385
Views
81
CrossRef citations to date
0
Altmetric
Review

Endophenotypes of obsessive–compulsive disorder: rationale, evidence and future potential

&
Pages 1133-1146 | Published online: 09 Jan 2014

References

  • Robins LN, Helzer JE, Weissman MM et al. Lifetime prevalence of specific psychiatric disorders in three sites. Arch. Gen. Psychiatry41(10), 949–958 (1984).
  • Weissman MM, Bland RC, Canino GJ et al. The cross national epidemiology of obsessive compulsive disorder: the Cross National Collaborative Group. J. Clin. Psychiatry (55 Suppl.), 5–10 (1994).
  • Diagnostic and Statistical Manual Fourth Edition DSM-IV-TR American Psychiatric Association, VA, USA (2000)
  • Mataix-Cols D, Rosario-Campos MC, Leckman JF. A multidimensional model of obsessive–compulsive disorder. Am. J. Psychiatry162(2), 228–238 (2005).
  • Baer L. Factor analysis of symptom subtypes of obsessive compulsive disorder and their relation to personality and tic disorders. J. Clin. Psychiatry55(Suppl.), 18–23 (1994).
  • Denys D, de Geus F, van Megen HJ, Westenberg HG. Symptom dimensions in obsessive–compulsive disorder: factor analysis on a clinician-rated scale and a self-report measure. Psychopathology37(4), 181–189 (2004).
  • Hasler G, Kazuba D, Murphy DL. Factor analysis of obsessive–compulsive disorder YBOCS-SC symptoms and association with 5-HTTLPR SERT polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(4), 403–408 (2006).
  • Bloch MH, Landeros-Weisenberger A, Rosario MC, Pittenger C, Leckman JF. Meta-analysis of the symptom structure of obsessive–compulsive disorder. Am. J. Psychiatry165(12), 1532–1542 (2008).
  • DuPont RL, Rice DP, Shiraki S, Rowland CR. Economic costs of obsessive–compulsive disorder. Med. Interface8(4), 102–109 (1995).
  • Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev.29(3), 399–419 (2005).
  • Carey G, Gottesman I. Twin and family studies of anxiety, phobic, and obsessive disorders. In: Anxiety: New Research and Changing Concepts. Klien DF, Rabkin J (Eds). Raven Press NY, USA 117–136 (1981).
  • Inoue K, Lupski JR. Genetics and genomics of behavioral and psychiatric disorders. Curr. Opin. Genet. Dev.13(3), 303–309 (2003).
  • Hudziak JJ, Van Beijsterveldt CE, Althoff RR et al. Genetic and environmental contributions to the Child Behavior Checklist Obsessive–Compulsive Scale: a cross-cultural twin study. Arch. Gen. Psychiatry61(6), 608–616 (2004).
  • van Grootheest DS, Cath DC, Beekman AT, Boomsma DI. Twin studies on obsessive–compulsive disorder: a review. Twin. Res. Hum. Genet.8(5), 450–458 (2005).
  • van Grootheest DS, Bartels M, Cath DC et al. Genetic and environmental contributions underlying stability in childhood obsessive–compulsive behavior. Biol. Psychiatry61(3), 308–315 (2007).
  • Pauls DL, Alsobrook JP 2nd, Goodman W, Rasmussen S, Leckman JF. A family study of obsessive–compulsive disorder. Am. J. Psychiatry152(1), 76–84 (1995).
  • do Rosario-Campos MC, Leckman JF, Curi M et al. A family study of early-onset obsessive–compulsive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.136B(1), 92–97 (2005).
  • Hettema JM, Neale MC, Kendler KS. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am. J. Psychiatry158(10), 1568–1578 (2001).
  • Nestadt G, Samuels J, Riddle M et al. A family study of obsessive–compulsive disorder. Arch. Gen. Psychiatry57(4), 358–363 (2000).
  • Pauls DL. The genetics of obsessive compulsive disorder: a review of the evidence. Am. J. Med. Genet. C Semin. Med. Genet.148(2), 133–139 (2008).
  • Hanna GL, Veenstra-VanderWeele J, Cox NJ et al. Genome-wide linkage analysis of families with obsessive–compulsive disorder ascertained through pediatric probands. Am. J. Med. Genet.114(5), 541–552 (2002).
