404
Views
37
CrossRef citations to date
0
Altmetric
Theme: Mood disorders - Review

Pharmacogenetics of antidepressant response

&
Pages 101-125 | Published online: 09 Jan 2014

References

  • Murray CJL, Lopez AD. The global burden of disease: a comprehensive assessment of mortality, injuries, and risk factors in1990 and projected to 2020. In: Global Burden of Disease and Injury Series, Volume I. Harvard School of Public Health, MA, USA (1996).
  • Doris A, Ebmeier K, Shajahan P. Depressive illness. Lancet354(9187), 1369–1375 (1999).
  • Demyttenaere K, Van GE, Gregoire J, Gaens E, Mesters P. Compliance in depressed patients treated with fluoxetine or amitriptyline. Belgian Compliance Study Group. Int. Clin. Psychopharmacol.13(1), 11–17 (1998).
  • Uher R, Farmer A, Henigsberg N et al. Adverse reactions to antidepressants. Br. J. Psychiatry195(3), 202–210 (2009).
  • Angst J. [Effect of antidepressives and genetic factors]. Arzneimittelforschung14(Suppl.), 500 (1964).
  • Pare CM, Rees L, Sainsbury MJ. Differentiation of two genetically specific types of depression by the response to anti-depressants. Lancet2(7270), 1340–1343 (1962).
  • O’Reilly RL, Bogue L, Singh SM. Pharmacogenetic response to antidepressants in a multicase family with affective disorder. Biol. Psychiatry36(7), 467–471 (1994).
  • Franchini L, Serretti A, Gasperini M, Smeraldi E. Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J. Psychiatr. Res.32(5), 255–259 (1998).
  • Vesell ES. Pharmacogenetic perspectives gained from twin and family studies. Pharmacol. Ther.41(3), 535–552 (1989).
  • Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther. Drug Monit.22(2), 202–208 (2000).
  • Dalen P, Dahl ML, Bernal Ruiz ML, Nordin J, Bertilsson L. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin. Pharmacol. Ther.63(4), 444–452 (1998).
  • Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br. J. Clin. Pharmacol.41(2), 149–156 (1996).
  • Fukuda T, Nishida Y, Zhou Q, Yamamoto I, Kondo S, Azuma J. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur. J. Clin. Pharmacol.56(2), 175–180 (2000).
  • Sindrup SH, Brosen K, Gram LF et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin. Pharmacol. Ther.51(3), 278–287 (1992).
  • Ozdemir V, Tyndale RF, Reed K et al. Paroxetine steady-state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J. Clin. Psychopharmacol.19(5), 472–475 (1999).
  • de Vos A, van der Weide J, Loovers HM. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J. DOI: 10.1038/tpj.2010.39 (2010) (Epub ahead of print).
  • Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin. Pharmacol. Ther.83(2), 322–327 (2008).
  • Huezo-Diaz P, Perroud N, Spencer E et al. Effect of CYP2C19 genotype on steady-state escitalopram level in GENDEP. J. Psychopharmacol. (2010) (In press).
  • Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther.116(3), 496–526 (2007).
  • Sjoqvist F, Eliasson E. The convergence of conventional therapeutic drug monitoring and pharmacogenetic testing in personalized medicine: focus on antidepressants. Clin. Pharmacol. Ther.81(6), 899–902 (2007).
  • Steimer W, Zopf K, von Amelunxen S et al. Amitriptyline or not, that is the question: Pharmacogenetic testing of CYP2D6 and CYP219 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin. Chem.51(2), 376–385 (2005).
  • Lessard E, Yessine MA, Hamelin BA, O’Hara G, LeBlanc J, Turgeon J. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics Genom.9(4), 435–443 (1999).
  • Kirchheiner J, Nickchen K, Bauer M et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry9(5), 442–473 (2004).
  • Pfuhlmann B, Gerlach M, Burger R et al. Therapeutic drug monitoring of tricyclic antidepressants in everyday clinical practice. J. Neural Transm. Suppl (72), 287–296 (2007).
  • Ulrich S, Lauter J. Comprehensive survey of the relationship between serum concentration and therapeutic effect of amitriptyline in depression. Clin. Pharmacokinet.41(11), 853–876 (2002).
  • Rasmussen BB, Brosen K. Is therapeutic drug monitoring for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors? Ther. Drug Monit.22(2), 143–154 (2000).
