169
Views
46
CrossRef citations to date
0
Altmetric
Theme: Schizophrenia - Review

Understanding aberrant white matter development in schizophrenia: an avenue for therapy?

, , &
Pages 971-987 | Published online: 09 Jan 2014

References

  • Kanaan R, Kim J, Kaufmann W, Pearlson G, Barker G, Mcguire P. Diffusion tensor imaging in schizophrenia. Biol. Psychiatry58(12), 921–929 (2005).
  • Kubicki M, Mccarley R, Westin CF et al. A review of diffusion tensor imaging studies in schizophrenia. J. Psychiatr. Res.41(1–2), 15–30 (2007).
  • Walterfang M, Wood S, Velakoulis D, Pantelis C. Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neurosci. Biobehav. Rev.30, 918–948 (2006).
  • Shenton ME, Whitford TJ, Kubicki M. Structural neuroimaging in schizophrenia: from methods to insights to treatments. Dialogues Clin. Neurosci.12(3), 317–332 (2010).
  • Walterfang M, Wood S, Velakoulis D, Copolov D, Pantelis C. Diseases of white matter and schizophrenia-like psychosis. Aust. NZ J. Psychiatry39, 746–756 (2005).
  • Friston K. Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scand. Suppl.99, 68–79 (1999).
  • Friston K. The disconnection hypothesis. Schizophr. Res.30, 115–125 (1998).
  • Wernicke C. [Outline of Psychiatry. 2nd Edition]. Thieme, Leipzig (1906).
  • Pantelis C, Barnes T, Nelson H. Is the concept of frontal-subcortical dementia relevant to schizophrenia? Br. J. Psychiatry160, 442–460 (1992).
  • Andreasen N, Paradiso S, O’leary D. ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr. Bull.24, 203–218 (1998).
  • Crow T. Schizophrenia as a transcallosal misconnection syndrome. Schizophr. Res.30, 111–114 (1998).
  • Schoenemann P, Sheehan M, Glotzer L. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neurosci.8, 242–252 (2005).
  • Nolte N. The Human Brain. Mosby, MO, USA (1999).
  • Byrd S, Darling C, Wilczynski M. White matter of the brain: maturation and myelination of magnetic resonance in infants and children. Neuroimag. Clin. N. Am.3, 247–266 (1993).
  • Yakovlev P, Lecours A. The myelogenetic cycles of regional maturation of the brain. In: Regional Development of the Brain in Early Life. Minkowski A (Ed.). FA Davis, PA, USA, 3–70 (1967).
  • Webb SJ, Monk CS, Nelson CA. Mechanisms of postnatal neurobiological development: implications for human development. Dev. Neuropsychol.19(2), 147–171 (2001).
  • Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am. J. Neuroradiol.21(6), 1099–1109 (2000).
  • Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology166(1 Pt 1), 173–180 (1988).
  • Bartzokis G, Beckson M, Lu P, Nuechterlein K, Edwards N, Mintz J. Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch. Gen. Psychiatr.58, 461–465 (2001).
  • Benes F, Turtle M, Khan Y, Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch. Gen. Psychiatr.51, 477–484 (1994).
  • Lim K, Zipursky R, Watts M, Pfefferbaum A. Decreased gray matter in normal aging: an in vivo magnetic resonance study. J. Gerontol.47, B26–B30 (1992).
  • Pfefferbaum A, Mathalon D, Sullivan E, Al E. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch. Neurol.51, 874–887 (1994).
  • O’kusky J, Colonnier M. Postnatal changes in the number of astrocytes, oligodendrocytes, and microglia in the visual cortex (area 17) of the macaque monkey: a stereological analysis in normal and monocularly deprived animals. J. Comp. Neurol.210(3), 307–315 (1982).
  • Elvidge A, Reed G. Biopsy studies of cerebral pathologic changes in schizophrenia and manic-depressive psychosis. Arch. Neurol. Psychiatry40, 227–268 (1938).
  • Uranova N, Orlovskaya D, Vikhreva O et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res. Bull.55, 597–610 (2001).
