73
Views
11
CrossRef citations to date
0
Altmetric
Theme: Anxiety disorders - Review

Neuroimaging contributions to novel surgical treatments for intractable obsessive–compulsive disorder

, , , , &
Pages 219-227 | Published online: 09 Jan 2014

References

  • Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry62, 617–627 (2005).
  • Mindus P, Rasmussen SA, Lindquist C. Neurosurgical treatment for refractory obsessive–compulsive disorder: implications for understanding frontal lobe function. J. Neuropsychiatry Clin. Neurosci.6(4), 467–477 (1994).
  • Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive–compulsive disorder. Lancet354(9189), 1526 (1999).
  • Dougherty DD, Rauch SL. Brain correlates of antidepressant treatment outcome from neuroimaging studies in depression. Psychiatr. Clin. North Am.30(1), 91–103 (2007).
  • Borairi S, Dougherty DD. The use of neuroimaging to predict treatment response for neurosurgical interventions for treatment-refractory major depression and obsessive–compulsive disorder. Havard Rev. Psychiatry19(3), 155–161 (2011).
  • Husted DS, Shapira NA. A review of the treatment for refractory obsessive–compulsive disorder: from medicine to deep brain stimulation. CNS Spectr.9(11), 833–847 (2004).
  • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci.9, 357–381 (1986).
  • Haber SN, Calzavara R. The cortico–basal ganglia integrative network: the role of the thalamus. Brain Res. Bull.78(2–3), 69–74 (2009).
  • Dougherty DD, Rauch SL, Greenberg BD. Pathophysiology of obsessive–compulsive disorder. In: Textbook of Anxiety Disorders 2nd Edition. Stein D, Hollander E, Rothbaum B (Eds). American Psychiatric Publishing Inc., Washington DC, USA, 287–310 (2010).
  • Rauch SL, Jenike MA, Alpert NM et al. Regional cerebral blood flow measured during symptom provocation in obsessive–compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch. Gen. Psychiatry51(1), 62–70 (1994).
  • Baxter LR Jr, Thompson JM, Schwartz JM et al. Trazodone treatment response in obsessive–compulsive disorder – correlated with shifts in glucose metabolism in the caudate nuclei. Psychopathology20(1), 114–122 (1987).
  • Shah DB, Pesiridou A, Baltuch GH, Malone DA, O’Reardon JP. Functional neurosurgery in the treatment of severe obsessive compulsive disorder and major depression: overview of disease circuits and therapeutic targeting for the clinician. Psychiatry5(9), 24–33 (2008).
  • Rauch SL, Makris N, Cosgrove GR et al. A magnetic resonance imaging study of regional cortical volumes following stereotactic anterior cingulotomy. CNS Spectr.6(3), 214–222 (2001).
  • Gilbert AR, Mataix-Cols D, Almeida JR et al. Brain structure and symptom dimension relationships in obsessive–compulsive disorder: a voxel-based morphometry study. J. Affect. Disord.109(1–2), 117–126 (2008).
  • Kang DH, Kim JJ, Choi JS et al. Volumetric investigation of the frontal-subcortical circuitry in patients with obsessive–compulsive disorder. J. Neuropsychiatry Clin. Neurosci.16(3), 342–349 (2004).
  • Choi JS, Kang DH, Kim JJ et al. Left anterior subregion of orbitofrontal cortex volume reduction and impaired organizational strategies in obsessive–compulsive disorder. J. Psychiatr. Res.38(2), 193–199 (2004).
  • Cecconi JP, Lopes AC, Duran FL et al. Gamma ventral capsulotomy for treatment of resistant obsessive–compulsive disorder: a structural MRI pilot prospective study. Neurosci. Lett.447(2–3), 138–142 (2008).
  • Rotge JY, Langbour N, Guehl D et al. Gray matter alterations in obsessive–compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology35(3), 686–691 (2010).
  • Szeszko PR, Christian C, Macmaster F et al. Gray matter structural alterations in psychotropic drug-naive pediatric obsessive–compulsive disorder: an optimized voxel-based morphometry study. Am. J. Psychiatry165(10), 1299–1307 (2008).
  • Valente AA Jr, Miguel EC, Castro CC et al. Regional gray matter abnormalities in obsessive–compulsive disorder: a voxel-based morphometry study. Biol. Psychiatry58(6), 479–487 (2005).
  • Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbitofronto-striatal model revisited. Beurosci. Biobehav. Rev.32(3), 525–549 (2008).
  • Pujol J, Soriano-Mas C, Alonso P et al. Mapping structural brain alterations in obsessive–compulsive disorder. Arch. Gen. Psychiatry61(7), 720–730 (2004).