  • Reis M, Lundmark J, Bengtsson F. Therapeutic drug monitoring of racemic citalopram: a 5-year experience in Sweden, 1992–1997. Ther. Drug Monit.25(2), 183–191 (2003).
  • Grasmader K, Verwohlt PL, Rietschel M et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur. J. Clin. Pharmacol.60(5), 329–336 (2004).
  • Murphy GM Jr, Kremer C, Rodrigues HE, Schatzberg AF. Pharmacogenetics of antidepressant medication intolerance. Am. J. Psychiatry160(10), 1830–1835 (2003).
  • Peters EJ, Slager SL, Kraft JB et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One3(4), e1872 (2008).
  • Serretti A, Calati R, Massat I et al. Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int. Clin. Psychopharmacol.24(5), 250–256 (2009).
  • Keers R, Uher R, Rietschel M et al.CYP2D6 and CYP2C19 genotype predicts antidepressant dose in the GENDEP project. Eur. Neuropsychopharmacol.20(Suppl. 1), S70 (2010).
  • Keers R, Ingelman-Sundberg M, Hauser J et al.CYP2D6 genotype predicts antidepressant dose in the GENDEP project. Eur. Neuropsychopharmacol.20(Suppl. 3), S172 (2010).
  • Ejsing TB, Linnet K. Influence of P-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood–brain barrier. Hum. Psychopharmacol.20(2), 149–153 (2005).
  • Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol. Psychiatry54(8), 840–846 (2003).
  • Kimchi-Sarfaty C, Gribar JJ, Gottesman MM. Functional characterization of coding polymorphisms in the human MDR1 gene using a vaccinia virus expression system. Mol. Pharmacol.62(1), 1–6 (2002).
  • Hoffmeyer S, Burk O, von Richter O et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl Acad. Sci. USA97(7), 3473–3478 (2000).
  • Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther.112(2), 457–473 (2006).
  • Gex-Fabry M, Eap CB, Oneda B et al.CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther. Drug Monit.30(4), 474–482 (2008).
  • Kato M, Fukuda T, Serretti A et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry32(2), 398–404 (2008).
  • Nikisch G, Eap CB, Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol. Res.58(5–6), 344–347 (2008).
  • Mihaljevic PA, Bozina N, Sagud M, Rojnic KM, Lovric M. MDR1 gene polymorphism: therapeutic response to paroxetine among patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry32(6), 1439–1444 (2008).
  • Uhr M, Tontsch A, Namendorf C et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron57, 203–209 (2008).
  • Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy GM Jr. ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet. Genomics20(8), 467–475 (2010).
  • Smeraldi E, Zanardi R, Benedetti F, Di BD, Perez J, Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol. Psychiatry3(6), 508–511 (1998).
  • Kim DK, Lim SW, Lee S et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport11(1), 215–219 (2000).
  • Pollock BG, Ferrell RE, Mulsant BH et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology23(5), 587–590 (2000).
  • Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E. Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J. Clin. Psychopharmacol.20(1) (2000).
  • Zanardi R, Serretti A, Rossini D et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol. Psychiatry50(5), 323–330 (2001).
  • Ito K, Yoshida K, Sato K et al. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res.111(2–3), 235–239 (2002).
  • Rausch JL, Johnson ME, Fei YJ et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol. Psychiatry51(9), 723–732 (2002).
  • Yoshida K, Ito K, Sato K et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry26(2), 383–386 (2002).
  • Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ. Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol. Psychiatry7(10), 1115–1119 (2002).
  • Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J. Clin. Psychopharmacol.23(6), 563–567 (2003).
  • Joyce PR, Mulder RT, Luty SE et al. Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein β3 subunit as predictors of response to fluoxetine and nortriptyline. Int. J. Neuropsychopharmacol.6(4), 339–346 (2003).
  • Perlis RH, Mischoulon D, Smoller JW et al. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol. Psychiatry54(9), 879–883 (2003).
  • Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl.)174(4), 525–529 (2004).
  • Lee MS, Lee HY, Lee HJ, Ryu SH. Serotonin transporter promoter gene polymorphism and long-term outcome of antidepressant treatment. Psychiatr. Genet.14(2), 111–115 (2004).
  • Murphy GM. Pharmacogeneties in geriatric major depression. J. Affect. Disord.78, S35–S36 (2004).
  • Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol. Psychiatry9(9), 879–889 (2004).
  • Serretti A, Cusin C, Rossini D, Artioli P, Dotoli D, Zanardi R. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet.129B(1), 36–40 (2004).
  • Yoshida K, Takahashi H, Higuchi H et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am. J. Psychiatry161(9), 1575–1580 (2004).
  • Kraft JB, Slager SL, McGrath PJ, Hamilton SP. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol. Psychiatry58(5), 374–381 (2005).
  • Hong CJ, Chen TJ, Yu YW, Tsai SJ. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J.6(1), 27–33 (2006).
  • Kato M, Fukuda T, Wakeno M et al. Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology53(4), 186–195 (2006).
  • Kim H, Lim SW, Kim S et al. Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA296(13), 1609–1618 (2006).
  • Ng CH, Easteal S, Tan S, Schweitzer I, Ho BK, Aziz S. Serotonin transporter polymorphisms and clinical response to sertraline across ethnicities. Prog. Neuropsychopharmacol. Biol. Psychiatry30(5), 953–957 (2006).
  • Popp J, Leucht S, Heres S, Steimer W. Serotonin transporter polymorphisms and side effects in antidepressant therapy – a pilot study. Pharmacogenomics7(2), 159–166 (2006).
  • Hu XZ, Rush AJ, Charney D et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch. Gen. Psychiatry64(7), 783–792 (2007).
  • Kang RH, Wong ML, Choi MJ, Paik JW, Lee MS. Association study of the serotonin transporter promoter polymorphism and mirtazapine antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry31(6), 1317–1321 (2007).
  • Kirchheiner J, Nickchen K, Sasse J, Bauer M, Roots I, Brockmoller J. A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J.7(1), 48–55 (2007).
  • Kraft JB, Peters EJ, Slager SL et al. Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol. Psychiatry61(6), 734–742 (2007).
  • Bozina N, Peles AM, Sagud M, Bilusic H, Jakovljevic M. Association study of paroxetine therapeutic response with SERT gene polymorphisms in patients with major depressive disorder. World J. Biol. Psychiatry9(3), 190–197 (2008).
  • Dogan O, Yuksel N, Ergun MA et al. Serotonin transporter gene polymorphisms and sertraline response in major depression patients. Genet. Test.12(2), 225–231 (2008).
  • Mrazek DA, Rush AJ, Biernacka JM et al. SLC6A4 variation and citalopram response. Am. J. Med. Genet. B Neuropsychiatr. Genet.150B(3), 341–351 (2008).
  • Huezo-Diaz P, Uher R, Smith R et al. Moderation of antidepressant response by the serotonin transporter gene. Br. J. Psychiatry195(1), 30–38 (2009).
  • Maron E, Tammiste A, Kallassalu K et al. Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur. Neuropsychopharmacol.19(6), 451–456 (2009).
  • Ruhe HG, Ooteman W, Booij J et al. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder. Pharmacogenet. Genomics19(1), 67–76 (2009).
  • Wilkie MJ, Smith G, Day RK et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics. J.9(1), 61–70 (2009).
  • Baffa A, Hohoff C, Baune BT et al. Norepinephrine and serotonin transporter genes: impact on treatment response in depression. Neuropsychobiology62(2), 121–131 (2010).
  • Lee SH, Choi TK, Lee E et al. Serotonin transporter gene polymorphism associated with short-term treatment response to venlafaxine. Neuropsychobiology62(3), 198–206 (2010).
  • Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol. Psychiatry67(11), 1110–1113 (2010).
  • Dong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican–Americans. Mol. Psychiatry14(12), 1105–1118 (2009).
  • Uher R, Huezo-Diaz P, Perroud N et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J.9(4), 225–233 (2009).
  • Heils A, Teufel A, Petri S et al. Allelic variation of human serotonin transporter gene expression. J. Neurochem.66(6), 2621–2624 (1996).
  • Hu XZ, Lipsky RH, Zhu G et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive–compulsive disorder. Am. J. Hum. Genet.78(5), 815–826 (2006).
  • Serretti A, Kato M, De RD, Kinoshita T. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol. Psychiatry12(3), 247–257 (2007).
  • Taylor MJ, Sen S, Bhagwagar Z. Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biol. Psychiatry68(6), 536–43 (2010).
