178
Views
23
CrossRef citations to date
0
Altmetric
Perspective

Copper in Alzheimer’s disease: too much or too little?

, , &
Pages 631-637 | Published online: 09 Jan 2014

References

  • Brewer GJ. The risks of free copper in the body and the development of useful anticopper drugs. Curr. Opin. Clin. Nutr. Metab. Care11(6), 727–732 (2008).
  • Brewer GJ. Copper in medicine. Curr. Opin. Chem. Biol.7(2), 207–212 (2003).
  • Brewer GJ, Askari FK. Wilson’s disease: clinical management and therapy. J. Hepatol.42(Suppl. 1), S13–S21 (2005).
  • Brewer GJ, Hedera P, Kluin KJ et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy. Arch. Neurol.60(3), 379–385 (2003).
  • Brewer GJ, Askari F, Lorincz MT et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch. Neurol.63(4), 521–527 (2006).
  • Brewer GJ. Zinc acetate for the treatment of Wilson’s disease. Expert Opin. Pharmacother.2(9), 1473–1477 (2001).
  • Cheah DM, Deal YJ, Wright PF et al. Heterozygous tx mice have an increased sensitivity to copper loading: implications for Wilson’s disease carriers. Biometals20(5), 751–757 (2007).
  • Kumar N, Low PA. Myeloneuropathy and anemia due to copper malabsorption. J. Neurol.251(6), 747–749 (2004).
  • Kumar N, Crum B, Petersen RC, Vernino SA, Ahlskog JE. Copper deficiency myelopathy. Arch. Neurol.61(5), 762–766 (2004).
  • Kumar N, Gross JB Jr, Ahlskog JE. Copper deficiency myelopathy produces a clinical picture like subacute combined degeneration. Neurology63(1), 33–39 (2004).
  • Kumar N. Copper deficiency myelopathy (human swayback). Mayo Clin. Proc.81(10), 1371–1384 (2006).
  • Gambling L, Andersen HS, McArdle HJ. Iron and copper, and their interactions during development. Biochem. Soc. Trans.36(Pt 6), 1258–1261 (2008).
  • Maynard CJ, Cappai R, Volitakis I et al. Overexpression of Alzheimer’s disease amyloid-β opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem.277(47), 44670–44676 (2002).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297(5580), 353–356 (2002).
  • Phinney AL, Drisaldi B, Schmidt SD et al.In vivo reduction of amyloid-β by a mutant copper transporter. Proc. Natl Acad. Sci. USA100(24), 14193–14198 (2003).
  • Bayer TA, Schafer S, Simons A et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice. Proc. Natl Acad. Sci. USA100(24), 14187–14192 (2003).
  • Bellingham SA, Lahiri DK, Maloney B, La Fontaine S, Multhaup G, Camakaris J. Copper depletion down-regulates expression of the Alzheimer’s disease amyloid-β precursor protein gene. J. Biol. Chem.279(19), 20378–20386 (2004).
  • Sparks DL, Schreurs BG. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease. Proc. Natl Acad. Sci. USA100(19), 11065–11069 (2003).
  • Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. J. Biol. Inorg. Chem.9(8), 954–960 (2004).
  • Cherny RA, Atwood CS, Xilinas ME et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron30(3), 665–676 (2001).
  • Opazo C, Huang X, Cherny RA et al. Metalloenzyme-like activity of Alzheimer’s disease β-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J. Biol. Chem.277(43), 40302–40308 (2002).
  • Puglielli L, Friedlich AL, Setchell KD et al. Alzheimer disease β-amyloid activity mimics cholesterol oxidase. J. Clin. Invest.115(9), 2556–2563 (2005).
  • Crouch PJ, Blake R, Duce JA et al. Copper-dependent inhibition of human cytochrome C oxidase by a dimeric conformer of amyloid-β1–42. J. Neurosci.25(3), 672–679 (2005).
  • House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J. Alzheimers Dis.6(3), 291–301 (2004).
  • Exley C. Aluminium and iron, but neither copper nor zinc, are key to the precipitation of β-sheets of Aβ-42 in senile plaque cores in Alzheimer’s disease. J. Alzheimers Dis.10(2–3), 173–177 (2006).
  • Khan A, Dobson JP, Exley C. Redox cycling of iron by Aβ42. Free Radic. Biol. Med.40, 557–569 (2006).
  • Schuessel K, Schafer S, Bayer TA et al. Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol. Dis.18(1), 89–99 (2005).
  • Treiber C, Simons A, Strauss M et al. Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. J. Biol. Chem.279(50), 51958–51964 (2004).
  • White AR, Du T, Laughton KM et al. Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity. J. Biol. Chem.281(26), 17670–17680 (2006).
  • Cater MA, McInnes KT, Li QX et al. Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms. Biochem. J.412(1), 141–152 (2008).
  • Brewer GJ, Dick R, Ullenbruch MR, Jin H, Phan SH. Inhibition of key cytokines by tetrathiomolybdate in the bleomycin model of pulmonary fibrosis. J. Inorg. Biochem.98(12), 2160–2167 (2004).
  • Brewer GJ, Dick RD, Grover DK et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clin. Cancer Res.6(1), 1–10 (2000).
  • Wadsworth TL, Bishop JA, Domes CM, Ralle M, Brewer G, Quinn JF. Copper complexing with tetrathiomolybdate in a murine model of Alzheimer’s disease. Society for Neuroscience Abstracts (2007).
  • Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J. Neurol. Sci.143(1–2), 137–142 (1996).
  • Loeffler DA, LeWitt PA, Juneau PL et al. Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res.738(2), 265–274 (1996).
  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci.158(1), 47–52 (1998).
  • Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J. Synchrotron-based infrared and x-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer's disease. J. Struct. Biol.155(1), 30–37 (2006).
  • Connor JR, Tucker P, Johnson M, Snyder B. Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease. Neurosci. Lett.159(1–2), 88–90 (1993).
  • Squitti R, Barbati G, Rossi L et al. Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF β-amyloid, and h-tau. Neurology67(1), 76–82 (2006).
  • Capo CR, Arciello M, Squitti R et al. Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer’s disease patients. Biometals21(3), 367–372 (2008).
  • Molina JA, Jimenez-Jimenez FJ, Aguilar MV et al. Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural Transm.105(4–5), 479–488 (1998).
  • Squitti R, Lupoi D, Pasqualetti P et al. Elevation of serum copper levels in Alzheimer’s disease. Neurology59(8), 1153–1161 (2002).
  • Squitti R, Pasqualetti P, Cassetta E et al. Elevation of serum copper levels discriminates Alzheimer’s disease from vascular dementia. Neurology60(12), 2013–2014 (2003).
  • Squitti R, Pasqualetti P, Dal Forno G et al. Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology64(6), 1040–1046 (2005).
  • Squitti R, Ventriglia M, Barbati G et al. ‘Free’ copper in serum of Alzheimer’s disease patients correlates with markers of liver function. J. Neural Transm.114(12), 1589–1594 (2007).
  • Pajonk FG, Kessler H, Supprian T et al. Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate Alzheimer’s disease. J. Alzheimers Dis.8(1), 23–27 (2005).
  • Kessler H, Pajonk FG, Meisser P et al. Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer‘s disease. J. Neural Transm.113(11), 1763–1769 (2006).
  • Ritchie CW, Bush AI, Mackinnon A et al. Metal–protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot Phase 2 clinical trial. Arch. Neurol.60(12), 1685–1691 (2003).
  • Tabira T. Clioquinol’s return: cautions from Japan. Science292(5525), 2251–2252 (2001).
  • Lannfelt L, Blennow K, Zetterberg H et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a Phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol.7(9), 779–786 (2008).
  • Kessler H, Bayer TA, Bach D et al. Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot Phase 2 clinical trial. J. Neural Transm.115(8), 1181–1187 (2008).
  • Kessler H, Pajonk FG, Bach D et al. Effect of copper intake on CSF parameters in patients with mild Alzheimer’s disease: a pilot Phase II clinical trial. J. Neural Transm.115(12), 1651–1659 (2008).
  • Squitti R, Rossini PM, Cassetta E et al.D-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur. J. Clin. Invest.32(1), 51–59 (2002)
  • González C, Martín T, Cacho J et al. Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein E allele carriers. Eur. J. Clin. Invest.29(7), 637–642 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.