225
Views
13
CrossRef citations to date
0
Altmetric
Review

Exploiting the potential of molecular profiling in Parkinson’s disease: current practice and future probabilities

, , &
Pages 1035-1050 | Published online: 09 Jan 2014

References

  • de Rijk MC, Rocca WA, Anderson DW, Melcon MO, Breteler MM, Maraganore DM. A population perspective on diagnostic criteria for Parkinson’s disease. Neurology48(5), 1277–1281 (1997).
  • Peters CM, Gartner CE, Silburn PA, Mellick GD. Prevalence of Parkinson’s disease in metropolitan and rural Queensland: a general practice survey. J. Clin. Neurosci.13(3), 343–348 (2006).
  • de Lau LM, Giesbergen PC, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MM. Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology63(7), 1240–1244 (2004).
  • Dorsey ER, Constantinescu R, Thompson JP et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology68(5), 384–386 (2007).
  • Findley LJ. The economic impact of Parkinson’s disease. Parkinsonism Relat. Disord.13(Suppl.), S8–S12 (2007).
  • Huse DM, Schulman K, Orsini L, Castelli-Haley J, Kennedy S, Lenhart G. Burden of illness in Parkinson’s disease. Mov. Disord.20(11), 1449–1454 (2005).
  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging24(2), 197–211 (2003).
  • Cookson MR, Hardy J, Lewis PA. Genetic neuropathology of Parkinson’s disease. Int. J. Clin. Exp. Pathol.1(3), 217–231 (2008).
  • Hughes AJ, Daniel SE, Lees AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology57(8), 1497–1499 (2001).
  • Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch. Neurol.56(1), 33–39 (1999).
  • Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico–pathological study of 100 cases [see comments]. J. Neurol. Neurosurg. Psychiatry55(3), 181–184 (1992).
  • Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain125(Pt 4), 861–870 (2002).
  • Sander C. Genomic medicine and the future of health care. Science287(5460), 1977–1978 (2000).
  • De Gruttola VG, Clax P, DeMets DL et al. Considerations in the evaluation of surrogate endpoints in clinical trials: summary of a National Institutes of Health Workshop. Control. Clin. Trials22(5), 485–502 (2001).
  • Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology38(8), 1237–1244 (1988).
  • Haehner A, Boesveldt S, Berendse HW et al. Prevalence of smell loss in Parkinson’s disease – a multicenter study. Parkinsonism Relat. Disord.15(7), 490–494 (2009).
  • Haehner A, Hummel T, Reichmann H. Olfactory dysfunction as a diagnostic marker for Parkinson’s disease. Expert Rev. Neurother.9(12), 1773–1779 (2009).
  • Hawkes C. Olfaction in neurodegenerative disorder. Adv. Otorhinolaryngol.63, 133–151 (2006).
  • Jesse S, Steinacker P, Lehnert S, Gillardon F, Hengerer B, Otto M. Neurochemical approaches in the laboratory diagnosis of Parkinson and Parkinson dementia syndromes: a review. CNS Neurosci. Ther.15(2), 157–182 (2009).
  • Suchowersky O, Reich S, Perlmutter J, Zesiewicz T, Gronseth G, Weiner WJ. Practice parameter: diagnosis and prognosis of new onset Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology66(7), 968–975 (2006).
  • Lees AJ. The Parkinson chimera. Neurology72(7 Suppl.), S2–S11 (2009).
  • Klein C, Schneider SA, Lang AE. Hereditary parkinsonism: Parkinson disease look-alikes – an algorithm for clinicians to “PARK” genes and beyond. Mov. Disord.24(14), 2042–2058 (2009).
  • Mehta SH, Morgan JC, Sethi KD. Neuroimaging and transcranial ultrasonography in Parkinson’s disease. Curr. Neurol. Neurosci. Rep.8(4), 297–303 (2008).
  • Berg D, Becker G, Zeiler B et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology53(5), 1026–1031 (1999).
  • Berg D, Behnke S, Walter U. Application of transcranial sonography in extrapyramidal disorders: updated recommendations. Ultraschall. Med.27(1), 12–19 (2006).
  • Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol.7(11), 1044–1055 (2008).
  • Hirayama M, Hakusui S, Koike Y et al. A scintigraphical qualitative analysis of peripheral vascular sympathetic function with meta-[123I]iodobenzylguanidine in neurological patients with autonomic failure. J. Auton. Nerv. Syst.53(2–3), 230–234 (1995).
  • Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry76(2), 249–251 (2005).
  • Oka H, Yoshioka M, Morita M et al. Reduced cardiac 123I-MIBG uptake reflects cardiac sympathetic dysfunction in Lewy body disease. Neurology69(14), 1460–1465 (2007).
  • Rascol O, Schelosky L. 123I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov. Disord.24(Suppl. 2), S732–S741 (2009).
  • Siderowf A, Stern MB. Preclinical diagnosis of Parkinson’s disease: are we there yet? Curr. Neurol. Neurosci. Rep.6(4), 295–301 (2006).
  • Siderowf A, Stern MB. Premotor Parkinson’s disease: clinical features, detection, and prospects for treatment. Ann. Neurol.64(Suppl. 2), S139–S147 (2008).
  • Stern MB. The preclinical detection of Parkinson’s disease: ready for prime time? Ann. Neurol.56(2), 169–171 (2004).
  • Poewe W, Scherfler C, Tolosa E, Marek K. Supplement neuroimaging movement disorders. Mov. Disord.24(Suppl. 2), S655 (2009).
  • Belin AC, Westerlund M. Parkinson’s disease: a genetic perspective. FEBS J.275(7), 1377–1383 (2008).
  • Klein C. Implications of genetics on the diagnosis and care of patients with Parkinson disease. Arch. Neurol.63(3), 328–334 (2006).
  • Klein C, Schlossmacher MG. The genetics of Parkinson disease: implications for neurological care. Nat. Clin. Pract. Neurol.2(3), 136–146 (2006).
  • Paulson HL. Diagnostic testing in neurogenetics. Principles, limitations, and ethical considerations. Neurol. Clin.20(3), 627–643, v (2002).
  • McInerney-Leo A. Genetic testing in Parkinson’s disease. Mov. Disord.20(7), 908–909 (2005).
  • Harbo HF, Finsterer J, Baets J et al. EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues, Huntington’s disease, Parkinson’s disease and dystonias. Eur. J. Neurol.16(7), 777–785 (2009).
  • Scherzer CR. Chipping away at diagnostics for neurodegenerative diseases. Neurobiol. Dis.35(2), 148–156 (2009).
  • Hennecke G, Scherzer CR. RNA biomarkers of Parkinson’s disease: developing tools for novel therapies. Biomark. Med.2(1), 41–53 (2008).
  • Schadt EE, Lamb J, Yang X et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet.37(7), 710–717 (2005).
  • Marek K, Jennings D, Tamagnan G, Seibyl J. Biomarkers for Parkinson’s [corrected] disease: tools to assess Parkinson’s disease onset and progression. Ann. Neurol.64(Suppl. 2), S111–S121 (2008).
  • Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J. Lab. Clin. Med.147(3), 126–132 (2006).
  • Mohr S, Liew CC. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol. Med.13(10), 422–432 (2007).
  • Seyfert S, Kunzmann V, Schwertfeger N, Koch HC, Faulstich A. Determinants of lumbar CSF protein concentration. J. Neurol.249(8), 1021–1026 (2002).
  • Hong Z, Shi M, Chung KA et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain133(Pt 3), 713–726 (2010).
  • Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5), 964–977 (2009).
  • Matigian N, Abrahamsen G, Sutharsan R et al. Disease-specific, neurosphere-derived cells as models for brain disorders. Dis. Model. Mech. DOI: 10.1242/dmm.005447 (2010) (Epub ahead of print).
  • Lederberg J, McCray A. ‘Ome sweet ‘omics – a genealogical treasury of words. The Scientist15(7), 8 (2001).
  • Pankratz N, Foroud T. Genetics of Parkinson disease. Genet. Med.9(12), 801–811 (2007).
  • Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat.31(7), 763–780 (2010).
  • Gasser T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev. Mol. Med.11, e22 (2009).
  • Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C. The genetics of Parkinson’s syndromes: a critical review. Curr. Opin. Genet. Devel.19(3), 254–265 (2009).
  • Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet.18(R1), R48–R59 (2009).
  • Nichols WC, Kissell DK, Pankratz N et al. Variation in GIGYF2 is not associated with Parkinson disease. Neurology72(22), 1886–1892 (2009).
  • Kruger R, Sharma M, Riess O et al. A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson’s disease. Neurobiol. Aging DOI: 10.1016/j.neurobiolaging.2009.11.021 (2009) (Epub ahead of print).
  • Prestel J, Sharma M, Leitner P et al. PARK11 is not linked with Parkinson’s disease in European families. Eur. J. Hum. Genet.13(2), 193–197 (2005).
  • Wirdefeldt K, Burgess CE, Westerberg L, Payami H, Schalling M. A linkage study of candidate loci in familial Parkinson’s disease. BMC Neurol.3, 6 (2003).
  • Fung HC, Scholz S, Matarin M et al. Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol.5(11), 911–916 (2006).
  • Maraganore DM, de Andrade M, Lesnick TG et al. High-resolution whole-genome association study of Parkinson disease. Am. J. Hum. Genet.77(5), 685–693 (2005).
  • Elbaz A, Nelson LM, Payami H et al. Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson’s disease: a large-scale international study. Lancet Neurol.5(11), 917–923 (2006).
  • Evangelou E, Maraganore DM, Annesi G et al. Non-replication of association for six polymorphisms from meta-analysis of genome-wide association studies of Parkinson’s disease: large-scale collaborative study. Am. J. Med. Genet. B Neuropsychiatr. Genet.153B(1), 220–228 (2009).
  • Latourelle JC, Pankratz N, Dumitriu A et al. Genomewide association study for onset age in Parkinson disease. BMC Med. Genet.10, 98 (2009).
  • Pankratz N, Wilk JB, Latourelle JC et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum. Genet.124(6), 593–605 (2009).
  • Satake W, Nakabayashi Y, Mizuta I et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet.41(12), 1303–1307 (2009).
  • Simon-Sanchez J, Schulte C, Bras JM et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet.41(12), 1308–1312 (2009).
  • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA103(15), 5923–5928 (2006).
  • Marshall E. Getting the noise out of gene arrays. Science306(5696), 630–631 (2004).
  • Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet365(9458), 488–492 (2005).
  • Amino T, Uchihara T, Tsunekawa H et al. Myocardial nerve fibers are preserved in MPTP-treated mice, despite cardiac sympathetic dysfunction. Neurosci. Res.60(3), 314–318 (2008).
  • Abdi F, Quinn JF, Jankovic J et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis.9(3), 293–348 (2006).
  • Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat. Disord.11(8), 493–498 (2005).
  • Sutherland GT, Matigian NA, Chalk AM et al. A cross-study transcriptional analysis of Parkinson’s disease. PloS ONE4(3), e4955 (2009).
  • Scherzer CR, Grass JA, Liao Z et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein. Proc. Natl Acad. Sci. USA105(31), 10907–10912 (2008).
  • Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B et al. Effects of gender on nigral gene expression and Parkinson disease. Neurobiol. Dis.26(3), 606–614 (2007).
  • Simunovic F, Yi M, Wang Y et al. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain132(Pt 7), 1795–1809 (2009).
  • Salmi J, Nyman TA, Nevalainen OS, Aittokallio T. Filtering strategies for improving protein identification in high-throughput MS/MS studies. Proteomics9(4), 848–860 (2009).
  • Dunn MJ. PROTEOMICS Reviews 2009. Proteomics9(4), 804–807 (2009).
  • Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics4(12), 3943–3952 (2004).
  • Pan S, Rush J, Peskind ER et al. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. J. Proteome Res.7(2), 720–730 (2008).
  • Xia Q, Liao L, Cheng D et al. Proteomic identification of novel proteins associated with Lewy bodies. Front. Biosci.13, 3850–3856 (2008).
  • Pienaar IS, Dexter DT, Burkhard PR. Mitochondrial proteomics as a selective tool for unraveling Parkinson’s disease pathogenesis. Expert Rev. Proteomics7(2), 205–226 (2010).