  • Delbruck SJ, Wendel B, Grunewald I et al. A novel allelic variant of the human serotonin transporter gene regulatory polymorphism. Cytogenet. Cell Genet.79(3–4), 214–220 (1997).
  • Gelernter J, Kranzler H, Cubells JF. Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African– and European–American and Japanese populations and in alcohol-dependent subjects. Hum. Genet.101(2), 243–246 (1997).
  • Keers R, Aitchison KJ. Gender differences in antidepressant drug response. Int. Rev. Psychiatry22(5), 1–16 (2010).
  • Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br. J. Pharmacol.151(6), 737–748 (2007).
  • Schomig E, Fischer P, Schonfeld CL, Trendelenburg U. The extent of neuronal re-uptake of 3H-noradrenaline in isolated vasa deferentia and atria of the rat. Naunyn Schmiedebergs Arch. Pharmacol.340(5), 502–508 (1989).
  • Leonard BE. The role of noradrenaline in depression: a review. J. Psychopharmacol.11(4 Suppl.), S39-S47 (1997).
  • Ressler KJ, Nemeroff CB. Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biol. Psychiatry46(9), 1219–1233 (1999).
  • Porzgen P, Bonisch H, Hammermann R, Bruss M. The human noradrenaline transporter gene contains multiple polyadenylation sites and two alternatively spliced C-terminal exons. Biochim. Biophys. Acta1398(3), 365–370 (1998).
  • Kim CH, Kim HS, Cubells JF, Kim KS. A previously undescribed intron and extensive 5’ upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J. Biol. Chem.274(10), 6507–6518 (1999).
  • Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol. Sci.15(7), 220–226 (1994).
  • Drevets WC, Thase ME, Moses-Kolko EL et al. Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl. Med. Biol.34(7), 865–877 (2007).
  • Drevets WC. Neuroimaging studies of mood disorders. Biol. Psychiatry48(8), 813–829 (2000).
  • Leysen JE. 5-HT2 receptors. Curr. Drug Targets. CNS Neurol. Disord.3(1), 11–26 (2004).
  • Papolos DF, Yu YM, Rosenbaum E, Lachman HM. Modulation of learned helplessness by 5-hydroxytryptamine2A receptor antisense oligodeoxynucleotides. Psychiatry Res.63(2–3), 197–203 (1996).
  • Minov C, Baghai TC, Schule C et al. Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci. Lett.303(2), 119–122 (2001).
  • Cusin C, Serretti A, Zanardi R et al. Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int. J. Neuropsychopharmacol.5(1), 27–35 (2002).
  • Sato K, Yoshida K, Takahashi H et al. Association between -1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology46(3), 136–140 (2002).
  • Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res.1118(1), 176–182 (2006).
  • McMahon FJ, Buervenich S, Charney D et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am. J. Hum. Genet.78(5), 804–814 (2006).
  • Kang RH, Choi MJ, Paik JW, Hahn SW, Lee MS. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int. J. Psychiatry Med.37, 315–329 (2007).
  • Horstmann S, Lucae S, Menke A et al. Association of GRIK4 and HTR2A genes with antidepressant treatment in the MARS cohort of depressed inpatients. Eur. Neuropsychopharmacol.18, S214–S215 (2008).
  • Illi A, Setala-Soikkeli E, Viikki M et al. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport20(12), 1125–1128 (2009).
  • Kishi T, Yoshimura R, Kitajima T et al.HTR2A is associated with SSRI response in major depressive disorder in a Japanese cohort. Neuromolecular. Med.12(3), 237–242 (2009).
  • Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol. Psychiatry65(9), 785–791 (2009).
  • Lucae S, Ising M, Horstmann S et al.HTR2A gene variation is involved in antidepressant treatment response. Eur. Neuropsychopharmacol.20(1), 65–68 (2010).
  • Lemonde S, Du L, Bakish D, Hrdina P, Albert PR. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int. J. Neuropsychopharmacol.7(4), 501–506 (2004).
  • Serretti A, Artioli P, Lorenzi C, Pirovano A, Tubazio V, Zanardi R. The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int. J. Neuropsychopharmacol.7(4), 453–460 (2004).
  • Suzuki Y, Sawamura K, Someya T. The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenomics J.4(4), 283–286 (2004).
  • Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. Evidence for a combined genetic effect of the 5-HT(1A) receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. J. Psychopharmacol.19(2), 166–172 (2005).
