965
Views
103
CrossRef citations to date
0
Altmetric
Theme: Cancer/Oncology Diagnostics - Review

miRNAs and long noncoding RNAs as biomarkers in human diseases

, &
Pages 183-204 | Published online: 09 Jan 2014

References

  • Carninci P, Kasukawa T, Katayama S et al.; FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science 309(5740), 1559–1563 (2005).
  • Birney E, Stamatoyannopoulos JA, Dutta A et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799–816 (2007).
  • Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer 10, 38 (2011).
  • Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8(8), 467–477 (2011).
  • Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 110(3), 483–495 (2012).
  • Di Stefano V, Zaccagnini G, Capogrossi MC, Martelli F. microRNAs as peripheral blood biomarkers of cardiovascular disease. Vascul. Pharmacol. 55(4), 111–118 (2011).
  • Edwards JK, Pasqualini R, Arap W, Calin GA. MicroRNAs and ultraconserved genes as diagnostic markers and therapeutic targets in cancer and cardiovascular diseases. J. Cardiovasc. Transl. Res. 3(3), 271–279 (2010).
  • Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat. Res. 717(1–2), 85–90 (2011).
  • Fabbri M. miRNAs as molecular biomarkers of cancer. Expert Rev. Mol. Diagn. 10(4), 435–444 (2010).
  • Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev. Mol. Diagn. 10(3), 297–308 (2010).
  • Geekiyanage H, Jicha GA, Nelson PT, Chan C. Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp. Neurol. 235(2), 491–496 (2012).
  • Lai CY, Yu SL, Hsieh MH et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS ONE 6(6), e21635 (2011).
  • Pelletier C, Weidhaas JB. MicroRNA binding site polymorphisms as biomarkers of cancer risk. Expert Rev. Mol. Diagn. 10(6), 817–829 (2010).
  • Wang Y, Liang Y, Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin. Genet. 74(4), 307–315 (2008).
  • Zahm AM, Thayu M, Hand NJ, Horner A, Leonard MB, Friedman JR. Circulating microRNA is a biomarker of pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 53(1), 26–33 (2011).
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993).
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5), 855–862 (1993).
  • Sumazin P, Yang X, Chiu HS et al. An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2), 370–381 (2011).
  • Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip. Rev. RNA 3(3), 311–330 (2012).
  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3), 353–358 (2011).
  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301), 1033–1038 (2010).
  • Karreth FA, Tay Y, Perna D et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147(2), 382–395 (2011).
  • Tay Y, Kats L, Salmena L et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2), 344–357 (2011).
  • Cesana M, Cacchiarelli D, Legnini I et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2), 358–369 (2011).
  • Wang J, Liu X, Wu H et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38(16), 5366–5383 (2010).
  • Eiring AM, Harb JG, Neviani P et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140(5), 652–665 (2010).
  • Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol. 75(6), 1374–1379 (2009).
  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125(6), 1111–1124 (2006).
  • Kedde M, Strasser MJ, Boldajipour B et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131(7), 1273–1286 (2007).
  • Calin GA, Liu CG, Ferracin M et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3), 215–229 (2007).
  • Hansen TB, Wiklund ED, Bramsen JB et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30(21), 4414–4422 (2011).
  • Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12(12), 861–874 (2011).
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10(3), 155–159 (2009).
  • Kapranov P, Cheng J, Dike S et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830), 1484–1488 (2007).
  • Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 1(5), 391–407 (2011).
  • Khalil AM, Guttman M, Huarte M et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106(28), 11667–11672 (2009).
  • Kotake Y, Nakagawa T, Kitagawa K et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16), 1956–1962 (2011).
  • Rinn JL, Kertesz M, Wang JK et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7), 1311–1323 (2007).
  • Li T, Hu JF, Qiu X et al. CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol. Cell. Biol. 28(20), 6473–6482 (2008).
  • Pandey RR, Mondal T, Mohammad F et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32(2), 232–246 (2008).
  • Plath K, Fang J, Mlynarczyk-Evans SK et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300(5616), 131–135 (2003).
  • Wang KC, Yang YW, Liu B et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341), 120–124 (2011).
  • Wang D, Garcia-Bassets I, Benner C et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474(7351), 390–394 (2011).
  • Ørom UA, Derrien T, Beringer M et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1), 46–58 (2010).
  • Pennacchio LA, Ahituv N, Moses AM et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444(7118), 499–502 (2006).
  • Visel A, Prabhakar S, Akiyama JA et al. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat. Genet. 40(2), 158–160 (2008).
