studies of bladder cancer risk: a field synopsis of progress and potential applications. Cancer Metastasis Rev.28(3–4), 269–280 (2009).
  • Ioannidis JP, Castaldi P, Evangelou E. A compendium of genome-wide associations for cancer: critical synopsis and reappraisal. J. Natl Cancer Inst.102(12), 846–858 (2010).
  • Yeager M, Orr N, Hayes RB et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet.39(5),645–649 (2007).
  • Gudmundsson J, Sulem P, Manolescu A et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet.39(5), 631–637 (2007).
  • Thomas G, Jacobs KB, Year M et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet.40(3), 310–315 (2008).
  • Gudmundsson J, Sulem P, Rafnar T et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet. 40(3), 281–283 (2008).
  • Gudmundsson J, Sulem P, Gudbjartsson DF et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat. Genet. 41(10), 1122–1126 (2009).
  • Hunter DJ, Kraft P, Jacobs KB et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet.39(7), 870–874 (2007).
  • Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet.39(7), 865–869 (2007).
  • Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet.40(6), 703–706 (2008).
  • Zheng W, Long J, Gao YT et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet.41(3), 324–328 (2009).
  • Thomas G, Jacobs KB, Kraft P et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat. Genet. 41(5), 579–584 (2009).
  • Ahmed S, Thomas G, Ghoussaini M et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet.41(5), 585–590 (2009).
  • Turnbull C, Ahmed S, Morrison J et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet.42(6), 504–507 (2010).
  • Tomlinson I, Webb E, Carvajal-Carmona L et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet.39(8), 984–988 (2007).
  • Tomlinson I, Webb E, Carvajal-Carmona L et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat. Genet.40(5), 623–630 (2008).
  • Tenesa A, Farrington SM, Prendergast JG et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet.40(5), 631–637 (2008).
  • Sakamoto H, Yoshimura K, Saeki N et al.; Study Group of Millennium Genome Project for Cancer. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet.40(6), 730–740 (2008).
  • Papaemmanuil E, Hosking FJ, Vijayakrishnan J et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet.41(9), 1006–1010 (2009).
  • Di Bernardo MC, Crowther-Swanepoel D, Broderick P et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat. Genet.40(10), 1204–1210 (2008).
  • Crowther-Swanepoel D, Broderick P, Di Bernardo MC et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat. Genet.42(2), 132–136 (2010).
  • Brown KM, Macgregor S, Montgomery GW et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat. Genet.40(7), 838–840 (2008).
  • Bishop DT, Demenais F, Iles MM et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat. Genet.41(8), 920–925 (2009).
  • Stacey SN, Gudbjartsson DF, Sulem P et al. Common variants on 1p36 and 1q42 are associated with cutaneous basal cell carcinoma but not with melanoma or pigmentation traits.Nat. Genet. 40(11), 1313–1318 (2008).
  • Stacey SN, Sulem P, Masson G et al. New common variants affecting susceptibility to basal cell carcinoma.Nat. Genet.41(8), 909–914 (2009).
  • Amos CI, Wu X, Broderick P et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet.40(5), 616–622 (2008).
  • McKay JD, Hung RJ, Gaborieau V et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet.40(12), 1404–1406 (2008).
  • Wang Y, Broderick P, Webb E et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet.40(12), 1407–1409 (2008).
  • Sholl LM, Yeap BY, Iafrate AJ et al. Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Res.69(21), 8341–8348 (2009).
  • Soh J, Toyooka S, Ichihara S et al. Sequential molecular changes during multistage pathogenesis of small peripheral adenocarcinomas of the lung. J. Thorac. Oncol.3(4), 340–347 (2008).
  • Tang X, Varella-Garcia M, Xavier AC et al. Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas. Cancer Prev. Res. (Phila. PA)1(3), 192–200 (2008).
  • Yatabe Y, Takahashi T, Mitsudomi T. Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer. Cancer Res.68(7), 2106–2111 (2008).
  • Capasso M, Devoto M, Hou C et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat. Genet.41(6), 718–723 (2009).
  • Wrensch M, Jenkins RB, Chang JS et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat. Genet. 41(8), 905–908 (2009).
  • Amundadottir L, Kraft P, Stolzenberg-Solomon RZ et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet.41(9), 986–990 (2009).
  • Petersen GM, Amundadottir L, Fuchs CS et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet.42(3), 224–228 (2010).
  • Bei JX, Li Y, Jia WH et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat. Genet.42(7), 599–603 (2010).
  • Cho WC. MicroRNAs in cancer – from research to therapy. Biochim. Biophys. Acta 1805(2), 209–217 (2010).
  • Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol.42(8), 1273–1281 (2010).
  • Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev. Mol. Diagn.10(3), 297–308 (2010).
  • Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet.24(10), 489–497 (2008).
  • Cho WC. Role of miRNAs in lung cancer. Expert Rev. Mol. Diagn.9(8), 773–776 (2009).
  • Chin LJ, Ratner E, Leng S et al. A SNP in a let-7 microRNA complementary site in the KRAS 3´ untranslated region increases non-small cell lung cancer risk. Cancer Res.68(20), 8535–8540 (2008).
  • Tchatchou S, Jung A, Hemminki K et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis30(1), 59–64 (2009).
  • Christensen BC, Whiting MA, Ouellet LG et al. Mature miRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer.Clin. Cancer Res.16(14), 3713–3720 (2010).
  • Manolio TA, Collins FS, Cox NJ et al. Finding the missing heritability of complex diseases. Nature461(7265), 747–753 (2009).
  • Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet.11(6), 415–425 (2010).
  • Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet.24(3), 133–141 (2008).
  • Galvan A, Ioannidis JP, Dragani TA. Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer. Trends Genet.26(3), 132–141 (2010).
  • Fletcher O, Houlston RS. Architecture of inherited susceptibility to common cancer. Nat. Rev. Cancer10(5), 353–361 (2010).
  • Cho WC. Omics approaches in cancer research. In: An Omics Perspective on Cancer Research. Cho WC (Ed.). Springer, Berlin, Germany 1–9 (2010).
  • Cho WC. Conquering cancer through discovery research. IUBMB Life62(9), 646–650 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.