  • Parsey RV, Olvet DM, Oquendo MA, Huang YY, Ogden RT, Mann JJ. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology31(8), 1745–1749 (2006).
  • Yu YW, Tsai SJ, Liou YJ, Hong CJ, Chen TJ. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur. Neuropsychopharmacol.16(7), 498–503 (2006).
  • Levin GM, Bowles TM, Ehret MJ et al. Assessment of human serotonin 1A receptor polymorphisms and SSRI responsiveness. Mol. Diagn. Ther.11(3), 155–160 (2007).
  • Baune BT, Hohoff C, Roehrs T, Deckert J, Arolt V, Domschke K. Serotonin receptor 1A-1019C/G variant: impact on antidepressant pharmacoresponse in melancholic depression? Neurosci. Lett.436(2), 111–115 (2008).
  • Kato M, Fukuda T, Wakeno M et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet.150B(1), 115–123 (2009).
  • Parsons MJ, D’Souza UM, Arranz MJ, Kerwin RW, Makoff AJ. The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol. Psychiatry56(6), 406–410 (2004).
  • Choi MJ, Kang RH, Ham BJ, Jeong HY, Lee MS. Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology52(3), 155–162 (2005).
  • Horstmann S, Lucae S, Menke A et al. Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology35(3), 727–740 (2010).
  • Lin PI, Vance JM, Pericak-Vance MA, Martin ER. No gene is an island: the flip–flop phenomenon. Am. J. Hum. Genet.80(3), 531–538 (2007).
  • Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol. Psychiatry6(5), 586–592 (2001).
  • Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E. Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur. Neuropsychopharmacol.11(5), 375–380 (2001).
  • Yoshida K, Naito S, Takahashi H et al. Monoamine oxidase: a gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry26(7–8), 1279–1283 (2002).
  • Ham BJ, Lee MS, Lee HJ et al. No association between the tryptophan hydroxylase gene polymorphism and major depressive disorders and antidepressant response in a Korean population. Psychiatr. Genet.15(4), 299–301 (2005).
  • Ham BJ, Lee BC, Paik JW et al. Association between the tryptophan hydroxylase-1 gene A218C polymorphism and citalopram antidepressant response in a Korean population. Prog. Neuropsychopharmacol. Biol. Psychiatry31(1), 104–107 (2007).
  • Kato M, Wakeno M, Okugawa G et al. No association of TPH1 218A/C polymorphism with treatment response and intolerance to SSRIs in Japanese patients with major depression. Neuropsychobiology56(4), 167–171 (2007).
  • Viikki M, Kampman O, Illi A et al. TPH1 218A/C polymorphism is associated with major depressive disorder and its treatment response. Neurosci. Lett.468(1), 80–84 (2010).
  • Tzvetkov MV, Brockmoller J, Roots I, Kirchheiner J. Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet. Genomics18(6), 495–506 (2008).
  • Tsai SJ, Hong CJ, Liou YJ et al. Tryptophan hydroxylase 2 gene is associated with major depression and antidepressant treatment response. Prog. Neuropsychopharmacol. Biol. Psychiatry33(4), 637–641 (2009).
  • Szegedi A, Rujescu D, Tadic A et al. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J.5(1), 49–53 (2005).
  • Arias B, Serretti A, Lorenzi C, Gasto C, Catalan R, Fananas L. Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J. Affect. Disord.90(2–3), 251–256 (2006).
  • Baune BT, Hohoff C, Berger K et al. Association of the COMT val158met variant with antidepressant treatment response in major depression. Neuropsychopharmacology33(4), 924–932 (2008).
  • Yoshida K, Higuchi H, Takahashi H et al. Influence of the tyrosine hydroxylase val81met polymorphism and catechol-O-methyltransferase val158met polymorphism on the antidepressant effect of milnacipran. Hum. Psychopharmacol.23(2), 121–128 (2008).
  • Tsai SJ, Gau YT, Hong CJ, Liou YJ, Yu YW, Chen TJ. Sexually dimorphic effect of catechol-O-methyltransferase val158met polymorphism on clinical response to fluoxetine in major depressive patients. J. Affect. Disord.113(1–2), 183–187 (2009).
  • Benedetti F, Colombo C, Pirovano A, Marino E, Smeraldi E. The catechol-O-methyltransferase Val(108/158)Met polymorphism affects antidepressant response to paroxetine in a naturalistic setting. Psychopharmacology (Berl.)203(1), 155–160 (2009).