  • Willour VL, Yao Shugart Y, Samuels J et al. Replication study supports evidence for linkage to 9p24 in obsessive–compulsive disorder. Am. J. Hum. Genet.75(3), 508–513 (2004).
  • Shugart YY, Samuels J, Willour VL et al. Genomewide linkage scan for obsessive–compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol. Psychiatry11(8), 763–770 (2006).
  • Hemmings SM, Stein DJ. The current status of association studies in obsessive–compulsive disorder. Psychiatr. Clin. North Am.29(2), 411–444 (2006).
  • Bloch MH, Landeros-Weisenberger A, Sen S et al. Association of the serotonin transporter polymorphism and obsessive–compulsive disorder: systematic review. Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(6), 850–858 (2008).
  • Alonso P, Gratacos M, Menchon JM et al. Extensive genotyping of the BDNF and NTRK2 genes define proective haplotypes against obsessive–compulsive disorder. Biol. Psychiatry63(6), 619–628 (2008).
  • Arnold PD, Sicard T, Burroughs E, Richter MA, Kennedy JL. Glutamate transporter gene SLC1A1 associated with obsessive–compulsive disorder. Arch. Gen. Psychiatry63(7), 769–776 (2006).
  • Stewart SE, Fagerness JA, Platko J et al. Association of the SLC1A1 glutamate transporter gene and obsessive–compulsive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(8), 1027–1033 (2007).
  • Dickel DE, Veenstra-VanderWeele J, Cox NJ et al. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive–compulsive disorder. Arch. Gen. Psychiatry63(7), 778–785 (2006).
  • Grados MA, Walkup J, Walford S. Genetics of obsessive–compulsive disorders: new findings and challenges. Brain Dev.25(Suppl. 1), S55–S61 (2003).
  • Riordan JR, Rommens JM, Kerem B et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science245(4922), 1066–1073 (1989).
  • Bear CE, Li CH, Kartner N et al. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell68(4), 809–818 (1992).
  • Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N. Engl. J. Med.352(19), 1992–2001 (2005).
  • Ratjen F, Doring G. Cystic fibrosis. Lancet361(9358), 681–689 (2003).
  • Mayer-Hamblett N, Ramsey BW, Kronmal RA. Advancing outcome measures for the new era of drug development in cystic fibrosis. Proc. Am. Thorac. Soc.4(4), 370–377 (2007).
  • Insel TR, Collins FS. Psychiatry in the genomics era. Am. J. Psychiatry160(4), 616–620 (2003).
  • Chamberlain SR, Muller U, Robbins TW, Sahakian BJ. Neuropharmacological modulation of cognition. Curr. Opin. Neurol.19(6), 607–712 (2006).
  • Chamberlain SR, Sahakian B. Neuropsychological assessment of mood disorder. Clin. Neuropsych. Journ. Treat. Eval.2(3), 137–148 (2005).
  • Chamberlain SR, Sahakian BJ. The neuropsychiatry of impulsivity. Curr. Opin. Psychiatry20(3), 255–261 (2007).
  • Chamberlain SR, Sahakian BJ. The neuropsychology of mood disorders. Curr. Psychiatry Rep.8(6), 458–463 (2006).
  • Thompson PM, Cannon TD, Narr KL et al. Genetic influences on brain structure. Nat. Neurosci.4(12), 1253–1258 (2001).
  • Toga AW, Thompson PM. Genetics of brain structure and intelligence. Annu. Rev. Neurosci.28, 1–23 (2005).
  • Wright IC, Sham P, Murray RM, Weinberger DR, Bullmore ET. Genetic contributions to regional variability in human brain structure: methods and preliminary results. Neuroimage17(1), 256–271 (2002).
  • John B, Lewis KR. Chromosome variability and geographic distribution in insects. Science152, 711–721 (1966).
  • Gottesman II, Shields J. A polygenic theory of schizophrenia. Proc. Natl Acad. Sci. USA58(1), 199–205 (1967).
  • Gottesman II, Shields J. Genetic theorizing and schizophrenia. Br. J. Psychiatry122(566), 15–30 (1973).
  • Burmeister M, McInnis MG, Zollner S. Psychiatric genetics: progress amid controversy. Nat. Rev. Genet.9(7), 527–540 (2008).
  • Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry160(4), 636–645 (2003).
  • Bearden CE, Freimer NB. Endophenotypes for psychiatric disorders: ready for primetime?. Trends Genet.22(6), 306–313 (2006).
  • Oh G, Petronis A. Environmental studies of schizophrenia through the prism of epigenetics. Schizophr. Bull.34(6), 1122–1129 (2008).
  • Ho BC, Epping E, Wang K et al. Basic helix–loop–helix transcription factor NEUROG1 and schizophrenia: effects on illness susceptibility, MRI brain morphometry and cognitive abilities. Schizophr. Res.106(2–3), 192–199 (2008).
  • Flint J, Munafo MR. The endophenotype concept in psychiatric genetics. Psychol. Med.37(2), 163–180 (2007).
  • Keating M, Atkinson D, Dunn C et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science252(5006), 704–706 (1991).
  • Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell104(4), 569–580 (2001).
  • Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N. Engl. J. Med.327(12), 846–852 (1992).
  • Roy N, Kahlem P, Dausse E et al. Exclusion of HRAS from long QT locus. Nat. Genet.8(2), 113–114 (1994).
  • Wang Q, Curran ME, Splawski I et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet.12(1), 17–23 (1996).
  • Palmer LJ, Burton PR, James AL, Musk AW, Cookson WO. Familial aggregation and heritability of asthma-associated quantitative traits in a population-based sample of nuclear families. Eur. J. Hum. Genet.8(11), 853–860 (2000).
  • Zhang Y, Leaves NI, Anderson GG et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. Genet.34(2), 181–186 (2003).
  • Anderson GG, Leaves NI, Bhattacharyya S et al. Positive association to IgE levels and a physical map of the 13q14 atopy locus. Eur. J. Hum. Genet.10(4), 266–270 (2002).
  • Greenwood TA, Braff DL, Light GA et al. Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch. Gen. Psychiatry64(11), 1242–1250 (2007).
  • Dick DM, Jones K, Saccone N et al. Endophenotypes successfully lead to gene identification: results from the collaborative study on the genetics of alcoholism. Behav. Genet.36(1), 112–126 (2006).
  • Beatty J, Laughlin RE. Genomic regulation of natural variation in cortical and noncortical brain volume. BMC Neurosci.7, 16 (2006).
  • Bearden CE, Reus VI, Freimer NB. Why genetic investigation of psychiatric disorders is so difficult. Curr. Opin. Genet. Dev.14(3), 280–286 (2004).
  • Siegel C, Waldo M, Mizner G, Adler LE, Freedman R. Deficits in sensory gating in schizophrenic patients and their relatives. Evidence obtained with auditory evoked responses. Arch. Gen. Psychiatry41(6), 607–612 (1984).
  • Freedman R, Coon H, Myles-Worsley M et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc. Natl Acad. Sci. USA94(2), 587–592 (1997).
  • Olincy A, Harris JG, Johnson LL et al. Proof-of-concept trial of an a7 nicotinic agonist in schizophrenia. Arch. Gen. Psychiatry63(6), 630–638 (2006).
  • Edenberg HJ, Dick DM, Xuei X et al. Variations in GABRA2, encoding the a2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Hum. Genet.74(4), 705–714 (2004).
  • Wang JC, Hinrichs AL, Stock H et al. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum. Mol. Genet.13(17), 1903–1911 (2004).
  • Breiter HC, Rauch SL. Functional MRI and the study of OCD: from symptom provocation to cognitive–behavioral probes of cortico-striatal systems and the amygdala. Neuroimage4(3 Pt 3), S127–S138 (1996).
  • Evans DW, Lewis MD, Iobst E. The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive–compulsive disorder. Brain Cogn.55(1), 220–234 (2004).
  • Friedlander L, Desrocher M. Neuroimaging studies of obsessive–compulsive disorder in adults and children. Clin. Psychol. Rev.26(1), 32–49 (2006).
  • Greisberg S, McKay D. Neuropsychology of obsessive–compulsive disorder: a review and treatment implications. Clin. Psychol. Rev.23(1), 95–117 (2003).
  • Jenike MA. An update on obsessive–compulsive disorder. Bull. Menninger Clin.65(1), 4–25 (2001).
  • Kuelz AK, Hohagen F, Voderholzer U. Neuropsychological performance in obsessive–compulsive disorder: a critical review. Biol. Psychol.65(3), 185–236 (2004).
  • Saxena S, Bota RG, Brody AL. Brain–behavior relationships in obsessive–compulsive disorder. Semin. Clin. Neuropsychiatry6(2), 82–101 (2001).
  • Saxena S, Brody AL, Schwartz JM, Baxter LR. Neuroimaging and frontal-subcortical circuitry in obsessive–compulsive disorder. Br. J. Psychiatry35(Suppl.), 26–37 (1998).
  • Whiteside SP, Port JD, Abramowitz JS. A meta-analysis of functional neuroimaging in obsessive–compulsive disorder. Psychiatry Res.132(1), 69–79 (2004).
  • Fontenelle LF, Mendlowicz MV, Paulo M, Marcio V. Neuropsychological findings in obsessive–compulsive disorder and its potential implications for treatment. Curr. Psychiatry Rep.2(1), 11–26 (2006).
  • Sheehan DV, Lecrubier Y, Sheehan KH et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry59(Suppl. 20), 22–33; quiz 34–57 (1998).
  • Chamberlain SR, Fineberg NA, Blackwell AD, Robbins TW, Sahakian BJ. Motor inhibition and cognitive flexibility in obsessive–compulsive disorder and trichotillomania. Am. J. Psychiatry163(7), 1282–1284 (2006).
  • Aron AR, Durston S, Eagle DM et al. Converging evidence for a fronto–basal-ganglia network for inhibitory control of action and cognition. J. Neurosci.27(44), 11860–11864 (2007).
  • Chamberlain SR, Del Campo N, Dowson J et al. Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol. Psychiatry62, 977–984 (2007).
  • Chamberlain SR, Muller U, Blackwell AD et al. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science311(5762), 861–863 (2006).
  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci.6(2), 115–116 (2003).
  • Sawle GV, Hymas NF, Lees AJ, Frackowiak RS. Obsessional slowness. Functional studies with positron emission tomography. Brain114(Pt 5), 2191–2202 (1991).
  • Baxter LR Jr, Phelps ME, Mazziotta JC et al. Local cerebral glucose metabolic rates in obsessive–compulsive disorder: a comparison with rates in unipolar depression and in normal controls. Arch. Gen. Psychiatry44(3), 211–218 (1987).
  • Baxter LR Jr, Schwartz JM, Mazziotta JC et al. Cerebral glucose metabolic rates in nondepressed patients with obsessive–compulsive disorder. Am. J. Psychiatry145(12), 1560–1563 (1988).
  • Nordahl TE, Benkelfat C, Semple WE et al. Cerebral glucose metabolic rates in obsessive compulsive disorder. Neuropsychopharmacology2(1), 23–28 (1989).
  • Swedo SE, Schapiro MB, Grady CL et al. Cerebral glucose metabolism in childhood-onset obsessive–compulsive disorder. Arch. Gen. Psychiatry46(6), 518–523 (1989).
  • McGuire PK, Bench CJ, Frith CD et al. Functional anatomy of obsessive–compulsive phenomena. Br. J. Psychiatry164(4), 459–468 (1994).
  • Rauch SL, Jenike MA, Alpert NM et al. Regional cerebral blood flow measured during symptom provocation in obsessive–compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry51(1), 62–70 (1994).
  • Cottraux J, Gerard D, Cinotti L et al. A controlled positron emission tomography study of obsessive and neutral auditory stimulation in obsessive–compulsive disorder with checking rituals. Psychiatry Res.60(2–3), 101–112 (1996).
  • Aylward EH, Harris GJ, Hoehn-Saric R et al. Normal caudate nucleus in obsessive–compulsive disorder assessed by quantitative neuroimaging. Arch. Gen. Psychiatry53(7), 577–584 (1996).
  • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci.9, 357–381 (1986).
  • Lawrence AD, Sahakian BJ, Robbins TW. Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends Cogn. Sci.2(10), 379–388 (1998).
  • Saxena S. Neuroimaging and the pathophysiology of obsessive–compulsive disorder (OCD). In: Neuroimaging in Psychiatry. Fu C, Senior C, Russell T, Weinberger D, Murray R (Eds). Martin Dunitz, UK (2003)
  • Szeszko PR, Robinson D, Alvir JM et al. Orbital frontal and amygdala volume reductions in obsessive–compulsive disorder. Arch. Gen. Psychiatry56(10), 913–919 (1999).
  • Choi JS, Kang DH, Kim JJ et al. Left anterior subregion of orbitofrontal cortex volume reduction and impaired organizational strategies in obsessive–compulsive disorder. J. Psychiatr. Res.38(2), 193–199 (2004).
  • Kang DH, Kim JJ, Choi JS et al. Volumetric investigation of the frontal–subcortical circuitry in patients with obsessive–compulsive disorder. J. Neuropsychiatry. Clin. Neurosci.16(3), 342–349 (2004).
  • Atmaca M, Yildirim BH, Ozdemir BH et al. Volumetric MRI assessment of brain regions in patients with refractory obsessive–compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry30(6), 1051–1057 (2006).
  • Atmaca M, Yildirim H, Ozdemir H, Tezcan E, Poyraz AK. Volumetric MRI study of key brain regions implicated in obsessive–compulsive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry31(1), 46–52 (2007).
  • Robinson D, Wu H, Munne RA et al. Reduced caudate nucleus volume in obsessive–compulsive disorder. Arch. Gen. Psychiatry52(5), 393–398 (1995).
  • Rosenberg DR, Keshavan MS, O’Hearn KM et al. Frontostriatal measurement in treatment-naive children with obsessive–compulsive disorder. Arch. Gen. Psychiatry54(9), 824–830 (1997).
  • Szeszko PR, MacMillan S, McMeniman M et al. Brain structural abnormalities in psychotropic drug-naive pediatric patients with obsessive–compulsive disorder. Am. J. Psychiatry161(6), 1049–1056 (2004).
  • Scarone S, Colombo C, Livian S et al. Increased right caudate nucleus size in obsessive–compulsive disorder: detection with magnetic resonance imaging. Psychiatry Res.45(2), 115–121 (1992).
  • Valente AA Jr, Miguel EC, Castro CC et al. Regional gray matter abnormalities in obsessive–compulsive disorder: a voxel-based morphometry study. Biol. Psychiatry58(6), 479–487 (2005).
  • Kim JJ, Lee MC, Kim J et al. Gray matter abnormalities in obsessive–compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br. J. Psychiatry179, 330–334 (2001).
  • Pujol J, Soriano-Mas C, Alonso P et al. Mapping structural brain alterations in obsessive–compulsive disorder. Arch. Gen. Psychiatry61(7), 720–730 (2004).
  • van den Heuvel OA, Remijnse PL, Mataix-Cols D et al. The major symptom dimensions of obsessive–compulsive disorder are mediated by partially distinct neural systems. Brain132(4), 853–868 (2008).
  • Remijnse PL, Nielen MM, van Balkom AJ et al. Reduced orbitofrontal–striatal activity on a reversal learning task in obsessive–compulsive disorder. Arch. Gen. Psychiatry63(11), 1225–1236 (2006).
  • van den Heuvel OA, Veltman DJ, Groenewegen HJ et al. Frontal-striatal dysfunction during planning in obsessive–compulsive disorder. Arch. Gen. Psychiatry62(3), 301–309 (2005).
  • Maltby N, Tolin DF, Worhunsky P, O’Keefe TM, Kiehl KA. Dysfunctional action monitoring hyperactivates frontal–striatal circuits in obsessive–compulsive disorder: an event-related fMRI study. Neuroimage24(2), 495–503 (2005).
  • Laird AR, Fox PM, Price CJ et al. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum. Brain Mapp.25(1), 155–164 (2005).
  • Menzies L, Chamberlain SR, Laird AR et al. Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: The orbitofronto–striatal model revisited. Neurosci. Biobehav. Rev.32(3), 525–549 (2008).
  • Soriano-Mas C, Pujol J, Alonso P et al. Identifying patients with obsessive–compulsive disorder using whole-brain anatomy. Neuroimage35(3), 1028–1037 (2007).
  • Harrison BJ, Yucel M, Shaw M et al. Evaluating brain activity in obsessive–compulsive disorder: preliminary insights from a multivariate analysis. Psychiatry Res.147(2–3), 227–231 (2006).
  • McIntosh AR, Bookstein FL, Haxby JV, Grady CL. Spatial pattern analysis of functional brain images using partial least squares. Neuroimage3(3 Pt 1), 143–157 (1996).
  • McIntosh AR, Lobaugh NJ. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage23(Suppl. 1), S250–S263 (2004).
  • Menzies L, Achard S, Chamberlain SR et al. Neurocognitive endophenotypes of obsessive–compulsive disorder. Brain130(Pt 12), 3223–3236 (2007).
  • Gould TD, Gottesman II. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav.5(2), 113–119 (2005).
  • Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK. Toward constructing an endophenotype strategy for bipolar disorders. Biol. Psychiatry60(2), 93–105 (2006).
  • Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ. Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of OCD patients: on the trail of endophenotypes. Am. J. Psychiatry164(2), 335–338 (2006).
  • Delorme R, Gousse V, Roy I et al. Shared executive dysfunctions in unaffected relatives of patients with autism and obsessive–compulsive disorder. Eur. Psychiatry22(1), 32–38 (2007).
  • Menzies L, Williams GB, Chamberlain SR et al. White matter abnormalities in patients with obsessive–compulsive disorder and their first-degree relatives. Am. J. Psychiatry165(10), 1308–1315 (2008).
  • Hampshire A, Owen AM. Fractionating attentional control using event-related fMRI. Cereb. Cortex16(12), 1679–1689 (2006).
  • Chamberlain SR, Menzies L, Hampshire A et al. Orbitofrontal dysfunction in patients with obsessive–compulsive disorder and their unaffected relatives. Science321(5887), 421–422 (2008).
  • Mataix-Cols D, Wooderson S, Lawrence N et al. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive–compulsive disorder. Arch. Gen. Psychiatry61(6), 564–576 (2004).
  • Slaats-Willemse D, Swaab-Barneveld H, de Sonneville L, van der Meulen E, Buitelaar J. Deficient response inhibition as a cognitive endophenotype of ADHD. J. Am. Acad. Child Adolesc. Psychiatry42(10), 1242–1248 (2003).
  • Chamberlain SR, Fineberg NA, Menzies LA et al. Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of patients with obsessive–compulsive disorder. Am. J. Psychiatry164(2), 335–338 (2007).
  • Geller D, Petty C, Vivas F et al. Further evidence for cosegregation between pediatric obsessive compulsive disorder and attention deficit hyperactivity disorder: a familial risk analysis. Biol. Psychiatry61(12), 1388–1394 (2007).
  • Geller D, Petty C, Vivas F et al. Examining the relationship between obsessive–compulsive disorder and attention-deficit/hyperactivity disorder in children and adolescents: a familial risk analysis. Biol. Psychiatry61(3), 316–321 (2007).
  • van Grootheest DS, Boomsma DI, Hettema JM, Kendler KS. Heritability of obsessive–compulsive symptom dimensions. Am. J. Med. Genet. B Neuropsychiatr. Genet.147B(4), 473–478 (2008).
  • Van Grootheest DS, Cath DC, Beekman AT, Boomsma DI. Genetic and environmental influences on obsessive–compulsive symptoms in adults: a population-based twin-family study. Psychol. Med.37(11), 1635–1644 (2007).
  • Hollander E, Cohen LJ. Psychobiology and psychopharmacology of compulsive spectrum disorders. In: Impulsivity and Compulsivity. Oldham JM, Hollander E, Skodol AE (Eds). American Psychiatric Press Inc., WA, USA 143–164 (1996).
  • Hollander E, Kim S, Khanna S, Pallanti S. Obsessive–compulsive disorder and obsessive–compulsive spectrum disorders: diagnostic and dimensional issues. CNS Spectr.12(2 Suppl. 3), 5–13 (2007).
  • Stein DJ, Hollander E. Obsessive–compulsive spectrum disorders. J. Clin. Psychiatry56(6), 265–266 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.