333
Views
18
CrossRef citations to date
0
Altmetric
Theme: Emerging Molecular Diagnostic Technologies - Review

MiRNAs in kidney transplantation: potential role as new biomarkers

, &
Pages 93-104 | Published online: 09 Jan 2014

References

  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 136(4), 642–655 (2009).
  • Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and function. Thromb. Haemost. 107(4), 605–610 (2012).
  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10(2), 126–139 (2009).
  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-MiRNAs and short hairpin RNAs. Genes Dev. 17(24), 3011–3016 (2003).
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2), 209–216 (2003).
  • Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2), 199–208 (2003).
  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4), 631–640 (2005).
  • Spiegel JC, Lorenzen JM, Thum T. Role of MiRNAs in immunity and organ transplantation. Expert Rev. Mol. Med. 13, e37 (2011).
  • Shan J, Feng L, Luo L et al. MiRNAs: potential biomarker in organ transplantation. Transpl. Immunol. 24(4), 210–215 (2011).
  • Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat. Med. 17(11), 1391–1401 (2011).
  • Jang HR, Ko GJ, Wasowska BA, Rabb H. The interaction between ischemia-reperfusion and immune responses in the kidney. J. Mol. Med. 87(9), 859–864 (2009).
  • Pulskens WP, Teske GJ, Butter LM et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS ONE 3(10), e3596 (2008).
  • Yang Z, von Ballmoos MW, Faessler D et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 211(1), 103–109 (2010).
  • Cantaluppi V, Gatti S, Medica D et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia–reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82(4), 412–427 (2012).
  • Deregibus MC, Cantaluppi V, Calogero R et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7), 2440–2448 (2007).
  • Gatti S, Bruno S, Deregibus MC et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia–reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26(5), 1474–1483 (2011).
  • Kwon O, Miller S, Li N, Khan A, Kadry Z, Uemura T. Bone marrow-derived endothelial progenitor cells and endothelial cells may contribute to endothelial repair in the kidney immediately after ischemia–reperfusion. J. Histochem. Cytochem. 58(8), 687–694 (2010).
  • Li B, Cohen A, Hudson TE, Motlagh D, Amrani DL, Duffield JS. Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia–reperfusion injury. Circulation 121(20), 2211–2220 (2010).
  • Wei Q, Bhatt K, He HZ, Mi QS, Haase VH, Dong Z. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 21(5), 756–761 (2010).
  • Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl Acad. Sci. USA 107(32), 14339–14344 (2010).
  • Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am. J. Physiol. Renal Physiol. 301(4), 793–801 (2011).
  • Shapiro MD, Bagley J, Latz J et al. MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLoS ONE 6(8), e23011 (2011).
  • Saikumar J, Hoffmann D, Kim TM et al. Expression, circulation and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol. Sci. 129(2), 256–267 (2012).
  • Chau BN, Xin C, Hartner J et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4(121), 121ra18 (2012).
  • Lodish HF, Zhou B, Liu G, Chen CZ. Micromanagement of the immune system by MiRNAs. Nat. Rev. Immunol. 8(2), 120–130 (2008).
  • Anglicheau D, Sharma VK, Ding R et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl Acad. Sci. USA 106(13), 5330–5335 (2009).
  • Sui W, Dai Y, Huang Y, Lan H, Yan Q, Huang H. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl. Immunol. 19(1), 81–85 (2008).
  • Lorenzen JM, Volkmann I, Fiedler J et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am. J. Transplant. 11(10), 2221–2227 (2011).
  • Lorenzen JM, Kielstein JT, Hafer C et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol. 6(7), 1540–1546 (2011).
  • Liu XY, Xu J. The role of miR-223 in the acute rejection after kidney transplantation. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 27(10), 1121–1123 (2011).
  • Scian MJ, Maluf DG, David KG et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am. J. Transplant. 11(10), 2110–2122 (2011).
  • Patel V, Noureddine L. MiRNAs and fibrosis. Curr. Opin. Nephrol. Hypertens. 21(4), 410–416 (2012).