  • Bernard D, Prasanth KV, Tripathi V et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29(18), 3082–3093 (2010).
  • Tripathi V, Ellis JD, Shen Z et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39(6), 925–938 (2010).
  • Faghihi MA, Modarresi F, Khalil AM et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14(7), 723–730 (2008).
  • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43(6), 904–914 (2011).
  • Niland CN, Merry CR, Khalil AM. Emerging roles for long non-coding RNAs in cancer and neurological disorders. Front. Genet. 3, 25 (2012).
  • Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 148(6), 1172–1187 (2012).
  • Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330), 336–342 (2011).
  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer 6(4), 259–269 (2006).
  • Enfield KS, Pikor LA, Martinez VD, Lam WL. Mechanistic roles of noncoding RNAs in lung cancer biology and their clinical implications. Genet. Res. Int. 2012, 737416 (2012).
  • Mitra SA, Mitra AP, Triche TJ. A central role for long non-coding RNA in cancer. Front. Genet. 3, 17 (2012).
  • Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 21(6), 354–361 (2011).
  • Calin GA, Sevignani C, Dumitru CD et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101(9), 2999–3004 (2004).
  • Rossi S, Sevignani C, Nnadi SC, Siracusa LD, Calin GA. Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm. Genome 19(7–8), 526–540 (2008).
  • Zhang L, Huang J, Yang N et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103(24), 9136–9141 (2006).
  • Esteller M. Epigenetics in cancer. N. Engl. J. Med. 358(11), 1148–1159 (2008).
  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895), 89–92 (1983).
  • Lujambio A, Portela A, Liz J et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29(48), 6390–6401 (2010).
  • Lujambio A, Ropero S, Ballestar E et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67(4), 1424–1429 (2007).
  • Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6), 435–443 (2006).
  • Brueckner B, Stresemann C, Kuner R et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 67(4), 1419–1423 (2007).
  • Pan W, Zhu S, Yuan M et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184(12), 6773–6781 (2010).
  • Zhao S, Wang Y, Liang Y et al. MicroRNA-126 regulates DNA methylation in CD4(+) T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 63(5), 1376–1386 (2011).
  • He L, He X, Lim LP et al. A microRNA component of the p53 tumour suppressor network. Nature 447(7148), 1130–1134 (2007).
  • Huarte M, Guttman M, Feldser D et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3), 409–419 (2010).
  • Barsyte-Lovejoy D, Lau SK, Boutros PC et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 66(10), 5330–5337 (2006).
  • Chang TC, Yu D, Lee YS et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet. 40(1), 43–50 (2008).
  • Wu H, Tao J, Chen PJ et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA 107(42), 18161–18166 (2010).
  • Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118(5), 1590–1605 (2008).
  • Wojcik SE, Rossi S, Shimizu M et al. Non-coding RNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis 31(2), 208–215 (2010).
  • Zorc M, Skok DJ, Godnic I et al. Catalog of microRNA seed polymorphisms in vertebrates. PLoS ONE 7(1), e30737 (2012).
  • Melo SA, Esteller M. A precursor microRNA in a cancer cell nucleus: get me out of here! Cell Cycle 10(6), 922–925 (2011).
  • Bernards R. It’s diagnostics, stupid. Cell 141(1), 13–17 (2010).
  • Clark MB, Johnston RL, Inostroza-Ponta M et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22(5), 885–898 (2012).
  • Tani H, Mizutani R, Salam KA et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22(5), 947–956 (2012).
  • Gupta RA, Shah N, Wang KC et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291), 1071–1076 (2010).
  • Kogo R, Shimamura T, Mimori K et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71(20), 6320–6326 (2011).
  • Yang Z, Zhou L, Wu LM et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol. 18(5), 1243–1250 (2011).
  • Matouk IJ, Abbasi I, Hochberg A, Galun E, Dweik H, Akkawi M. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur. J. Gastroenterol. Hepatol. 21(6), 688–692 (2009).
  • Panzitt K, Tschernatsch MM, Guelly C et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132(1), 330–342 (2007).
  • Tinzl M, Marberger M, Horvath S, Chypre C. DD3PCA3 RNA analysis in urine – a new perspective for detecting prostate cancer. Eur. Urol. 46(2), 182–186; discussion 187 (2004).
  • Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31(43), 4577–4587 (2012).
  • Reis EM, Verjovski-Almeida S. Perspectives of long non-coding RNAs in cancer diagnostics. Front. Genet. 3, 32 (2012).
  • Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS ONE 6(6), e20769 (2011).
  • Pritchard CC, Kroh E, Wood B et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev. Res. (Phila.) 5(3), 492–497 (2012).
  • Kim DJ, Linnstaedt S, Palma J et al. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J. Mol. Diagn. 14(1), 71–80 (2012).
  • McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin. Chem. 57(6), 833–840 (2011).
  • Weber JA, Baxter DH, Zhang S et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56(11), 1733–1741 (2010).
  • Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry. A 77(6), 502–514 (2010).
  • Arroyo JD, Chevillet JR, Kroh EM et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108(12), 5003–5008 (2011).
  • Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39(16), 7223–7233 (2011).
  • Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38(20), 7248–7259 (2010).
  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13(4), 423–433 (2011).
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9(6), 654–659 (2007).
  • van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell. Mol. Neurobiol. 31(6), 949–959 (2011).
  • Nilsson J, Skog J, Nordstrand A et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100(10), 1603–1607 (2009).
  • Gibb EA, Vucic EA, Enfield KS et al. Human cancer long non-coding RNA transcriptomes. PLoS ONE 6(10), e25915 (2011).
  • Lorenzen JM, Thum T. Circulating and urinary microRNAs in kidney disease. Clin. J. Am. Soc. Nephrol. 7(9), 1528–1533 (2012).
  • Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N, Gazouli M. Circulating MicroRNA in inflammatory bowel disease. J. Crohns. Colitis 6(9), 900–904 (2012).
  • Wang G, Tam LS, Li EK et al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus 20(5), 493–500 (2011).
  • Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L. Circulating microRNAs involved in multiple sclerosis. Mol. Biol. Rep. 39(5), 6219–6225 (2012).
  • Wu L, Zhou H, Lin H et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction 143(3), 389–397 (2012).
  • Fu Y, Yi Z, Wu X, Li J, Xu F. Circulating microRNAs in patients with active pulmonary tuberculosis. J. Clin. Microbiol. 49(12), 4246–4251 (2011).
  • Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE 6(8), e23937 (2011).
  • Ji F, Yang B, Peng X, Ding H, You H, Tien P. Circulating microRNAs in hepatitis B virus-infected patients. J. Viral Hepat. 18(7), e242–e251 (2011).
  • de Planell-Saguer M, Rodicio MC. Analytical aspects of microRNA in diagnostics: a review. Anal. Chim. Acta 699(2), 134–152 (2011).
  • Küppers R. The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer 9(1), 15–27 (2009).
  • Defrancesco L. Life Technologies promises $1,000 genome. Nat. Biotechnol. 30(2), 126 (2012).
  • Salminen WF, Yang X, Shi Q, Mendrick D. Using microRNA as biomarkers of drug-induced liver injury. J. Mol. Biomark. Diagn. 2(6), 119 (2011).
  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6(11), 857–866 (2006).
  • Halvorsen M, Martin JS, Broadaway S, Laederach A. Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet. 6(8), e1001074 (2010).
  • Richardson K, Lai CQ, Parnell LD, Lee YC, Ordovas JM. A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genomics 12, 504 (2011).
  • Shen J, Ambrosone CB, Zhao H. Novel genetic variants in microRNA genes and familial breast cancer. Int. J. Cancer 124(5), 1178–1182 (2009).
  • Srivastava K, Srivastava A, Mittal B. Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J. Hum. Genet. 55(8), 495–499 (2010).
  • Xing J, Wan S, Zhou F et al. Genetic polymorphisms in pre-microRNA genes as prognostic markers of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 21(1), 217–227 (2012).
  • Xu B, Feng NH, Li PC et al. A functional polymorphism in pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70(5), 467–472 (2010).
  • Yang R, Schlehe B, Hemminki K et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res. Treat. 121(3), 693–702 (2010).
  • Zeng Y, Sun QM, Liu NN et al. Correlation between pre-miR-146a C/G polymorphism and gastric cancer risk in Chinese population. World J. Gastroenterol. 16(28), 3578–3583 (2010).
  • Luo X, Yang W, Ye DQ et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 7(6), e1002128 (2011).
  • Xu J, Hu Z, Xu Z et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 30(8), 1231–1236 (2009).
  • Xu Y, Li F, Zhang B et al. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr. Res. 119(1–3), 219–227 (2010).
  • Zhou B, Rao L, Peng Y et al. Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clin. Chim. Acta 411(17–18), 1287–1290 (2010).