  • Uranova N, Orlovskaya D. Ultrastructural pathology of neuronal connectivity in postmortem brains of schizophrenic patients. Ann. Psychiatr.6, 55–72 (1996).
  • Uranova N, Casanova M, Devaughn N, Orlovskaya D, Denisov D. Ultrastructural alterations of synaptic contacts and astrocytes in postmortem caudate nucleus of schizophrenic patients (letter). Schizophr. Res.22, 81–83 (1996).
  • Orlovskaya D, Vostrikov V, Rachmanova V, Uranova N. Decreased numerical density of oligodendroglial cells in post-mortem prefrontal cortex in schizophrenia, bipolar affective disorder, and major depression (abstr). Schizophr. Res.41, 105–106 (2000).
  • Orlovskaya D, Denisov D, Uranova N. The ultrastructural pathology of myelinated fibers and oligodendroglial cells in autopsied caudate nucleus of schizophrenics. Schizophr. Res.24, 39–40 (1997).
  • Orlovskaya D, Vikhreva O, Zimina I, Denisov D, Uranova N. Ultrastructural dystrophic changes of oligodendroglial cells in autopsied prefrontal cortex and striatum in schizophrenia: a morphometric study. Schizophr. Res.36, 82–83 (1999).
  • Hof P, Haroutunian V, Friedrich VJ et al. Loss and altered spatial distrubition of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol. Psychiatry53, 1075–1085 (2003).
  • Hof P, Haroutunian V, Copland C, Al E. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem. Res.27, 1193–1200 (2002).
  • Kim S, Webster MJ. Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol. Psychiatry16(4), 452–461 (2010).
  • Kim S, Webster MJ. Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol. Psychiatry15(3), 326–336 (2010).
  • Ewald H, Flint TJ, Jorgensen TH et al. Search for a shared segment on chromosome 10q26 in patients with bipolar affective disorder or schizophrenia from the Faroe Islands. Am. J. Med. Genet.114(2), 196–204 (2002).
  • Farkas N, Lendeckel U, Dobrowolny H et al. Reduced density of ADAM 12-immunoreactive oligodendrocytes in the anterior cingulate white matter of patients with schizophrenia. World J. Biol. Psychiatry11(3), 556–566 (2010).
  • Gregg JR, Herring NR, Naydenov AV, Hanlin RP, Konradi C. Downregulation of oligodendrocyte transcripts is associated with impaired prefrontal cortex function in rats. Schizophr. Res.113(2–3), 277–287 (2009).
  • Mcdonald J, Althomsons S, Choi D, Goldberg M. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor mediated excitotoxicity. Nat. Med.4, 291–297 (1998).
  • Farber N, Wozniak D, Price M, Al E. Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia? Biol. Psychiatry38, 788–796 (1995).
  • Rees S, Inder T. Fetal and neonatal origins of altered brain development. Early Hum. Dev.81, 753–761 (2005).
  • Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature405(6783), 187–191 (2000).
  • Livni E, Munitz H, Tyano S et al. Further studies on cell-mediated immunity to myelin basic protein in schizophrenic patients. J. Neurol. Sci.42, 437–440 (1979).
  • Kuritzky A, Livni E, Munitz H et al. Cell-mediated immunity to human myelin basic protein in schizophrenic patients. J. Neurol. Sci.30, 369–373 (1976).
  • Rimon R, Ahokas A, Ruutianen J, Halonen P. Myelin basic protein antibodies in catatonic schizophrenia. J. Clin. Psychiatry47, 26–28 (1986).
  • Schmitt A, Wilczek K, Blennow K et al. Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. Biol. Psychiatry56, 41–45 (2004).
  • Hennah W, Varilo T, Paunio T, Peltonen L. Haplotype analysis and identification of genes for a complex trait: examples from schizophrenia. Ann. Med.36, 322–331 (2003).
  • Novak G, Kim D, Seeman P, Tallerico T. Schizophrenia and Nogo: elevated mRNA in cortex, and high prevalence of a homozygous CAA insert. Mol. Brain Res.107, 183–189 (2002).