  • Szeszko PR, MacMillan S, McMeniman M et al. Brain structural abnormalities in psychotropic drug-naive pediatric patients with obsessive–compulsive disorder. Am. J. Psychiatry161, 1049–1056 (2004).
  • Gilbert AR, Moore GJ, Keshavan MS et al. Decrease in thalamic volumes of pediatric patients with obsessive–compulsive disorder who are taking paroxetine. Arch. Gen. Psychiatry57(5), 449–456 (2000).
  • Goodman WK. Obsessive–compulsive disorder: diagnosis and treatment. J. Clin. Psychiatry60(18), 27–32 (1999).
  • Goodman WK, Price LH, Rasmussen SA et al. The Yale–Brown obsessive compulsive scale. Arch. Gen. Psychiatry46(11), 1012–1016 (1989).
  • Garibotto V, Scifo P, Gorini A et al. Disorganization of anatomical connectivity in obsessive compulsive disorder: a multi-parameter diffusion tensor imaging study in a subpopulation of patients. Neurobiol. Dis.37(2), 468–476 (2010).
  • Nakamae T, Narumoto J, Shibata K et al. Alteration of fractional anisotropy and apparent diffusion coefficient in obsessive–compulsive disorder: a diffusion tensor imaging study. Prog. Neuropsychopharmacol. Biol. Psychiatry32(5), 1221–1226 (2008).
  • Fontenelle LF, Harrison BJ, Yücel M, Pujol J, Fujiwara H, Pantelis C. Is there evidence of brain white-matter abnormalities in obsessive–compulsive disorder?: a narrative review. Top. Mag. Reson. Imaging20(5), 291–298 (2009).
  • Ebert D, Speck O, König A, Berger M, Hennig J, Hohagen F. 1H-magnetic resonance spectroscopy in obsessive–compulsive disorder: evidence for neuronal loss in the cingulate gyrus and the right striatum. Psychiatry Res.74(3), 173–176 (1997).
  • Bartha R, Stein MB, Williamson PC. A short echo 1H spectroscopy and volumetric MRI study of the corpus striatum in patients with obsessive–compulsive disorder and comparison subjects. Am. J. Psychiatry155(11), 1584–1591 (1998).
  • Dougherty DD, Greenberg BD. Neurobiology and neurosircuitry of obsessive–compulsive disorder and relevance to its surgical treatment. In: Clinical Obsesstive-Compulsive Disorder is Adults and Children. Hudak R, Dougherty DD (Eds). Cambridge University Press, New York, NY, USA, 20–29 (2011).
  • Rauch SL, Dougherty DD, Malone D et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive–compulsive disorder. J. Neurosurg.104(4), 558–565 (2006).
  • Cosgrove GR. Surgery for psychiatric disorders. CNS Spectr.5(10), 43–52 (2000).
  • Dougherty DD, Baer L, Cosgrove GR et al. Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive–compulsive disorder. Am. J. Psychiatry159(2), 269–275 (2002).
  • Liu K, Zhang H, Liu C et al. Stereotactic treatment of refractory obsessive compulsive disorder by bilateral capsulotomy with 3 years follow-up. J. Clin. Neurosci.15(6), 622–629 (2008).
  • Lopes AC, Greenberg BD, Norén G et al. Treatment of resistant obsessive–compulsive disorder with ventral capsular/ventral striatal gamma capsulotomy: a pilot prospective study. J. Neuropsychiatry Clin. Neurosci.21, 381–392 (2009).
  • Ruck C, Karlsson A, Steele D et al. Capsulotomy for obsessive–compulsive disorder: long-term follow-up of 25 patients. Arch. Gen. Psychiatry65(8), 914–921 (2008).
  • Greenberg BD, Malone DA, Friehs GM et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology31(11), 2384–2393 (2006).
  • Mallet L, Polosan M, Jaafari N et al. Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N. Engl. J. Med.359(20), 2121–2134 (2008).
  • Denys D, Mantione M, Figee M et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive–compulsive disorder. Arch. Gen. Psychiatry67(10), 1061–1068 (2010).
  • Aouizerate B, Cuny E, Martin-Guehl C et al. Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive–compulsive disorder and major depression: case report. J. Neurosurg.101(4), 682–686 (2004).
  • Jiménez-Ponce F, Velasco-Campos F, Castro-Farfán G et al. Preliminary study in patients with obsessive–compulsive disorder treated with electrical stimulation in the inferior thalamic peduncle. Neurosurgery65(6), 203–209 (2009).
  • Abelson JL, Curtis GC, Sagher O et al. Deep brain stimulation for refractory obsessive–compulsive disorder. Biol. Psychiatry57(5), 510–516 (2005).
  • de Koning PP, Figee M, van den Munckhof P, Schuurman PR, Denys D. Current status of deep brain stimulation for obsessive–compulsive disorder: a clinical review of different targets. Curr. Psychiatry. Rep.13(4), 274–282 (2011).
  • Greenberg BD, Gabriels LA, Malone DA Jr et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive–compulsive disorder: worldwide experience. Mol. Psychiatry15(1), 64–79 (2010).
  • Goodman WK, Foote KD, Greenberg BD et al. Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biol. Psychiatry67(6), 535–542 (2010).
  • Mallet L, Mesnage V, Houeto JL et al. Compulsions, Parkinson’s disease, and stimulation. Lancet360(9342), 1302–1304 (2002).
  • Le Jeune F, Vérin M, N’Diaye K et al. Decrease of prefrontal metabolism after subthalamic stimulation in obsessive–compulsive disorder: a positron emission tomography study. Biol. Psychiatry68(11), 1016–1022 (2010).
  • Figee M, Vink M, de Geus F et al. Dysfunctional reward circuitry in obsessive–compulsive disorder. Biol. Psychiatry69(9), 867–874 (2011).
  • Lozano AM, Eltahawy H. How does DBS work? Suppl. Clin. Neurophysiol.57, 733–736 (2004).
  • Brody AL, Saxena S, Schwartz JM et al. FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res.84(1), 1–6 (1998).
  • Saxena S, Brody AL, Maidment KM et al. Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive–compulsive disorder. Neuropsychopharmacology21(6), 683–693 (1999).
  • Rauch SL, Shin LM, Dougherty DD et al. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology27(5), 782–791 (2002).
  • Rauch SL, Dougherty DD, Cosgrove GR et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for obsessive compulsive disorder. Biol. Psychiatry50(9), 659–667 (2001).
  • Van Laere K, Nuttin B, Gabriels L et al. Metabolic imaging of anterior capsular stimulation in refractory obsessive–compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum. J. Nucl. Med.47(5), 740–747 (2006).
  • Charmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol.363, 615–641 (2002).
  • Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ. Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn. Affect. Behav. Neurosci.4(3), 317–325 (2004).
  • Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron43(6), 897–905 (2004).
  • Alvarez RP, Biggs A, Chen G, Pine DS, Grillon C. Contextual fear conditioning in humans: cortical–hippocampal and amygdala contributions. J. Neurosci.28(24), 6211–6219 (2008).
  • Büchel C, Morris J, Dolan RJ, Friston KJ. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron20(5), 947–957 (1998).
  • Dunsmoor JE, Bandettini PA, Knight DC. Impact of continuous versus intermittent CS-UCS pairing on human brain activation during Pavlovian fear conditioning. Behav. Neurosci.121(4), 635–642 (2007).
  • Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL. A role for the human dorsal anterior cingulate cortex in fear expression. Biol. Psychiatry62(10), 1191–1194 (2007).
  • Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry62(5), 446–454 (2007).
  • Furmark T, Fischer H, Wik G, Larsson M, Fredrikson M. The amygdala and individual differences in human fear conditioning. Neuroreport8(18), 3957–3960 (1997).
  • LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron20(5), 937–945 (1998).
  • Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M. Activation of the left amygdala to a cognitive representation of fear. Nat. Neurosci.4(4), 437–441 (2001).
  • Buchel C, Dolan RJ, Armony JL, Friston KJ. Amygdala–hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J. Neurosci.19(24), 10869–10876 (1999).
  • Gottfried JA, Dolan RJ. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat. Neurosci.7(10), 1144–1152 (2004).
  • Knight DC, Waters NS, Bandettini PA. Neural substrates of explicit and implicit fear memory. Neuroimage45, 208–214 (2009).
  • Barrett J, Armony JL. Influence of trait anxiety on brain activity during the acquisition and extinction of aversive conditioning. Psychol. Med.39(2), 255–265 (2009).
  • Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc. Natl Acad. Sci. USA102(30), 10706–10711 (2005).
  • Zeidan MA, Lebron-Milad Z, Thompson-Hollands J et al. Test–retest reliability during fear acquisition and fear extinction in humans. CNS Neurosci. Ther. doi:10.1111/j.1755-5949.2011.00238.x (2011) (Epub ahead of print).
  • Bremner JD, Vermetten E, Schmahl C et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol. Med.35(6), 791–806 (2005).
  • Milad MR, Pitman RK, Ellis CB et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry66(12), 1075–1082 (2009).
  • Rougemont-Bücking A, Linnman C, Zeffiro TA et al. Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci. Ther.17(4), 227–236 (2010).
  • Milad MR, Rauch SL. The role of the orbitofrontal cortex in anxiety disorders. Ann. NY Acad. Sci.1121, 546–561 (2007).
  • Boyden ES. A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol. Rep.3, 11 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.