  • Zhang J, Sokal I, Peskind ER et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol.129(4), 526–529 (2008).
  • Zhang J, Goodlett DR, Quinn JF et al. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimers Dis.7(2), 125–133; discussion 173–180 (2005).
  • Sinha A, Srivastava N, Singh S et al. Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson’s disease patients: a proteomic approach. Clin. Chim. Acta400(1–2), 14–20 (2009).
  • Goldknopf IL, Bryson JK, Strelets I et al. Abnormal serum concentrations of proteins in Parkinson’s disease. Biochem. Biophys. Res. Commun.389(2), 321–327 (2009).
  • Bogdanov M, Matson WR, Wang L et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain131(Pt 2), 389–396 (2008).
  • Dufek M, Hamanova M, Lokaj J et al. Serum inflammatory biomarkers in Parkinson’s disease. Parkinsonism Relat. Disord.15(4), 318–320 (2009).
  • Schwarzschild MA, Schwid SR, Marek K et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch. Neurol.65(6), 716–723 (2008).
  • Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A. Plasma urate and risk of Parkinson’s disease. Am. J. Epidemiol.166(5), 561–567 (2007).
  • Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am. J. Epidemiol.167(1), 90–95 (2008).
  • Bharucha KJ, Friedman JK, Vincent AS, Ross ED. Lower serum ceruloplasmin levels correlate with younger age of onset in Parkinson’s disease. J. Neurol.255(12), 1957–1962 (2008).
  • Lu M, Faull KF, Whitelegge JP et al. Proteomics and mass spectrometry for cancer biomarker discovery. Biomark. Insights2, 347–360 (2007).
  • Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol.16(9), 373–378 (1998).
  • Quinones MP, Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis.35(2), 165–176 (2009).
  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol.22(5), 245–252 (2004).
  • Brindle JT, Antti H, Holmes E et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med.8(12), 1439–1444 (2002).
  • Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology34(1), 173–186 (2009).
  • Shi H, Vigneau-Callahan KE, Matson WR, Kristal BS. Attention to relative response across sequential electrodes improves quantitation of coulometric array. Anal. Biochem.302(2), 239–245 (2002).
  • Vigneau-Callahan KE, Shestopalov AI, Milbury PE, Matson WR, Kristal BS. Characterization of diet-dependent metabolic serotypes: analytical and biological variability issues in rats. J. Nutr.131(3), 924S–932S (2001).
  • Johansen KK, Wang L, Aasly JO et al. Metabolomic profiling in LRRK2-related Parkinson’s disease. PloS ONE4(10), e7551 (2009).
  • Ahmed SS, Santosh W, Kumar S, Christlet HT. Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J. Biomed. Sci.16(1), 63 (2009).
  • Andreadou E, Nikolaou C, Gournaras F et al. Serum uric acid levels in patients with Parkinson’s disease: their relationship to treatment and disease duration. Clin. Neurol. Neurosurg.111(9), 724–728 (2009).
  • Ascherio A, LeWitt PA, Xu K et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol.66(12), 1460–1468 (2009).
  • Kutzing MK, Firestein BL. Altered uric acid levels and disease states. J. Pharmacol. Exp. Ther.324(1), 1–7 (2008).
  • Ransohoff DF. Rules of evidence for cancer molecular-marker discovery and validation. Nat. Rev. Cancer4(4), 309–314 (2004).
  • Katz MH. Multivariable analysis: a primer for readers of medical research. Ann. Intern. Med.138(8), 644–650 (2003).
  • Geschwind DH, Konopka G. Neuroscience in the era of functional genomics and systems biology. Nature461(7266), 908–915 (2009).
  • Margulies M, Egholm M, Altman WE et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature437(7057), 376–380 (2005).
  • Shendure J, Porreca GJ, Reppas NB et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science309(5741), 1728–1732 (2005).
  • Eid J, Fehr A, Gray J et al. Real-time DNA sequencing from single polymerase molecules. Science323(5910), 133–138 (2009).