  • Blitzblau RC, Weidhaas JB. MicroRNA binding-site polymorphisms as potential biomarkers of cancer risk. Mol. Diagn. Ther. 14(6), 335–342 (2010).
  • Horikawa Y, Wood CG, Yang H et al. Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin. Cancer Res. 14(23), 7956–7962 (2008).
  • Rotunno M, Zhao Y, Bergen AW et al. Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br. J. Cancer 103(12), 1870–1874 (2010).
  • Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics 13, 44 (2012).
  • Yang R, Frank B, Hemminki K et al. SNPs in ultraconserved elements and familial breast cancer risk. Carcinogenesis 29(2), 351–355 (2008).
  • Broadbent HM, Peden JF, Lorkowski S et al.; PROCARDIS Consortium. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum. Mol. Genet. 17(6), 806–814 (2008).
  • Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6(12), e1001233 (2010).
  • Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6(4), e1000899 (2010).
  • Iacobucci I, Sazzini M, Garagnani P et al. A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk. Res. 35(8), 1052–1059 (2011).
  • Liu Y, Pan S, Liu L et al. A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population. PLoS ONE 7(4), e35145 (2012).
  • Pal P, Xi H, Guha S et al. Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. Prostate 69(14), 1548–1556 (2009).
  • Salinas CA, Kwon E, Carlson CS et al. Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 17(5), 1203–1213 (2008).
  • Prensner JR, Iyer MK, Balbin OA et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 29(8), 742–749 (2011).
  • Chung S, Nakagawa H, Uemura M et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 102(1), 245–252 (2011).
  • Sonkoly E, Bata-Csorgo Z, Pivarcsi A et al. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J. Biol. Chem. 280(25), 24159–24167 (2005).
  • Shirasawa S, Harada H, Furugaki K et al. SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease. Hum. Mol. Genet. 13(19), 2221–2231 (2004).
  • Bussemakers MJ, van Bokhoven A, Verhaegh GW et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59(23), 5975–5979 (1999).
  • Wang XS, Zhang Z, Wang HC et al. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin. Cancer Res. 12(16), 4851–4858 (2006).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 435(7043), 834–838 (2005).
  • Rosenfeld N, Aharonov R, Meiri E et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 26(4), 462–469 (2008).
  • Blenkiron C, Goldstein LD, Thorne NP et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8(10), R214 (2007).
  • Ueda T, Volinia S, Okumura H et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 11(2), 136–146 (2010).
  • Garzon R, Garofalo M, Martelli MP et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl Acad. Sci. USA 105(10), 3945–3950 (2008).
  • Navarro A, Gaya A, Martinez A et al. MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111(5), 2825–2832 (2008).
  • Dacic S, Kelly L, Shuai Y, Nikiforova MN. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod. Pathol. 23(12), 1577–1582 (2010).
  • Seike M, Goto A, Okano T et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc. Natl Acad. Sci. USA 106(29), 12085–12090 (2009).
  • Chan AS, Thorner PS, Squire JA, Zielenska M. Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between rhabdomyosarcoma subtypes. Oncogene 21(19), 3029–3037 (2002).
  • Calin GA, Ferracin M, Cimmino A et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353(17), 1793–1801 (2005).
  • Calin GA, Liu CG, Sevignani C et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101(32), 11755–11760 (2004).
  • Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 26(6), 851–858 (2007).
  • Yamada K, Kano J, Tsunoda H et al. Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci. 97(2), 106–112 (2006).
  • Ji P, Diederichs S, Wang W et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39), 8031–8041 (2003).
  • Schmidt LH, Spieker T, Koschmieder S et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J. Thorac. Oncol. 6(12), 1984–1992 (2011).
  • Lai MC, Yang Z, Zhou L et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med. Oncol. 29(3), 1810–1816 (2012).
  • Scaruffi P, Stigliani S, Moretti S et al. Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 9, 441 (2009).
  • Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs – the micro steering wheel of tumour metastases. Nat. Rev. Cancer 9(4), 293–302 (2009).
  • Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet 369(9574), 1742–1757 (2007).
  • Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J. Int. Med. Res. 39(6), 2119–2128 (2011).
  • Niinuma T, Suzuki H, Nojima M et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 72(5), 1126–1136 (2012).
  • Xu C, Yang M, Tian J, Wang X, Li Z. MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int. J. Oncol. 39(1), 169–175 (2011).
  • Tahira AC, Kubrusly MS, Faria MF et al. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer 10, 141 (2011).