  • Benedetti F, Dallaspezia S, Colombo C, Lorenzi C, Pirovano A, Smeraldi E. Effect of catechol-O-methyltransferase Val(108/158)Met polymorphism on antidepressant efficacy of fluvoxamine. Eur. Psychiatry DOI: 10.1016/j.eurpsy.2009.12.007 (2010) (Epub ahead of print).
  • Muller DJ, Schulze TG, Macciardi F et al. Moclobemide response in depressed patients: association study with a functional polymorphism in the monoamine oxidase A promoter. Pharmacopsychiatry35(4), 157–158 (2002).
  • Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology30(9), 1719–1723 (2005).
  • Tadic A, Muller MJ, Rujescu D et al. The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(3), 325–331 (2007).
  • Domschke K, Hohoff C, Mortensen LS et al. Monoamine oxidase A variant influences antidepressant treatment response in female patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry32(1), 224–228 (2008).
  • Tzeng DS, Chien CC, Lung FW, Yang CY. MAOA gene polymorphisms and response to mirtazapine in major depression. Hum. Psychopharmacol.24(4), 293–300 (2009).
  • Tadic A, Rujescu D, Muller MJ et al. A monoamine oxidase B gene variant and short-term antidepressant treatment response. Prog. Neuropsychopharmacol Biol. Psychiatry31(7), 1370–1377 (2007).
  • Nielsen DA, Goldman D, Virkkunen M, Tokola R, Rawlings R, Linnoila M. Suicidality and 5-hydroxyindoleacetic acid concentration associated with a tryptophan hydroxylase polymorphism. Arch. Gen. Psychiatry51(1), 34–38 (1994).
  • Davidson JR, McLeod MN, Turnbull CD, White HL, Feuer EJ. Catechol-O-methyltransferase activity and classification of depression. Biol. Psychiatry14(6), 937–942 (1979).
  • Fava M, Rosenbaum JF, Kolsky AR et al. Open study of the catechol-O-methyltransferase inhibitor tolcapone in major depressive disorder. J. Clin. Psychopharmacol.19(4), 329–335 (1999).
  • Dempster EL, Mill J, Craig IW, Collier DA. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med. Genet.7, 10 (2006).
  • Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics6(3), 243–250 (1996).
  • Shih JC, Chen K, Ridd MJ. Monoamine oxidase: from genes to behavior. Annu.Rev.Neurosci.22, 197–217 (1999).
  • Meyer JH, Ginovart N, Boovariwala A et al. Elevated monoamine oxidase A levels in the brain: an explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry63(11), 1209–1216 (2006).
  • Henkel V, Mergl R, Allgaier AK, Kohnen R, Moller HJ, Hegerl U. Treatment of depression with atypical features: a meta-analytic approach. Psychiatry Res.141(1), 89–101 (2006).
  • Deckert J, Catalano M, Syagailo YV et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum. Mol. Genet.8(4), 621–624 (1999).
  • Leuchter AF, McCracken JT, Hunter AM, Cook IA, Alpert JE. Monoamine oxidase A and catechol-O-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J. Clin. Psychopharmacol.29(4), 372–377 (2009).
  • Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci.31(9), 464–468 (2008).
  • Pariante CM. The glucocorticoid receptor: part of the solution or part of the problem? J. Psychopharmacol.20(4 Suppl.), 79–84 (2006).
  • Binder EB, Salyakina D, Lichtner P et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet.36(12), 1319–1325 (2004).
  • Lekman M, Laje G, Charney D et al. The FKBP5-gene in depression and treatment response – an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol. Psychiatry63(12), 1103–1110 (2008).
  • Kirchheiner J, Lorch R, Lebedeva E et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics9(7), 841–846 (2008).
  • Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J. Affect. Disord.104(1–3), 83–90 (2007).
  • Tsai SJ, Hong CJ, Chen TJ, Yu YW. Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(8), 1097–1098 (2007).
  • Sarginson JE, Lazzeroni LC, Ryan HS, Schatzberg AF, Murphy GM Jr. FKBP5 polymorphisms and antidepressant response in geriatric depression. Am. J. Med. Genet. B Neuropsychiatr. Genet.153B(2), 554–560 (2010).
  • Licinio J, O’Kirwan F, Irizarry K et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican–Americans. Mol. Psychiatry9(12), 1075–1082 (2004).