  • Covault J, Lee J, Jensen K, Kranzler H. Nogo 3´ untranslated region CAA insertion: failure to replicate association with schizophrenia and demonstration of marked population difference in the frequency of the insertion. Mol. Brain Res.120, 197–200 (2004).
  • Xiong L, Rouleau G, Delisi L et al. CAA insertion polymorphism in the 3´UTR of Nogo gene on 2p14 is not associated with schizophrenia. Mol. Brain Res.133, 153–156 (2005).
  • Gregorio S, Mury F, Ojopi E et al. Nogo CAA 3´UTR insertion polymorphism is not associated with schizophrenia nor with bipolar disorder. Schizophr. Res.75, 5–9 (2005).
  • Tan E-C, Chong S-A, Wang H, Lim E-P, Teo Y-Y. Gender-specific association of insertion/deletion polymorphisms in the nogo gene and chronic schizophrenia. Mol. Brain Res.139(2), 212–216 (2005).
  • Sinibaldi L, De Luca A, Bellacchio E et al. Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum. Mutat.24, 534–535 (2004).
  • Budel S, Padukkavidana T, Liu BP et al. Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. J. Neurosci.28(49), 13161–13172 (2008).
  • Hsu R, Woodroffe A, Lai WS et al. Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS One2(11), e1234 (2007).
  • Willi R, Weinmann O, Winter C et al. Constitutive genetic deletion of the growth regulator Nogo-A induces schizophrenia-related endophenotypes. J. Neurosci.30(2), 556–567 (2010).
  • Willi R, Aloy EM, Yee BK, Feldon J, Schwab ME. Behavioral characterization of mice lacking the neurite outgrowth inhibitor Nogo-A. Genes Brain Behav.8(2), 181–192 (2009).
  • Wan C, Yang Y, Feng G et al. Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci. Lett.388, 126–131 (2005).
  • Yang Y, Qin W, Shugart Y et al. Possible association of the MAG locus with schizophrenia in a Chinese Han cohort of family trios. Schizophr. Res.75, 11–19 (2005).
  • Ross SE, Greenberg ME, Stiles CD. Basic helix-loop-helix factors in cortical development. Neuron39(1), 13–25 (2003).
  • Sauvageot CM, Stiles CD. Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol.12(3), 244–249 (2002).
  • Georgieva L, Moskvina V, Peirce T et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc. Natl Acad. Sci. USA103(33), 12469–12474 (2006).
  • Huang K, Tang W, Tang R et al. Positive association between OLIG2 and schizophrenia in the Chinese Han population. Hum. Genet.122(6), 659–660 (2008).
  • Usui H, Takahashi N, Saito S et al. The 2´,3´-cyclic nucleotide 3´-phosphodiesterase and oligodendrocyte lineage transcription factor 2 genes do not appear to be associated with schizophrenia in the Japanese population. Schizophr. Res.88(1–3), 245–250 (2006).
  • Qin W, Gao J, Xing Q et al. A family-based association study of PLP1 and schizophrenia. Neurosci. Lett.375, 207–210 (2005).
  • Peirce TR, Bray NJ, Williams NM et al. Convergent evidence for 2´,3´-cyclic nucleotide 3´-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch. Gen. Psychiatry63(1), 18–24 (2006).
  • Hakak Y, Walker J, Li C et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl Acad. Sci. USA98, 4746–4751 (2001).
  • Copland C, Dracheva S, Davis K, Haroutunian V. mRNA expression of three isoforms of myelin associated glycoprotein (MAG) in patients with schizophrenia [abstract]. Abstr. Soc. Neurosci.28, 494 (2002).
  • Tkachev D, Mimmack M, Ryan M et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet362, 798–805 (2003).
  • Sugai T, Kawamura M, Iritani S et al. Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann. NY Acad. Sci.1025, 84–91 (2004).
  • Paulson L, Martin P, Persson A, Al E. Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J. Neurosci. Res.15, 526–533 (2003).
  • Mitkus SN, Hyde TM, Vakkalanka R et al. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr. Res.98(1–3), 129–138 (2008).
  • Aston C, Jiang L, Sokolov B. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J. Neurosci. Res.77, 858–866 (2004).