  • Marder KS, Tang MX, Mejia-Santana H et al. Predictors of parkin mutations in early-onset Parkinson disease: the consortium on risk for early-onset Parkinson disease study. Arch. Neurol.67(6), 731–738 (2010).
  • Ibanez P, Lesage S, Janin S et al. α-synuclein gene rearrangements in dominantly inherited parkinsonism: frequency, phenotype, and mechanisms. Arch. Neurol.66(1), 102–108 (2009).
  • Singleton AB, Farrer M, Johnson J et al. α-synuclein locus triplication causes Parkinson’s disease. Science302(5646), 841 (2003).
  • Voutsinas GE, Stavrou EF, Karousos G et al. Allelic imbalance of expression and epigenetic regulation within the α-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease. Hum. Mutat.31(6), 685–691 (2010).
  • Barrachina M, Ferrer I. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J. Neuropathol. Exp. Neurol.68(8), 880–891 (2009).
  • Graeber MB. Biomarkers for Parkinson’s disease. Exp. Neurol.216(2), 249–253 (2009).
  • Myers AJ, Gibbs JR, Webster JA et al. A survey of genetic human cortical gene expression. Nat. Genet.39(12), 1494–1499 (2007).
  • Hovatta I, Zapala MA, Broide RS et al. DNA variation and brain region-specific expression profiles exhibit different relationships between inbred mouse strains: implications for eQTL mapping studies. Genome Biol.8(2), R25 (2007).
  • Hauser MA, Li YJ, Takeuchi S et al. Genomic convergence: identifying candidate genes for Parkinson’s disease by combining serial analysis of gene expression and genetic linkage. Hum. Mol. Genet.12(6), 671–677 (2003).
  • Lesnick TG, Papapetropoulos S, Mash DC et al. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet.3(6), e98 (2007).
  • Noureddine MA, Li YJ, van der Walt JM et al. Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra. Mov. Disord.20(10), 1299–1309 (2005).
  • Liang X, Slifer M, Martin ER et al. Genomic convergence to identify candidate genes for Alzheimer disease on chromosome 10. Hum. Mutat.30(3), 463–471 (2009).
  • Webster JA, Gibbs JR, Clarke J et al. Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet.84(4), 445–458 (2009).
  • Elstner M, Morris CM, Heim K et al. Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson’s disease gene. Ann. Neurol.66(6), 792–798 (2009).
  • Scholz B, Svensson M, Alm H et al. Striatal proteomic analysis suggests that first L-DOPA dose equates to chronic exposure. PloS ONE3(2), e1589 (2008).
  • Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA. Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice – a model of familial Parkinson’s disease. Neurobiol. Dis.18(3), 492–498 (2005).
  • Van Laar VS, Dukes AA, Cascio M, Hastings TG. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol. Dis.29(3), 477–489 (2008).
  • Smith DJ. Mitochondrial dysfunction in mouse models of Parkinson’s disease revealed by transcriptomics and proteomics. J. Bioenerg. Biomembr.41(6), 487–491 (2009).
  • Kim ST, Moon W, Chae Y, Kim YJ, Lee H, Park HJ. The effect of electroacupuncture for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced proteomic changes in the mouse striatum. J. Physiol. Sci.60(1), 27–34 (2010).
  • Weinreb O, Amit T, Sagi Y, Drigues N, Youdim MB. Genomic and proteomic study to survey the mechanism of action of the anti-Parkinson’s disease drug, rasagiline compared with selegiline, in the rat midbrain. J. Neural. Transm.116(11), 1457–1472 (2009).
  • Ichibangase T, Saimaru H, Takamura N et al. Proteomics of Caenorhabditis elegans over-expressing human α-synuclein analyzed by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry: identification of actin and several ribosomal proteins as negative markers at early Parkinson’s disease stages. Biomed. Chromatogr.22(3), 232–234 (2008).
  • Park J, Kim Y, Chung J. Mitochondrial dysfunction and Parkinson’s disease genes: insights from Drosophila.Dis. Model. Mech.2(7–8), 336–340 (2009).
  • Scherzer CR, Jensen RV, Gullans SR, Feany MB. Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s disease. Hum. Mol. Genet.12(19), 2457–2466 (2003).
  • Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron66(5), 646–661 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.