  • Permuth-Wey J, Thompson RC, Burton Nabors L et al. A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J. Neurooncol. 105(3), 639–646 (2011).
  • Luo J, Cai Q, Wang W et al. A microRNA-7 binding site polymorphism in HOXB5 leads to differential gene expression in bladder cancer. PLoS ONE 7(6), e40127 (2012).
  • Smits KM, Paranjape T, Nallur S et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in early-stage colorectal cancer. Clin. Cancer Res. 17(24), 7723–7731 (2011).
  • Hu Z, Shu Y, Chen Y et al. Genetic polymorphisms in the precursor microRNA flanking region and non-small cell lung cancer survival. Am. J. Respir. Crit. Care Med. 183(5), 641–648 (2011).
  • Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist. Updat. 10(1–2), 59–67 (2007).
  • Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther. 17(8), 523–531 (2010).
  • Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK, Kakar SS. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J. Ovarian Res. 4(1), 17 (2011).
  • Preis M, Gardner TB, Gordon SR et al. MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin. Cancer Res. 17(17), 5812–5821 (2011).
  • Nishida N, Yamashita S, Mimori K et al. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann. Surg. Oncol. 19(9), 3065–3071 (2012).
  • Giovannetti E, Funel N, Peters GJ et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 70(11), 4528–4538 (2010).
  • Hwang JH, Voortman J, Giovannetti E et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS ONE 5(5), e10630 (2010).
  • Moriyama T, Ohuchida K, Mizumoto K et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8(5), 1067–1074 (2009).
  • Shi GH, Ye DW, Yao XD et al. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol. Sin. 31(7), 867–873 (2010).
  • Li Y, Li W, Yang Y et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res. 1286, 13–18 (2009).
  • Tao J, Lu Q, Wu D et al. microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol. Rep. 25(6), 1721–1729 (2011).
  • Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K. Stem cell marker (Nanog) and Stat-3 signaling promote microRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 31(2), 149–160 (2012).
  • Jung EJ, Santarpia L, Kim J et al. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 118(10), 2603–2614 (2012).
  • Wang H, Tan G, Dong L et al. Circulating miR-125b as a marker predicting chemoresistance in breast cancer. PLoS ONE 7(4), e34210 (2012).
  • Zhou M, Liu Z, Zhao Y et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem. 285(28), 21496–21507 (2010).
  • Kong F, Sun C, Wang Z et al. miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1. J. Huazhong Univ. Sci. Technol. Med. Sci. 31(4), 543–549 (2011).
  • Shi L, Zhang S, Feng K et al. MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int. J. Oncol. 40(1), 119–129 (2012).
  • Zhang H, Luo XQ, Feng DD et al. Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia. Mol. Cancer 10, 108 (2011).
  • Weiss GJ, Bemis LT, Nakajima E et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann. Oncol. 19(6), 1053–1059 (2008).
  • Fellenberg J, Bernd L, Delling G, Witte D, Zahlten-Hinguranage A. Prognostic significance of drug-regulated genes in high-grade osteosarcoma. Mod. Pathol. 20(10), 1085–1094 (2007).
  • Tsang WP, Wong TW, Cheung AH, Co CN, Kwok TT. Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA 13(6), 890–898 (2007).
  • Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene 26(33), 4877–4881 (2007).
  • Ren Y, Zhou X, Mei M et al. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 10, 27 (2010).
  • Zhang S, Wan Y, Pan T et al. MicroRNA-21 inhibitor sensitizes human glioblastoma U251 stem cells to chemotherapeutic drug temozolomide. J. Mol. Neurosci. 47(2), 346–356 (2012).
  • Teo MT, Landi D, Taylor CF et al. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 33(3), 581–586 (2012).
  • Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc. Natl Acad. Sci. USA 104(33), 13513–13518 (2007).
  • Wu Y, Xiao Y, Ding X et al. A miR-200b/200c/429-binding site polymorphism in the 3′ untranslated region of the AP-2a gene is associated with cisplatin resistance. PLoS ONE 6(12), e29043 (2011).
  • Boni V, Zarate R, Villa JC et al. Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharmacogenomics J. 11(6), 429–436 (2011).
  • Global Atlas on Cardiovascular Disease Prevention and Control. Mendis S, Puska P, Norrving B (Eds). WHO, Geneva, Switzerland (2011).
  • Roger VL, Go AS, Lloyd-Jones DM et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125(1), 188–197 (2012).