  • Katsel P, Davis K, Haroutunian V. Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr. Res.79(2–3), 157–173 (2005).
  • Paez P, Marta C, Moreno M, Soto E, Pasquini J. Apotransferrin decreases migration and enhances differentiation of oligodendroglial progenitor cells in an in-vitro system. Dev. Neurosci.24, 47–58 (2002).
  • Woo T, Crowell A. Targeting synapses and myelin in the prevention of schizophrenia. Schizophr. Res.73, 193–207 (2005).
  • Mccullumsmith RE, Gupta D, Beneyto M et al. Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr. Res.90(1–3), 15–27 (2007).
  • Dracheva S, Davis K, Chin B, Woo D, Schmeidler J, Haroutunian V. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurol. Dis.21(3), 531–540 (2005).
  • Byne W, Dracheva S, Chin B, Schmeidler JM, Davis KL, Haroutunian V. Schizophrenia and sex associated differences in the expression of neuronal and oligodendrocyte-specific genes in individual thalamic nuclei. Schizophr. Res.98(1–3), 118–128 (2008).
  • Haroutunian V, Katsel P, Dracheva S, Stewart DG, Davis KL. Variations in oligodendrocyte-related gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia. Int. J. Neuropsychopharmacol.10(4), 565–573 (2007).
  • Parlapani E, Schmitt A, Erdmann A et al. Association between myelin basic protein expression and left entorhinal cortex pre-α cell layer disorganization in schizophrenia. Brain Res.1301, 126–134 (2009).
  • Novak G, Tallerico T. Nogo A, B and C expression in schizophrenia, depression and bipolar frontal cortex, and correlation of Nogo expression with CAA/TATC polymorphism in 3´-UTR. Brain Res.1120(1), 161–171 (2006).
  • Haroutunian V, Katsel P, Dracheva S, Davis KL. The human homolog of the QKI gene affected in the severe dysmyelination ‘quaking’ mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am. J. Psychiatry163(10), 1834–1837 (2006).
  • Katsel P, Davis KL, Li C et al. Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology33(12), 2993–3009 (2008).
  • Aberg K, Saetre P, Jareborg N, Jazin E. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc. Natl Acad. Sci. USA103(19), 7482–7487 (2006).
  • Fatemi SH, Folsom TD, Reutiman TJ et al. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr. Res.112(1–3), 46–53 (2009).
  • Fatemi S, Reutiman T, Folsom T et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr. Res.99, 56–70 (2008).
  • Harris LW, Lockstone HE, Khaitovich P, Weickert CS, Webster MJ, Bahn S. Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med. Genomics2, 28 (2009).
  • Sokolov BP. Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int. J. Neuropsychopharmacol.10(4), 547–555 (2007).
  • Wright I, Rabe-Hesketh S, Woodruff P, David A, Murray R, Bullmore E. Meta-analysis of regional brain volumes in schizophrenia. Am. J. Psychiatry157, 16–25 (2000).
  • Cannon T, Van Erp T, Huttunen M et al. Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch. Gen. Psychiatry55, 1084–1091 (1998).
  • Hulshoff Pol H, Brans R, Van Haren N et al. Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biol. Psychiatry55, 126–130 (2004).
  • Bose SK, Mackinnon T, Mehta MA et al. The effect of ageing on grey and white matter reductions in schizophrenia. Schizophr. Res.112(1–3), 7–13 (2009).
  • Tanskanen P, Haapea M, Veijola J et al. Volumes of brain, grey and white matter and cerebrospinal fluid in schizophrenia in the Northern Finland 1966 Birth Cohort: an epidemiological approach to analysis. Psychiatry Res.174(2), 116–120 (2009).
  • Buchanan R, Vladar K, Barta P, Pearlson G. Structural evaluation of the prefrontal cortex in schizophrenia. Am. J. Psychiatry155, 1049–1055 (1998).
  • Sanfilipo M, Lafargue T, Rusinek H et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch. Gen. Psychiatr.57, 471–480 (2000).
  • Sigmundsson T, Suckling J, Maier M, Al E. Structural abnormalities in frontal, temporal and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry158, 234–243 (2001).