  • Liu Z, Zhu F, Wang G et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci. Lett.414(2), 155–158 (2007).
  • Brouwer JP, Appelhof BC, van Rossum EF et al. Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression. Psychoneuroendocrinology31(10), 1154–1163 (2006).
  • van Rossum EF, Binder EB, Majer M et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol. Psychiatry59(8), 681–688 (2006).
  • Binder EB. The co-chaperone FKBP5, stress hormone system regulation and antidepressant drug response. Biol. Psychiatry61(8), 106S–106S (2007).
  • Stein DJ, Daniels WM, Savitz J, Harvey BH. Brain-derived neurotrophic factor: the neurotrophin hypothesis of psychopathology. CNS Spectr.13(11), 945–949 (2008).
  • Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong CJ. Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am. J. Med. Genet. B Neuropsychiatr. Genet.123B(1), 19–22 (2003).
  • Yoshida K, Higuchi H, Kamata M et al. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J. Psychopharmacol.21(6), 650–656 (2007).
  • Gratacos M, Soria V, Urretavizcaya M et al. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J.8(2), 101–112 (2008).
  • Licinio J, Dong C, Wong ML. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch. Gen. Psychiatry66(5), 488–497 (2009).
  • Chi MH, Chang HH, Lee SY et al. Brain derived neurotrophic factor gene polymorphism (Val66Met) and short-term antidepressant response in major depressive disorder. J. Affect. Disord.126(3), 430–435 (2010).
  • Domschke K, Lawford B, Laje G et al. Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment response. Int. J. Neuropsychopharmacol.13(1), 93–101 (2010).
  • Zou YF, Wang Y, Liu P et al. Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Hum. Psychopharmacol.25(2), 145–152 (2010).
  • Egan MF, Kojima M, Callicott JH et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell112(2), 257–269 (2003).
  • Perroud N, Aitchison KJ, Uher R et al. Genetic predictors of increase in suicidal ideation during antidepressant treatment in the GENDEP project. Neuropsychopharmacology34(12), 2517–2528 (2009).
  • Garriock HA, Kraft JB, Shyn SI et al. A genomewide association study of citalopram response in major depressive disorder. Biol. Psychiatry67(2), 133–138 (2010).
  • Ising M, Lucae S, Binder EB et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch. Gen. Psychiatry66(9), 966–975 (2009).
  • Uher R, Perroud N, Ng MY et al. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am. J. Psychiatry167(5), 555–564 (2010).
  • Ishii M, Maeda N. Oversulfated chondroitin sulfate plays critical roles in the neuronal migration in the cerebral cortex. J. Biol. Chem.283(47), 32610–32620 (2008).
  • Jetten AM, Kurebayashi S, Ueda E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog. Nucleic Acid Res. Mol. Biol.69, 205–247 (2001).
  • Uher R. The implications of gene–environment interactions in depression: will cause inform cure? Mol. Psychiatry13(12), 1070–1078 (2008).
  • Keers R, Uher R, Gupta B et al. Stressful life events, cognitive symptoms of depression and response to antidepressants in GENDEP. J. Affect. Disord.127(1–3), 337–342 (2010).
  • Keers R, Uher R, Huezo-Diaz P et al. Interaction between serotonin transporter gene variants and life events predicts response to antidepressants in the GENDEP project. Pharmacogenomics J. DOI: 10.1038/tpj.2010.14 (2010) (Epub ahead of print).
  • Reno RM, Halaris AE. The relationship between life stress and depression in an endogenous sample. Compr. Psychiatry31(1), 25–33 (1990).
  • Andrew B, Hawton K, Fagg J, Westbrook D. Do psychosocial factors influence outcome in severely depressed female psychiatric in-patients? Br. J. Psychiatry163, 747–754 (1993).
  • Mazure CM, Bruce ML, Maciejewski PK, Jacobs SC. Adverse life events and cognitive-personality characteristics in the prediction of major depression and antidepressant response. Am. J. Psychiatry157(6), 896–903 (2000).
  • Mandelli L, Serretti A, Marino E, Pirovano A, Calati R, Colombo C. Interaction between serotonin transporter gene, catechol-O-methyltransferase gene and stressful life events in mood disorders. Int. J. Neuropsychopharmacol.10(4), 437–447 (2007).