  • Gregory PA, Bert AG, Paterson EL et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10(5), 593–601 (2008).
  • Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22(7), 894–907 (2008).
  • Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283(22), 14910–14914 (2008).
  • Gregory PA, Bracken CP, Smith E et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Mol. Biol. Cell 22(10), 1686–1698 (2011).
  • Xiong M, Jiang L, Zhou Y et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am. J. Physiol. Renal Physiol. 302(3), 369–379 (2012).
  • Wang G, Kwan BC, Lai FM et al. Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am. J. Hypertens. 23(1), 78–84 (2010).
  • Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-b1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80(4), 358–368 (2011).
  • Oba S, Kumano S, Suzuki E et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE 5(10), e13614 (2010).
  • Korpal M, Ell BJ, Buffa FM et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17(9), 1101–1108 (2011).
  • Chen Y, Ge W, Xu L et al. miR-200b is involved in intestinal fibrosis of Crohn’s disease. Int. J. Mol. Med. 29(4), 601–606 (2012).
  • Yang S, Banerjee S, de Freitas A et al. Participation of miR-200 in pulmonary fibrosis. Am. J. Pathol. 180(2), 484–493 (2012).
  • Mateescu B, Batista L, Cardon M et al. miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat. Med. 17(12), 1627–1635 (2011).
  • Weiss JB, Eisenhardt SU, Stark GB, Bode C, Moser M, Grundmann S. MiRNAs in ischemia–reperfusion injury. Am. J. Cardiovasc. Dis. 2(3), 237–247 (2012).
  • Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224), 980–984 (2008).
  • Xu X, Kriegel AJ, Liu Y et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. doi:10.1038/ki.2012.241 (2012) (Epub ahead of print).
  • Liu G, Friggeri A, Yang Y et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207(8), 1589–1597 (2010).
  • Liu G, Friggeri A, Yang Y et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. 583(12), 2009–2014 (2009).
  • Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200), 56–61 (2008).
  • Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21(8), 1317–1325 (2010).
  • Dey N, Das F, Mariappan MM et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J. Biol. Chem. 286(29), 25586–25603 (2011).
  • Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D. miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc. Natl Acad. Sci. USA 108(2), 522–527 (2011).
  • van Rooij E, Sutherland LB, Thatcher JE et al. Dysregulation of MiRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105(35), 13027–13032 (2008).
  • Kwiecinski M, Noetel A, Elfimova N et al. Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One 6(9), e24568 (2011).
  • Zhang Y, Wu L, Wang Y et al. Protective role of estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury. J. Biol. Chem. 287(18), 14851–14862 (2012).
  • Qin W, Chung AC, Huang XR et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22(8), 1462–1474 (2011).
  • Wang B, Komers R, Carew R et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23(2), 252–265 (2012).
  • Xiao J, Meng XM, Huang XR et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol. Ther. 20(6), 1251–1260 (2012).
  • Cushing L, Kuang PP, Qian J et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 45(2), 287–294 (2011).
  • Roderburg C, Urban GW, Bettermann K et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53(1), 209–218 (2011).
  • Long J, Wang Y, Wang W, Chang BH, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286(13), 11837–11848 (2011).
  • Kato M, Zhang J, Wang M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA 104(9), 3432–3437 (2007).
  • Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23(3), 458–469 (2012).
  • Kato M, Putta S, Wang M et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11(7), 881–889 (2009).
  • Sun L, Zhang D, Liu F et al. Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J. Pathol. 225(3), 364–377 (2011).
  • Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21(3), 438–447 (2010).
  • Wang Q, Wang Y, Minto AW et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 22(12), 4126–4135 (2008).
  • Long J, Wang Y, Wang W, Chang BH, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J. Biol. Chem. 285(30), 23457–23465 (2010).
  • Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol. Genomics 44(4), 259–267 (2012).
  • Humphreys BD, Lin SL, Kobayashi A et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176(1), 85–97 (2010).
  • Koesters R, Kaissling B, Lehir M et al. Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 177(2), 632–643 (2010).
  • Li L, Zepeda-Orozco D, Black R, Lin F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol. 176(4), 1767–1778 (2010).
  • Chu AS, Diaz R, Hui JJ et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53(5), 1685–1695 (2011).
  • Duffield JS. Epithelial to mesenchymal transition in injury of solid organs: fact or artifact? Gastroenterology 139(4), 1081–1083.e5 (2010).
  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110(3), 341–350 (2002).
  • Zeisberg M, Yang C, Martino M et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem. 282(32), 23337–23347 (2007).
  • Kim KK, Kugler MC, Wolters PJ et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl Acad. Sci. USA 103(35), 13180–13185 (2006).
  • Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating MiRNAs as novel and sensitive biomarkers of acute myocardial infarction. Clin. Biochem. 45(10–11), 727–732 (2012).
  • Wang H, Peng W, Ouyang X, Li W, Dai Y. Circulating MiRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res. 160(3), 198–206 (2012).
  • Fridman E, Dotan Z, Barshack I et al. Accurate molecular classification of renal tumors using microRNA expression. J. Mol. Diagn. 12(5), 687–696 (2010).
  • Jung M, Schaefer A, Steiner I et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin. Chem. 56(6), 998–1006 (2010).
  • Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted MiRNAs: a new form of intercellular communication. Trends Cell Biol. 22(3), 125–132 (2012).
  • Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 21(R1), 125–134 (2012).
  • Chen X, Ba Y, Ma L et al. Characterization of MiRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18(10), 997–1006 (2008).
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and MiRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9(6), 654–659 (2007).
  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MiRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13(4), 423–433 (2011).
  • Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39(16), 7223–7233 (2011).
  • Vickers KC, Remaley AT. Lipid-based carriers of MiRNAs and intercellular communication. Curr. Opin. Lipidol. 23(2), 91–97 (2012).
  • Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of MiRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38(20), 7248–7259 (2010).
  • Arroyo JD, Chevillet JR, Kroh EM et al. Argonaute2 complexes carry a population of circulating MiRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108(12), 5003–5008 (2011).
  • Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem. 55(11), 1944–1949 (2009).
  • Starkey Lewis PJ, Dear J, Platt V et al. Circulating MiRNAs as potential markers of human drug-induced liver injury. Hepatology 54(5), 1767–1776 (2011).
  • Kirschner MB, Cheng YY, Badrian B et al. Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma. J. Thorac. Oncol. 7(7), 1184–1191 (2012).
  • Gao W, He HW, Wang ZM et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis. 11, 55 (2012).
  • Ge TT, Liang Y, Fu R et al. Expressions of miR-21, miR-155 and miR-210 in plasma of patients with lymphoma and its clinical significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 20(2), 305–309 (2012).
  • Miranda KC, Bond DT, McKee M et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78(2), 191–199 (2010).
  • Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional MiRNAs leads to rapid glomerular and tubular injury. J. Am. Soc. Nephrol. 19(11), 2069–2075 (2008).
  • Mueller TF, Reeve J, Jhangri GS et al. The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am. J. Transplant. 8(1), 78–85 (2008).
  • Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 18(12), 1111–1120 (2011).
  • Moschos SA, Frick M, Taylor B et al. Uptake, efficacy, and systemic distribution of naked, inhaled short interfering RNA (siRNA) and locked nucleic acid (LNA) antisense. Mol. Ther. 19(12), 2163–2168 (2011).
  • Roberts J, Palma E, Sazani P, Ørum H, Cho M, Kole R. Efficient and persistent splice switching by systemically delivered LNA oligonucleotides in mice. Mol. Ther. 14(4), 471–475 (2006).
  • Kim YK, Yeo J, Kim B, Ha M, Kim VN. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol. Cell 46(6), 893–895 (2012).
  • Hartono C, Muthukumar T, Suthanthiran M. Noninvasive diagnosis of acute rejection of renal allografts. Curr. Opin. Organ Transplant. 15(1), 35–41 (2010).
  • Sun Y, Koo S, White N et al. Development of a micro-array to detect human and mouse MiRNAs and characterization of expression in human organs. Nucleic Acids Res. 32(22), e188 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.