  • Breir A, Buchanan R, Elkashef A, Munson R, Kirkpatrick B, Gellad F. Brain morphology and schizophrenia: a magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch. Gen. Psychiatr.49, 921–926 (1992).
  • Hulshoff Pol H, Schnack H, Bertens M et al. Volume changes in gray matter in patients with schizophrenia. Am. J. Psychiatry159, 244–250 (2002).
  • Wible C, Anderson J, Shenton M et al. Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatr. Res.108, 65–78 (2001).
  • Paillere-Martinot M, Caclin A, Artiges E et al. Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophr. Res.50, 19–26 (2001).
  • Mathalon D, Pfefferbaum A, Lim K, Rosenbloom M, Sullivan E. Compounded brain volume deficits in schizophrenia-alcoholism morbidity. Arch. Gen. Psychiatry60, 245–252 (2003).
  • Ho B, Andreasen N, Nopoulos P, Arndt S, Magnotta V, Flaum M. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch. Gen. Psychiatry60, 585–594 (2003).
  • Arango C, Breier A, Mcmahon R, Carpenter W, Buchanan R. The relationship of clozapine and haloperidol treatment response to prefrontal, hippocampal and caudate brain volumes. Am. J. Psychiatry160, 1421–1427 (2003).
  • Okugawa G, Sedvallo G, Agartz I. Reduced grey and white matter volumes in the temporal lobe of male patients with chronic schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.252, 120–123 (2002).
  • Takahashi K, Suzuki M, Kawasaki Y, Al E. Perigenual cingulate gyrus volume in patients with schizophrenia: a magnetic resonance imaging study. Biol. Psychiatry53, 593–600 (2003).
  • Mitelman S, Shihabuddin L, Brickman A, Hazlett E, Buchsbaum M. MRI assessment of gray and white matter distribution in Brodmann’s areas of the cortex in pattients with schizophrenia with good and poor outcomes. Am. J. Psychiatry160, 2154–2168 (2003).
  • Davies D, Wardell A, Woolsey R, James A. Enlargement of the fornix in early onset schizophrenia: a quantitative MRI study. Neurosci. Lett.301, 163–166 (2001).
  • Nieuwenhuys R, Voogd J, Van Huijzen C. The Human Central Nervous System. Springer-Verlag, Berlin, Germany (1988).
  • Zhou S, Suzuki M, Hagino H et al. Decreased volume and increased asymmetry of the anterior limb of the internal capsule in patients with schizophrenia. Biol. Psychiatry54(4), 427–436 (2003).
  • Goghari VM, Lang DJ, Khorram B et al. Anterior internal capsule volumes increase in patients with schizophrenia switched from typical antipsychotics to olanzapine. J. Psychopharmacol.25(5), 621–629 (2010).
  • Lang DJ, Khorram B, Goghari VM et al. Reduced anterior internal capsule and thalamic volumes in first-episode psychosis. Schizophr. Res.87(1–3), 89–99 (2006).
  • Brickman AM, Buchsbaum MS, Ivanov Z et al. Internal capsule size in good-outcome and poor-outcome schizophrenia. J. Neuropsychiatry Clin. Neurosci.18(3), 364–376 (2006).
  • Wobrock T, Gruber O, Schneider-Axmann T et al. Internal capsule size associated with outcome in first-episode schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.259(5), 278–283 (2009).
  • Dequardo J, Keshavan M, Bookstein F, Al E. Landmark-based morphometric analysis of first-episode schizophrenia. Biol. Psychiatry45, 1321–1328 (1999).
  • Downhill J, Buchsbaum M, Wei T, Al E. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr. Res.42, 193–208 (2000).
  • Frumin M, Golland P, Kikinis R et al. Shape differences in the corpus callosum in first-episode schizophrenia and first-episode psychotic affective disorder. Am. J. Psychiatry159, 866–868 (2002).
  • Narr KL, Thompson PM, Sharma T, Moussai J, Cannestra AF, Toga AW. Mapping morphology of the corpus callosum in schizophrenia. Cereb. Cortex10(1), 40–49 (2000).