  • Drury SS, Theall KP, Smyke AT et al. Modification of depression by COMT val158met polymorphism in children exposed to early severe psychosocial deprivation. Child Abuse Negl.34(6), 387–395 (2010).
  • Hosang GM, Uher R, Keers R et al. Stressful life events and the brain-derived neurotrophic factor gene in bipolar disorder. J. Affect. Disord.125(1–3), 345–349 (2010).
  • Kim JM, Stewart R, Kim SW et al. Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol. Psychiatry62(5), 423–428 (2007).
  • Ressler KJ, Bradley B, Mercer KB et al. Polymorphisms in CRHR1 and the serotonin transporter loci: gene × gene × environment interactions on depressive symptoms. Am. J. Med. Genet. B Neuropsychiatr. Genet153B(3), 812–824 (2010).
  • Bradley RG, Binder EB, Epstein MP et al. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch. Gen. Psychiatry65(2), 190–200 (2008).
  • Beach SR, Brody GH, Gunter TD, Packer H, Wernett P, Philibert RA. Child maltreatment moderates the association of MAOA with symptoms of depression and antisocial personality disorder. J. Fam. Psychol.24(1), 12–20 (2010).
  • Kim-Cohen J, Caspi A, Taylor A et al. MAOA, maltreatment, and gene–environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol. Psychiatry11(10), 903–913 (2006).
  • Binder EB, Bradley RG, Liu W et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA299(11), 1291–1305 (2008).
  • Roy A, Gorodetsky E, Yuan Q, Goldman D, Enoch MA. Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology35(8), 1674–1683 (2010).
  • Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am. J. Psychiatry167(5), 509–527 (2010).
  • Caspi A, Sugden K, Moffitt TE et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science301(5631), 386–389 (2003).
  • Mandelli L, Marino E, Pirovano A et al. Interaction between SERTPR and stressful life events on response to antidepressant treatment. Eur. Neuropsychopharmacol.19(1), 64–67 (2009).
  • Bukh JD, Bock C, Vinberg M, Werge T, Gether U, Kessing LV. No interactions between genetic polymorphisms and stressful life events on outcome of antidepressant treatment. Eur. Neuropsychopharmacol.20(5), 327–335 (2010).
  • Montgomery SA. Clinically relevant effect sizes in depression. Eur. Neuropsychopharmacol.4(3), 283–284 (1994).
  • Mulder RT, Joyce PR, Frampton C. Relationships among measures of treatment outcome in depressed patients. J. Affect. Disord.76(1–3), 127–135 (2003).
  • Streiner DL. Breaking up is hard to do: the heartbreak of dichotomizing continuous data. Can. J. Psychiatry47(3), 262–266 (2002).
  • Lane P. Handling drop-out in longitudinal clinical trials: a comparison of the LOCF and MMRM approaches. Pharm. Stat.7(2), 93–106 (2008).
  • Quitkin FM, Rabkin JG, Ross D, Stewart JW. Identification of true drug response to antidepressants. Use of pattern analysis. Arch. Gen. Psychiatry41(8), 782–786 (1984).
  • Quitkin FM, Rabkin JD, Markowitz JM, Stewart JW, McGrath PJ, Harrison W. Use of pattern analysis to identify true drug response. A replication. Arch. Gen. Psychiatry44(3), 259–264 (1987).
  • Rietschel M, Kennedy JL, Macciardi F, Meltzer HY. Application of pharmacogenetics to psychotic disorders: the first consensus conference. The Consensus Group for Outcome Measures in Psychoses for Pharmacological Studies. Schizophr. Res.37(2), 191–196 (1999).
  • Uher R, Muthen B, Souery D et al. Trajectories of change in depression severity during treatment with antidepressants. Psychol. Med.40(8), 1367–1377 (2010).
  • Serretti A, Kato M, Kennedy JL. Pharmacogenetic studies in depression: a proposal for methodologic guidelines. Pharmacogenomics J.8(2), 90–100 (2008).
  • Drevets WC, Savitz J, Trimble M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr.13(8), 663–681 (2008).
  • Hunter AM, Muthen BO, Cook IA, Leuchter AF. Antidepressant response trajectories and quantitative electroencephalography (QEEG) biomarkers in major depressive disorder. J. Psychiatr. Res.44(2), 90–98 (2010).
  • Holsboer F. How can we realize the promise of personalized antidepressant medicines? Nat. Rev. Neurosci.9(8), 638–646 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.