  • Catalucci D, Gallo P, Condorelli G. MicroRNAs in cardiovascular biology and heart disease. Circ. Cardiovasc. Genet. 2(4), 402–408 (2009).
  • Chen JF, Murchison EP, Tang R et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA 105(6), 2111–2116 (2008).
  • Hulsmans M, Sinnaeve P, Van der Schueren B, Mathieu C, Janssens S, Holvoet P. Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. J. Clin. Endocrinol. Metab. 97(7), E1213–E1218 (2012).
  • Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M. A cellular microRNA, let-7i, is a novel biomarker for clinical outcome in patients with dilated cardiomyopathy. J. Card. Fail. 17(11), 923–929 (2011).
  • Weng H, Shen C, Hirokawa G et al. Plasma miR-124 as a biomarker for cerebral infarction. Biomed. Res. 32(2), 135–141 (2011).
  • Widera C, Gupta SK, Lorenzen JM et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol. Cell. Cardiol. 51(5), 872–875 (2011).
  • Xiao J, Jing ZC, Ellinor PT et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J. Transl. Med. 9, 159 (2011).
  • Zeng L, Liu J, Wang Y et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front. Biosci. (Elite Ed.) 3, 1265–1272 (2011).
  • Kawashima T, Shioi T. MicroRNA, emerging role as a biomarker of heart failure. Circ. J. 75(2), 268–269 (2011).
  • Holdt LM, Teupser D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler. Thromb. Vasc. Biol. 32(2), 196–206 (2012).
  • Holdt LM, Beutner F, Scholz M et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol. 30(3), 620–627 (2010).
  • Liu Y, Sanoff HK, Cho H et al. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS ONE 4(4), e5027 (2009).
  • Zhang W, Chen Y, Liu P et al. Variants on chromosome 9p21.3 correlated with ANRIL expression contribute to stroke risk and recurrence in a large prospective stroke population. Stroke 43(1), 14–21 (2012).
  • Ishii N, Ozaki K, Sato H et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet. 51(12), 1087–1099 (2006).
  • Furer V, Greenberg JD, Attur M, Abramson SB, Pillinger MH. The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin. Immunol. 136(1), 1–15 (2010).
  • Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. J. Autoimmun. 32(3–4), 189–194 (2009).
  • Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res. 157(4), 163–179 (2011).
  • Haywood ME, Rose SJ, Horswell S et al. Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun. 7(3), 250–263 (2006).
  • Johanneson B, Lima G, von Salomé J, Alarcón-Segovia D, Alarcón-Riquelme ME; Collaborative Group on the Genetics of SLE, The BIOMED II Collaboration on the Genetics of SLE and Sjögrens syndrome. A major susceptibility locus for systemic lupus erythematosus maps to chromosome 1q31. Am. J. Hum. Genet. 71(5), 1060–1071 (2002).
  • Tsao BP. The genetics of human systemic lupus erythematosus. Trends Immunol. 24(11), 595–602 (2003).
  • Tsao BP. Update on human systemic lupus erythematosus genetics. Curr. Opin. Rheumatol. 16(5), 513–521 (2004).
  • Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu. Rev. Neurosci. 29, 77–103 (2006).
  • Omahen DA. MicroRNA and diseases of the nervous system. Neurosurgery 69(2), 440–454 (2011).
  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA 105(2), 716–721 (2008).
  • Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol. Dis. 46(2), 245–254 (2012).
  • Kohtz JD, Berghoff EG. Regulatory long non-coding RNAs and neuronal disorders. Physiol. Behav. 100(3), 250–254 (2010).
  • Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res. 1338, 20–35 (2010).
  • Tan H, Xu Z, Jin P. Role of noncoding RNAs in trinucleotide repeat neurodegenerative disorders. Exp. Neurol. 235(2), 469–475 (2012).
  • Decourt B, Sabbagh MN. BACE1 as a potential biomarker for Alzheimer’s disease. J. Alzheimers Dis. 24(Suppl. 2), 53–59 (2011).
  • Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6(3), 131–144 (2010).
  • Cogswell JP, Ward J, Taylor IA et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis. 14(1), 27–41 (2008).
  • Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. Cerebrospinal fluid biomarkers for Alzheimer’s disease: the present and the future. Neurodegener. Dis. 8(6), 413–420 (2011).
  • Schipper HM, Maes OC, Chertkow HM, Wang E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul. Syst. Bio. 1, 263–274 (2007).
  • Schütz S, Sarnow P. Interaction of viruses with the mammalian RNA interference pathway. Virology 344(1), 151–157 (2006).
  • Roberts AP, Lewis AP, Jopling CL. The role of microRNAs in viral infection. Prog. Mol. Biol. Transl. Sci. 102, 101–139 (2011).
  • Sun G, Rossi JJ. MicroRNAs and their potential involvement in HIV infection. Trends Pharmacol. Sci. 32(11), 675–681 (2011).
  • Sun R, Lin SF, Gradoville L, Miller G. Polyadenylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA 93(21), 11883–11888 (1996).
  • Zhong W, Ganem D. Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8). J. Virol. 71(2), 1207–1212 (1997).
  • Peng X, Gralinski L, Armour CD et al. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio 1(5), pii: e00206-10 (2010).
  • Isakov O, Ronen R, Kovarsky J et al. Novel insight into the non-coding repertoire through deep sequencing analysis. Nucleic Acids Res. 40(11), e86 (2012).
  • Galasso M, Sana ME, Volinia S. Non-coding RNAs: a key to future personalized molecular therapy? Genome Med. 2(2), 12 (2010).
  • Elmén J, Lindow M, Schütz S et al. LNA-mediated microRNA silencing in non-human primates. Nature 452(7189), 896–899 (2008).
  • Esau CC. Inhibition of microRNA with antisense oligonucleotides. Methods 44(1), 55–60 (2008).
  • Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068), 685–689 (2005).
  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4(9), 721–726 (2007).
  • Deiters A. Small molecule modifiers of the microRNA and RNA interference pathway. AAPS J. 12(1), 51–60 (2010).
  • Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 70(18), 7027–7030 (2010).
  • Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 32(4), 199–206 (2009).
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962), 198–201 (2010).
  • Janssen HL, Reesink HW, Zeuzem S et al. A randomized, double-blind, placebo (PLB) controlled safety and anti-viral proof of concept study of miravirsen (MIR), an oligonucleotide targeting miR-122, in treatment naive patients with genotype 1 (GT1) chronic HCV infection. Hepatology 54(S1), 1430A (2011).
  • Fiedler J, Gupta SK, Thum T. MicroRNA-based therapeutic approaches in the cardiovascular system. Cardiovasc. Ther. 30(1), e9–e15 (2012).
  • Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9(10), 775–789 (2010).
  • Ruberti F, Barbato C, Cogoni C. Targeting microRNAs in neurons: tools and perspectives. Exp. Neurol. 235(2), 419–426 (2012).
  • Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin. Biol. Ther. 8(1), 59–81 (2008).
  • Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol. Med. 4(1), 3–14 (2012).
  • Goldstein DB. Growth of genome screening needs debate. Nature 476(7358), 27–28 (2011).
  • Aharonov RT, Rosenwald S, Edmonston TB et al. A second-generation microRNA-based assay for diagnosing tumor tissue origin. Presented at: ASCO Meeting. 29(Suppl. 15), Abstract 10575 (2011).
  • Edmonston TB, Gibori H, Kushnir M et al. New microRNA-based diagnostic test for lung cancer classification. Presented at: ASCO Meeting. 29(Suppl. 15), Abstract 10531 (2011).
  • Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH. Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin. Cancer Res. 16(2), 610–619 (2010).
  • Lebanony D, Benjamin H, Gilad S et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J. Clin. Oncol. 27(12), 2030–2037 (2009).
  • Benjamin H, Lebanony D, Rosenwald S et al. A diagnostic assay based on microRNA expression accurately identifies malignant pleural mesothelioma. J. Mol. Diagn. 12(6), 771–779 (2010).
  • Fridman E, Dotan Z, Barshack I et al. Accurate molecular classification of renal tumors using microRNA expression. J. Mol. Diagn. 12(5), 687–696 (2010).
  • De La Taille A. Progensa PCA3 test for prostate cancer detection. Expert Rev. Mol. Diagn. 7(5), 491–497 (2007).
  • Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543), 858–862 (2001).
  • Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14(1), 35–42 (2008).
  • Gupta A, Mo YY. Detection of microRNAs in cultured cells and paraffin-embedded tissue specimens by in situ hybridization. Methods Mol. Biol. 676, 73–83 (2011).
  • Hanna JA, Wimberly H, Kumar S, Slack F, Agarwal S, Rimm DL. Quantitative analysis of microRNAs in tissue microarrays by in situ hybridization. BioTechniques 52(4), 235–245 (2012).
  • Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3(1), 27–29 (2006).
  • Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE 4(7), e6229 (2009).
  • Roderburg C, Mollnow T, Bongaerts B et al. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS ONE 7(3), e32999 (2012).
  • Schrauder MG, Strick R, Schulz-Wendtland R et al. Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS ONE 7(1), e29770 (2012).
  • Zhao B, Jin L, Wei J et al. A simple and fast method for profiling microRNA expression from low-input total RNA by microarray. IUBMB Life 64(7), 612–616 (2012).
  • Tang X, Gal J, Zhuang X, Wang W, Zhu H, Tang G. A simple array platform for microRNA analysis and its application in mouse tissues. RNA 13(10), 1803–1822 (2007).
  • Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50(4), 244–249 (2010).
  • Chugh P, Tamburro K, Dittmer DP. Profiling of pre-micro RNAs and microRNAs using quantitative real-time PCR (qPCR) arrays. J. Vis. Exp. (46), pii:2210 (2010).
  • Jensen SG, Lamy P, Rasmussen MH et al. Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12, 435 (2011).
  • Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R. Involvement of miRNA in erythroid differentiation. Epigenomics 4(1), 51–65 (2012).
  • Heneghan HM, Miller N, Kerin MJ. Circulating miRNA signatures: promising prognostic tools for cancer. J. Clin. Oncol. 28(29), e573–e574; author reply e575 (2010).
  • Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr. Opin. Pharmacol. 10(5), 543–550 (2010).
  • Hu Z, Dong J, Wang LE et al. Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis 33(4), 828–834 (2012).
  • Brase JC, Johannes M, Schlomm T et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer 128(3), 608–616 (2011).
  • Wang Y, Zheng D, Tan Q, Wang MX, Gu LQ. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 6(10), 668–674 (2011).
  • Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndic M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5(11), 807–814 (2010).
  • Chan HM, Chan LS, Wong RN, Li HW. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy. Anal. Chem. 82(16), 6911–6918 (2010).
  • Neely LA, Patel S, Garver J et al. A single-molecule method for the quantitation of microRNA gene expression. Nat. Methods 3(1), 41–46 (2006).
  • Gao Z, Yang Z. Detection of microRNAs using electrocatalytic nanoparticle tags. Anal. Chem. 78(5), 1470–1477 (2006).
  • Gao Z, Yu YH. Direct labeling microRNA with an electrocatalytic moiety and its application in ultrasensitive microRNA assays. Biosens. Bioelectron. 22(6), 933–940 (2007).
  • Peng Y, Gao Z. Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Anal. Chem. 83(3), 820–827 (2011).
  • Cissell KA, Deo SK. Trends in microRNA detection. Anal. Bioanal. Chem. 394(4), 1109–1116 (2009).
  • Zhang GJ, Chua JH, Chee RE, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24(8), 2504–2508 (2009).
  • Sioss JA, Bhiladvala RB, Pan W et al. Nanoresonator chip-based RNA sensor strategy for detection of circulating tumor cells: response using PCA3 as a prostate cancer marker. Nanomedicine 8(6), 1017–1025 (2012).
  • Robertson KL, Vora GJ. Locked nucleic acid flow cytometry-fluorescence in situ hybridization (LNA flow-FISH): a method for bacterial small RNA detection. J. Vis. Exp. 59, e3655 (2012).
  • Driskell JD, Primera-Pedrozo OM, Dluhy RA, Zhao Y, Tripp RA. Quantitative surface-enhanced Raman spectroscopy based analysis of microRNA mixtures. Appl. Spectrosc. 63(10), 1107–1114 (2009).
  • Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK. Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal. Chem. 80(7), 2319–2325 (2008).
  • Fang S, Lee HJ, Wark AW, Corn RM. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J. Am. Chem. Soc. 128(43), 14044–14046 (2006).
  • Nasheri N, Cheng J, Singaravelu R, Wu P, McDermott MT, Pezacki JP. An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19. Anal. Biochem. 412(2), 165–172 (2011).
  • Sípová H, Zhang S, Dudley AM, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal. Chem. 82(24), 10110–10115 (2010).
  • Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew. Chem. Int. Ed. Engl. 47(4), 644–652 (2008).
  • Dong H, Zhang J, Ju H et al. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal. Chem. 84(10), 4587–4593 (2012).
  • Alhasan AH, Kim DY, Daniel WL et al. Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates. Anal. Chem. 84(9), 4153–4160 (2012).
  • Jiang L, Duan D, Shen Y, Li J. Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens. Bioelectron. 34(1), 291–295 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.