  • Mitelman SA, Nikiforova YK, Canfield EL et al. A longitudinal study of the corpus callosum in chronic schizophrenia. Schizophr. Res.114(1–3), 144–153 (2009).
  • Narr KL, Cannon TD, Woods RP et al. Genetic contributions to altered callosal morphology in schizophrenia. J. Neurosci.22(9), 3720–3729 (2002).
  • Walterfang M, Wood AG, Reutens DC et al. Morphology of the corpus callosum at different stages of schizophrenia: cross-sectional study in first-episode and chronic illness. Br. J. Psychiatry192(6), 429–434 (2008).
  • Arnone D, Mcintosh A, Tan G, Ebmeier K. Meta-analysis of magnetic resonance imaging studies of the corpus callosum in schizophrenia. Schizophr. Res.101, 124–132 (2008).
  • Rotarska-Jagiela A, Schonmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DE. The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage39(4), 1522–1532 (2008).
  • Seok JH, Park HJ, Chun JW et al. White matter abnormalities associated with auditory hallucinations in schizophrenia: a combined study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance imaging. Psychiatry Res.156(2), 93–104 (2007).
  • Wolf RC, Hose A, Frasch K, Walter H, Vasic N. Volumetric abnormalities associated with cognitive deficits in patients with schizophrenia. Eur. Psychiatry23(8), 541–548 (2008).
  • Diwadkar V, Dabellis M, Sweeney J, Pettegrew J, Keshavan M. Abnormalities in MRI-measured signal intensity in the corpus callosum in schizophrenia. Schizophr. Res.67, 277–282 (2004).
  • Bachmann S, Pantel J, Flender A, Bottmer C, Essig M, Schroder J. Corpus callosum in first-episode patients with schizophrenia – a magnetic resonance imaging study. Psychol. Med.33, 1019–1027 (2003).
  • Keshavan M, Diwadkar V, Harenski K, Al E. Abnormalities of the corpus callosum in first episode treatment naive schizophrenia. J. Neurol. Neurosurg. Psychiatr.72, 757–760 (2002).
  • Walterfang M, Wood AG, Barton S et al. Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog. Neuropsychopharmacol. Biol. Psychiatry33(6), 1050–1057 (2009).
  • Walterfang M, Wood AG, Reutens DC et al. Corpus callosum size and shape in first-episode affective and schizophrenia-spectrum psychosis. Psychiatry Res.173(1), 77–82 (2009).
  • Walterfang M, Yung A, Wood AG et al. Corpus callosum shape alterations in individuals prior to the onset of psychosis. Schizophr. Res.103(1–3), 1–10 (2008).
  • Woodruff P, Mcmanus I, David A. Meta-analysis of corpus callosum size in schizophrenia. J. Neurol. Neurosurg. Psychiatr.58, 457–461 (1995).
  • Meisenzahl E, Frodl T, Greiner J et al. Corpus callosum size in schizophrenia – a magnetic resonance imaging analysis. Eur. Arch. Psychiatry Clin. Neurosci.249, 305–312 (1999).
  • Pagsberg AK, Baare WF, Raabjerg Christensen AM et al. Structural brain abnormalities in early onset first-episode psychosis. J. Neural. Transm.114(4), 489–498 (2007).
  • Price G, Cercignani M, Bagary MS et al. A volumetric MRI and magnetization transfer imaging follow-up study of patients with first-episode schizophrenia. Schizophr. Res.87(1–3), 100–108 (2006).
  • Spalletta G, Tomaiuolo F, Marino V, Bonaviri G, Trequattrini A, Caltagirone C. Chronic schizophrenia as a brain misconnection syndrome: a white matter voxel-based morphometry study. Schizophr. Res.64, 15–23 (2003).
  • Whitford TJ, Grieve SM, Farrow TF et al. Volumetric white matter abnormalities in first-episode schizophrenia: a longitudinal, tensor-based morphometry study. Am. J. Psychiatry164(7), 1082–1089 (2007).
  • Hulshoff Pol H, Schnack H, Mandl R et al. Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. Neuroimage21, 27–35 (2004).
  • Mcintosh A, Job D, Moorhead T, Harrison L, Lawrie S, Johnstone E. White matter density in patients with schizophrenia, bipolar disorder and their unaffected relatives. Biol. Psychiatry58(3), 254–257 (2005).
  • Antonova E, Kumari V, Morris R, Halari R, Mehrotra R, Sharma T. The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biol. Psychiatry58, 457–467 (2005).
  • Walterfang M, Mcguire P, Yung A et al. White matter volume changes in people who develop psychosis. Br. J. Psychiatry193, 210–215 (2008).
  • Chan WY, Yang GL, Chia MY et al. White matter abnormalities in first-episode schizophrenia: a combined structural MRI and DTI study. Schizophr. Res.119(1–3), 52–60 (2010).
  • Chua SE, Cheung C, Cheung V et al. Cerebral grey, white matter and CSF in never-medicated, first-episode schizophrenia. Schizophr. Res.89(1–3), 12–21 (2007).
  • Tanskanen P, Ridler K, Murray GK et al. Morphometric brain abnormalities in schizophrenia in a population-based sample: relationship to duration of Illness. Schizophr. Bull.36(4), 766–77 (2008).
  • Witthaus H, Brune M, Kaufmann C et al. White matter abnormalities in subjects at ultra high-risk for schizophrenia and first-episode schizophrenic patients. Schizophr. Res.102(1–3), 141–149 (2008).
  • Wible C, Shenton M, Hokama H et al. Prefrontal cortex and schizophrenia: a quantitative magnetic resonance imaging study. Arch. Gen. Psychiatr.52, 279–288 (1995).
  • Di X, Chan RC, Gong QY. White matter reduction in patients with schizophrenia as revealed by voxel-based morphometry: an activation likelihood estimation meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry33(8), 1390–1394 (2009).
  • Dousset V, Grossman R, Ramer K et al. Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology182, 483–491 (1992).
  • Dousset V, Brochet B, Vital A et al. Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. Am. J. Neuroradiol.16, 225–231 (1995).
  • Van Waesberghe J, Kamphorst W, De Groot C et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann. Neurol.46(5), 747–754 (1999).
  • Foong J, Maier M, Barker G, Brocklehurs S, Miller D, Ron M. In vivo investigation of white matter pathology in schizophrenia with magnetisation transfer imaging. J. Neurol. Neurosurg. Psychiatr.68, 70–74 (2000).
  • Foong J, Symms M, Barker G, Al E. Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging. Brain124, 882–892 (2001).
  • Bagary M, Symms M, Barker G, Mutsatsa S, Joyce E, Ron M. Gray and white matter brain abnormalities in first-episode schizophrenia inferred from magnetization transfer imaging. Arch. Gen. Psychiatry60, 779–788 (2003).
  • Price G, Cercignani M, Chu EM et al. Brain pathology in first-episode psychosis: magnetization transfer imaging provides additional information to MRI measurements of volume loss. Neuroimage49(1), 185–192 (2010).
  • Kubicki M, Park H, Westin C et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage26, 1109–1118 (2005).
  • Mandl RC, Schnack HG, Luigjes J et al. Tract-based analysis of magnetization transfer ratio and diffusion tensor imaging of the frontal and frontotemporal connections in schizophrenia. Schizophr. Bull.36(4), 778–787 (2008).
  • Lim K, Hedehus M, Moseley M, De Crespigny A, Sullivan E, Pfefferbaum A. Compromised white matter integrity in schizophrenia inferred from diffusion tensor imaging. Arch. Gen. Psychiatr.56, 367–374 (1999).
  • Steel R, Bastin M, Mcconnell S et al. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (MRS) in schizophrenic subjects and normal controls. Psychiatr. Res.106, 161–170 (2001).
  • Hoptman M, Volavka J, Johnson G, Weiss E, Bilder R, Lim K. Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biol. Psychiatry52, 9–14 (2002).
  • Wolkin A, Choi C, Szilagyi S, Sanfilipo M, Rotrosen J, Lim K. Inferior frontal white matter anisotropy and negative symptoms of schizophrenia: a diffusion tensor imaging study. Am. J. Psychiatry160, 572–574 (2003).
  • Minami T, Nobuhara K, Okugawa G, Al E. Diffusion tensor magnetic resonance imaging ot disruption of regional white matter in schizophrenia. Neuropsychobiol.47, 141–145 (2003).
  • Sun Z, Wang F, Cui L et al. Abnormal anterior cingulum in patients with schizophrenia: a diffusion tensor imaging study. Neuroreport14, 1833–1836 (2003).
  • Kumra S, Ashtari M, Mcmeniman M et al. Reduced frontal white matter integrity in early-onset schizophrenia: a preliminary study. Biol. Psychiatry55, 1138–1145 (2004).
  • Kitamura H, Matsuzawa H, Shiori T, Someya T, Kwee I, Nakada T. Diffusion tensor analysis in chronic schizophrenia: a preliminary study on a high-field (3.0T) system. Eur. Arch. Psychiatry Clin. Neurosci.255(5), 313–318 (2005).
  • Shin YW, Kwon JS, Ha TH et al. Increased water diffusivity in the frontal and temporal cortices of schizophrenic patients. Neuroimage30(4), 1285–1291 (2006).
  • Rose SE, Chalk JB, Janke AL et al. Evidence of altered prefrontal-thalamic circuitry in schizophrenia: an optimized diffusion MRI study. Neuroimage32(1), 16–22 (2006).
  • Kuroki N, Kubicki M, Nestor PG et al. Fornix integrity and hippocampal volume in male schizophrenic patients. Biol. Psychiatry60(1), 22–31 (2006).
  • Fitzsimmons J, Kubicki M, Smith K et al. Diffusion tractography of the fornix in schizophrenia. Schizophr. Res.107(1), 39–46 (2009).
  • Foong J, Maier M, Clark C, Barker G, Miller D, Ron M. Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatr.68, 242–244 (2000).
  • Price G, Bagary M, Cercignani M, Altmann D, Ron M. The corpus callosum in first episode schizophrenia: a diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatr.76, (2005).
  • Brambilla P, Cerini R, Gasparini A et al. Investigation of corpus callosum in schizophrenia with diffusion imaging. Schizophr. Res.79(2–3), 201–210 (2005).
  • Kanaan RA, Shergill SS, Barker GJ et al. Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res.146(1), 73–82 (2006).
  • Kubicki M, Westin C, Nestor P et al. Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol. Psychiatry54, 1171–1180 (2003).
  • Wang F, Sun Z, Cui L et al. Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging. Am. J. Psychiatry161, 573–575 (2004).
  • Nestor P, Kubicki M, Gurrera R et al. Neuropsychological correlates of diffusion tensor imaging in schizophrenia. Neuropsychology18, 629–637 (2004).
  • Jones D, Catani M, Pierpaoli C et al. Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Hum. Brain Mapp.27(3), 230–238 (2005).
  • Takei K, Yamasue H, Abe O et al. Structural disruption of the dorsal cingulum bundle is associated with impaired Stroop performance in patients with schizophrenia. Schizophr. Res.114(1–3), 119–127 (2009).
  • Voineskos AN, Lobaugh NJ, Bouix S et al. Diffusion tensor tractography findings in schizophrenia across the adult lifespan. Brain133(Pt 5), 1494–1504 (2010).
  • Wang F, Sun Z, Du X et al. A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia. Neurosci. Lett.348, 135–138 (2003).
  • Okugawa G, Nobuhara K, Minami T et al. Subtle disruption of the middle cerebellar peduncles in patients with schizophrenia. Neuropsychobiol.50, 119–123 (2004).
  • Okugawa G, Nobuhara K, Sugimoto T, Kinoshita T. Diffusion tensor imaging study of the middle cerebellar peduncle in patients with schizophrenia. Cerebellum4, 123–127 (2005).
  • Okugawa G, Nobuhara K, Minami T et al. Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: a diffusion tensor imaging study. Prog. Neuropsychopharmacol. Biol. Psychiatry30(8), 1408–1412 (2006).
  • Hubl D, Koenig T, Strik W et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch. Gen. Psychiatr.61, 658–668 (2004).
  • Kubicki M, Westin C, Maier S et al. Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am. J. