195
Views
25
CrossRef citations to date
0
Altmetric
Review

Luminescent nanoparticles and their use for in vitro and in vivo diagnostics

, , &
Pages 49-64 | Published online: 09 Jan 2014

References

  • Colloids and Colloid Assemblies. Caruso F (Ed.). Wiley-VCH, Weinheim, Germany (2004).
  • Molecular Constructions, Polymers and Nanoparticles. Demchenko AP, Bergamini G (Eds). Springer, Berlin, Germany (2010).
  • Semiconductor Nanomaterials. Kumar CSSR (Ed.). Wiley-VCH, Weinheim, Germany (2010).
  • Annual Review of Nano Research (Volume 2). Cao G, Brinker CJ (Eds). World Scientific, Singapore (2008).
  • Frontiers in Surface Nanophotonics: Principles and Applications. Andrews DL, Gaburro Z (Eds). Springer, NY, USA (2007).
  • Blasse G, Grabmaier BC. Luminescent Materials. Springer-Verlag Telos, Berlin, Germany (1994).
  • Binary Rare Earth Oxides. Adachi G, Imanaka N, Kang ZC (Eds). Kluwer Academic Publishers, Dordrecht, Germany (2004).
  • Atkins PW, De Paula J. Atkins’ Physical Chemistry. Oxford University Press, Oxford, UK (2010).
  • Luminescence. Ronda CR (Ed.). Wiley-VCH, Weinheim, Germany (2008).
  • Zhang C, Lingdong S, Zhang Y, Chunhua Y. Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors. J. Rare Earths28, 807–819 (2010).
  • Haase M, Schäfer H. Upconverting nanoparticles. Angew. Chem. Int. Ed.50, 5808–5829 (2011).
  • Medintz IL, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys.11, 17–45 (2008).
  • Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew. Chem. Int. Ed.45, 4562–4589 (2006).
  • Algar WR, Tavares AJ, Krull UJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta673, 1–25 (2010).
  • Biju V, Mundayoora S, Omkumara RV, Anasa A, Ishikawa M. Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol. Adv.28, 199–213 (2010).
  • Rizvi SB, Ghaderi S, Keshtgar M, Seifalian AM, Muhammed M. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev.1, 5161 (2010).
  • Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev.39, 4326–4354 (2010).
  • Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol.13, 40–46 (2002).
  • Azzazy HM, Mansour MM. In vitro diagnostic prospects of nanoparticles. Clin. Chim. Acta403, 1–8 (2009).
  • Pons T, Mattoussi H. Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng.37, 1934–1959 (2009).
  • Handbook of Luminescent Semiconductor Materials. Bergman L, McHale JL (Eds).Taylor & Francis, FL, USA (2011).
  • Altınoglu EI, Adair JH. Near infrared imaging with nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2, 461–477 (2010).
  • Chen W. Nanoparticle fluorescence based technology for biological applications. J. Nanosci. Nanotechnol.8, 1019–1051 (2008).
  • Wu P, Miao L, Wang H, Shao X, Yan X. A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew. Chem. Int. Ed.50, 8118–8121 (2011).
  • Chen Y, Vela J, Htoon H et al. “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc.130, 5026–5027 (2008).
  • Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc.115, 8706–8715 (1993).
  • Qu L, Peng ZA, Peng X. Alternative routes toward high quality CdSe nanocrystals. Nano Lett.1, 333–337 (2001).
  • Dabbousi BO, Rodriguez-Viejo J, Mikulec FV et al. (CdSe) ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B101, 9463–9475 (1997).
  • Lin CJ, Yang T, Lee C et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano3, 395–401 (2009).
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev.38, 1759–1782 (2009).
  • Stone J, Jackson S, Wright D. Biological applications of gold nanorods. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3, 100–109 (2011).
  • You C, Miranda OR, Gider B et al. Detection and identification of proteins using nanoparticle – fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotech.2, 318–323 (2007).
  • Lasne D, Blab GA, Berciaud S et al. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J.91, 4598–4604 (2006).
  • Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y. Multiphoton plasmon-resonance microscopy. Opt. Express11, 1385 (2003).
  • Daniel M, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104, 293–346 (2004).
  • Turkevich J, Garton G, Stevenson PC. The color of colloidal gold. J. Colloid Sci.9, 26–35 (1954).
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.241, 20–22 (1973).
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun.7, 801–802 (1994).
  • Lattes A, Rico I, Savignac A, de Samii AA. Formamide, a water substitute in micelles and microemulsions xxx structural analysis using a Diels–Alder reaction as a chemical probe. Tetrahedron43, 1725–1735 (1987).
  • Chen F, Xu G, Hor TSA. Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Mater. Lett.57, 3282–3286 (2003).
  • Murphy CJ, Sau TK, Gole AM et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B.109, 13857–13870 (2005).
  • Yu Y, Chang S, Lee C, Wang CRC. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B.101, 6661–6664 (1997).
  • Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL. A whole blood immunoassay using gold nanoshells. Anal. Chem.75, 2377–2381 (2003).
  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir21, 10644–10654 (2005).
  • Wang F, Tan WB, Zhang Y, Fan X, Wang M. Luminescent nanomaterials for biological labelling. Nanotechnology17, R1–R13 (2006).
  • Zhao X, Bagwe RP, Tan W. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv. Mater.16, 173–176 (2004).
  • Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc.125, 11474–11475 (2003).
  • Wang H, Yang R, Yang L, Tan W. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano3, 2451–2460 (2009).
  • van Blaaderen A, Vrij A. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir8, 2921–2931 (1992).
  • Schmidt J, Guesdon C, Schomäcker R. Engineering aspects of preparation of nanocrystalline particles in microemulsions. J. Nanopart. Res.1, 267–276 (1999).
  • Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett.5, 37–43 (2005).
  • Wu J, Ye Z, Wang G et al. Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging. J. Mater. Chem.19, 1258–1264 (2009).
  • Taylor JR, Fang MM, Nie S. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem.72, 1979–1986 (2000).
  • Bünzli JG. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev.110, 2729–2755 (2010).
  • Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev.38, 976–989 (2009).
  • Shen J, Sun L, Yan C. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans.42, 5687–5697 (2008).
  • Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater.19, 2924–2929 (2009).
  • Wang G, Peng Q, Li Y. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res.44, 322–332 (2011).
  • Niederberger M, Pinna N. Metal Oxide Nanoparticles in Organic Solvents. Springer, Dordrecht, Germany (2009).
  • Vetrone F, Mahalingam V, Capobianco JA. Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+, Yb3+ nanocrystals. Chem. Mater.21, 1847–1851 (2009).
  • Lim SF, Riehn R, Ryu WS et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans.Nano Lett.6, 169–174 (2006).
  • Wang ZL, Quan ZW, Jia PY et al. A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles. Chem. Mater.18, 2030–2037 (2006).
  • Zeng J, Su J, Li Z, Yan R, Li Y. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater.17, 2119–2123 (2005).
  • Wei Y, Lu F, Zhang X, Chen D. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb, Er nanoplates. Chem. Mater.18, 5733–5737 (2006).
  • Maestro LM, Rodriguez EM, Vetrone F et al. Nanoparticles for highly efficient multiphoton fluorescence bioimaging. Opt. Express18, 23544–23553 (2010).
  • Bogdan N, Vetrone F, Ozin GA, Capobianco JA. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett.11, 835–840 (2011).
  • Komban R, Koempe K, Haase M. Influence of different ligand isomers on the growth of lanthanide phosphate nanoparticles. Crystal Growth Design11, 1033–1039 (2011).
  • Mai H, Zhang Y, Si R et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc.128, 6426–6436 (2006).
  • Li L, Liu Y, Tao J et al. Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe. J. Phys. Chem. C112, 12219–12224 (2008).
  • Chane-Ching JY, Lebugle A, Rousselot I, Pourpoint A, Pell F. Colloidal synthesis and characterization of monocrystalline apatite nanophosphors. J. Mater. Chem.17, 2904 (2007).
  • Neumeier M, Hails LA, Davis SA, Mann S, Epple M. Synthesis of fluorescent core–shell hydroxyapatite nanoparticles. J. Mater. Chem.21, 1250–1254 (2011).
  • Dembski S, Rupp S, Milde M et al. Synthesis and optical properties of luminescent core–shell structured silicate and phosphate nanoparticles. Opt. Mater.33, 1106–1110 (2011).
  • Dembski S, Milde M, Dyrba M, Schweizer S, Gellermann C, Klockenbring T. The effect of pH on the synthesis and properties of luminescent SiO2/calcium phosphate:Eu3+ core–shell nanoparticles. Langmuir (2011) (In Press).
  • Gonzalez-McQuire R, Chane-Ching J, Vignaud E, Lebugle A, Mann S. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. J. Mater. Chem.14, 2277–2281 (2004).
  • Ma N, Sargent EH, Kelley SO. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat. Nanotech.4, 121–125 (2008).
  • Nakamura M, Ishimura K. Synthesis and characterization of organosilica nanoparticles prepared from 3-mercaptopropyltrimethoxysilane as the single silica source. J. Phys. Chem. C.111, 18892–18898 (2007).
  • Chan WC. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science281, 2016–2018 (1998).
  • Kim S, Bawendi MG. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc.125, 14652–14653 (2003).
  • Zhang Q, Song K, Zhao J et al. Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J. Colloid Interface Sci.336, 171–175 (2009).
  • Yi GS, Chow GM. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater.16, 2324–2329 (2006).
  • Yan J, Estévez MC, Smith JE et al. Dye-doped nanoparticles for bioanalysis. Nano Today2, 44–50 (2007).
  • Fu A, Gu W, Boussert B et al. Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett.7, 179–182 (2007).
  • Bruchez M Jr, Moronne MM, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science281, 2013–2016 (1998).
  • Abdul Jalil R, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials29, 4122–4128 (2008).
  • Sivakumar S, Diamente PR, van Veggel FCJM. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem. Eur. J.12, 5878–5884 (2006).
  • Yi G, Chow G. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion Fluorescence. Chem. Mater.19, 341–343 (2007).
  • Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22, 969–976 (2004).
  • Johnson NJJ, Sangeetha NM, Boyer J, van Veggel FCJM. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale2, 771 (2010).
  • Mattoussi H, Mauro JM, Goldman ER et al. Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc.122, 12142–12150 (2000).
  • Tibbals HF. Medical Nanotechnology and Nanomedicine. CRC Press, FL, USA (2011).
  • Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev.62, 424–437 (2010).
  • Wagner MK, Li F, Li J, Li X, Le XC. Use of quantum dots in the development of assays for cancer biomarkers. Anal. Bioanal. Chem.397, 3213–3224 (2010).
  • Lee S, Park K, Kim K, Choi K, Kwon IC. Activatable imaging probes with amplified fluorescent signals. Chem. Commun.4250–4260 (2008).
  • Recent Advances in Cytometry. Darzynkiewicz Z (Ed.). Elsevier, Amsterdam, The Netherlands (2011).
  • Wang L, Wang K, Santra S et al. Watching silica nanoparticles glow in the biological world. Anal. Chem.78, 646–654 (2006).
  • Hall DA, Ptaceka J, Snyde M. Protein microarray technology. Mech. Ageing Dev.128, 161–167 (2007).
  • Azzazy HME, Mansour MMH, Kazmierczak SC. From diagnostics to therapy: prospects of quantum dots. Clin. Biochem.40, 917–927 (2007).
  • Agrawal A, Zhang C, Byassee T, Tripp RA, Nie S. Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal. Chem.78, 1061–1070 (2006).
  • Sage L. Two-color nanoparticles identify single molecules. Anal. Chem.78, 1377 (2006).
  • Wang L, Lofton C, Popp M, Tan W. Using luminescent nanoparticles as staining probes for affymetrix gene chips. Bioconjugate Chem.18, 610–613 (2007).
  • Yao G, Wang L, Wu Y et al. FloDots: luminescent nanoparticles. Anal. Bioanal. Chem.385, 518–524 (2006).
  • Wang F, Banerjee D, Liu Y, Chen X, Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst135, 1839 (2010).
  • Hampl J, Hall M, Mufti NA et al. Upconverting phosphor reporters in immunochromatographic assays. Anal. Chem.288, 176–187 (2001).
  • Raem AM, Rauch P. Immunoassays, Spektrum, Heidelberg (2007).
  • Lim CT, Zhang Y. Bead-based microfluidic immunoassays: the next generation. Biosens. Bioelectron.22, 1197–1204 (2007).
  • Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett.6, 84–88 (2006).
  • Lin CC, Wang JH, Wu HW, Lee GB. Microfluidic immunoassays. JALA15, 253–274 (2010).
  • Dembski S, Gellermann C, Probst J, Klockenbring T, Barth S. Multifunctional nanoparticles for biomedical applications. GIT Labor. Fachz.11–12, 9–10 (2010).
  • Vetrone F, Capobianco JA. Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications. Int. J. Nanotech.5, 1306–1339 (2008).
  • Wang L, Yan R, Huo Z et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed.44, 6054–6057 (2005).
  • Li Y, Guan L, Zhang H et al. Distance-dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection. Anal. Chem.83, 4103–4109 (2011).
  • Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc.129, 15477–15479 (2007).
  • Boja E, Hiltke T, Rivers R et al. Evolution of clinical proteomics and its role in medicine. J. Proteome Res.10, 66–84 (2011).
  • Jiang S, Gnanasammandhan MK, Zhang Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface7, 3–18 (2009).
  • Chen H, Xue J, Zhang Y, Zhu X, Gao J, Yu B. Comparison of quantum dots immunofluorescence histochemistry and conventional immunohistochemistry for the detection of caveolin-1 and PCNA in the lung cancer tissue microarray. J. Mol. Hist.40, 261–268 (2009).
  • Wu X, Liu H, Liu J et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol.21, 41–46 (2003).
  • Xiao Y, Gao X, Gannot G et al. Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int. J. Cancer122, 2178–2186 (2008).
  • Chan P. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res.33, e161 (2005).
  • Knoll JHM. Human metaphase chromosome FISH using quantum dot conjugates. Methods Mol. Biol.374, 55–66 (2007).
  • Chatterjee DK, Gnanasammandhan MK, Zhang Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small6, 2781–2795 (2010).
  • Boyer J, Manseau M, Murray JI, van Veggel FCJM. Surface modification of upconverting NaYF4 nanoparticles with PEG–phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir26, 1157–1164 (2010).
  • Jalil RA, Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials29, 4122–4128 (2008).
  • Wang M, Mi C, Wang W et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4. ACS Nano3, 1580–1586 (2009).
  • Burns A, Ow H, Wiesner U. Fluorescent core–shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem. Soc. Rev.35, 1028–1042 (2006).
  • Kampmeier F, Ribbert M, Nachreiner T et al. Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjugate Chem.20, 1010–1015 (2009).
  • Heine M, Groc L, Frischknecht R et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science320, 201–205 (2008).
  • Murcia MJ, Minner DE, Mustata G, Ritchie K, Naumann CA. Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces. J. Am. Chem. Soc.130, 15054–15062 (2008).
  • Cui B, Wu C, Chen L et al. One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl Acad. Sci. USA104, 13666–13671 (2007).
  • Zhang Q, Li Y, Tsien RW. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science323, 1448–1453 (2009).
  • Cambi A, Lidke DS, Arndt-Jovin DJ, Figdor CG, Jovin TM. Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett.7, 970–977 (2007).
  • Roullier V, Clarke S, You C et al. High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett.9, 1228–1234 (2009).
  • Zhao Y, Liu S, Li Y et al. Synthesis and grafting of folate–PEG–PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J. Colloid Interface Sci.350, 44–50 (2010).
  • Barua S, Rege K. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small5, 370–376 (2009).
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotech.3, 145–150 (2008).
  • Nabiev I, Mitchell S, Davies A et al. Non-functionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett.7, 3452–3461 (2007).
  • Kairdolf BA, Mancini MC, Smith AM, Nie S. Minimizing nonspecific cellular binding of quantum dots with hydroxyl-derivatized surface coatings. Anal. Chem.80, 3029–3034 (2008).
  • Chatterjee DK, Rufaihaha AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials29, 937–943 (2008).
  • Wang M, Mi C, Zhang Y et al. NIR-responsive silica-coated NaYbF4. J. Phys. Chem. C.113, 19021–19027 (2009).
  • Vetrone F, Naccache R, de la Fuente AJ et al. Intracellular imaging of HeLa cells by non-functionalized NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale2, 495–498 (2010).
  • Wong K, Law G, Murphy MB et al. Functionalized europium nanorods for in vitro imaging. Inorg. Chem.47, 5190–5196 (2008).
  • Makhluf SB, Arnon R, Patra CR et al. Labeling of sperm cells via the spontaneous penetration of Eu3+ ions as nanoparticles complexed with PVA or PVP. J. Phys. Chem. C.112, 12801–12807 (2008).
  • Michalet X. Quantum dots for live cells, in vivo imaging, and diagnostics. Science307, 538–544 (2005).
  • Frangioni J. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol.7, 626–634 (2003).
  • Larson DR. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science300, 1434–1436 (2003).
  • Wang T, Chen J, Zhen S et al. Thiol-capped CdTe quantum dots with two-photon excitation for imaging high autofluorescence background living cells. J. Fluoresc.19, 615–621 (2009).
  • So M, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol.24, 339–343 (2006).
  • Zhang Y, So M, Loening AM, Yao H, Gambhir SS, Rao J. HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. Angew. Chem. Int. Ed.45, 4936–4940 (2006).
  • Smith AM, Dave S, Nie S, True L, Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Exp. Rev. Mol. Diagn.6(2), 231–244 (2006).
  • Cheng C, Chen C, Lai C et al. Syntheses and photophysical properties of Type-2 CdSe/ZnTe/ZnS (core/shell/shell) quantum dots. J. Mater. Chem.15, 3409–3414 (2005).
  • Koo Lee Y, Smith R, Kopelman R. Nanoparticle PEBBLE sensors in live cells and in vivo. Ann. Rev. Anal. Chem.2, 57–76 (2009).
  • Bentolila LA, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med.50, 493–496 (2009).
  • Lewis JD, Destito G, Zijlstra A et al. Viral nanoparticles as tools for intravital vascular imaging. Nat. Med.12, 354–360 (2006).
  • Hammer B, Norskov JK. Why gold is the noblest of all the metals. Nature376, 238–240 (1995).
  • Murphy CJ, Gole AM, Stone JW et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res.41, 1721–1730 (2008).
  • Wangoo N, Bhasin K, Boro R, Suri C. Facile synthesis and functionalization of water-soluble gold nanoparticles for a bioprobe. Anal. Chim. Acta610, 142–148 (2008).
  • Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett.7, 1929–1934 (2007).
  • Kim S, Lim YT, Soltesz EG et al. Near-infrared fluorescent Type 2 quantum dots for sentinel lymph node mapping. Nat. Biotechnol.22, 93–97 (2003).
  • Soltesz EG, Kim S, Kim S, Laurence RG, De Grand AM. Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann. Surg. Oncol.2006, 386–396 (2006).
  • Parungo CP, Ohnishi S, Kim S et al. Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J. Thorac. Cardiovasc. Surg.129, 844–850 (2005).
  • Parungo CP, Ohneshi S, De Grand AM, Laurence RG, Soltesz EG. In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann. Surg. Oncol.11, 1085–1092 (2004).
  • Soltesz EG, Kim S, Laurence RG et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann. Thorac. Surg.79, 269–277 (2005).
  • Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann. Surg. Oncol.13, 1671–1681 (2006).
  • Ballou B, Ernst LA, Andreko S et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjugate Chem.18, 389–396 (2007).
  • Voura EB, Jaiswal JK, Mattoussi H, Simon SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med.10, 993–998 (2004).
  • Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr. Opin. Biotechnol.18, 17–25 (2007).
  • Cai W, Shin D, Chen K et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett.6, 669–676 (2006).
  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res.67, 1138–1144 (2007).
  • Nanotechnology and Occupational Health. Maynard AD, Pui DYH (Eds). Springer, Dordrecht, The Netherlands (2007).
  • Lovric J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol.12, 1227–1234 (2005).
  • Yong K, Ding H, Roy I et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano3, 502–510 (2009).
  • Li L, Daou TJ, Texier I, Kim Chi TT, Liem NQ, Reiss P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem. Mater.21, 2422–2429 (2009).
  • Botsoa J, Lysenko V, Géloen A, Marty O, Bluet JM, Guillot G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett.92, 173902–173903 (2008).
  • Park J, Gu L, Maltzahn G von, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater.8, 331–336 (2009).
  • Erogbogbo F, Yong K, Hu R et al. Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano4, 5131–5138 (2010).
  • Erogbogbo F, Yong K, Roy I et al. In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano5, 413–423 (2011).
  • Erogbogbo F, Yong K, Roy I, Xu G, Prasad PN, Swihart MT. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano2, 873–878 (2008).
  • James W, Hirsch L, West J, O’Neal P, Payne J. Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem.271, 455–459 (2007).
  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29, 1912–1919 (2008).
  • Altınoglu EI, Russin TJ, Kaiser JM et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano2, 2075–2084 (2008).
  • Oyane A, Kim H, Furuya T, Kokubo T, Miyazaki T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res.65A, 188–195 (2002).
  • Hanaki K, Momo A, Oku T et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun.302, 496–501 (2003).
  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotech.21, 47–51 (2002).
  • Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol.48, 669–675 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.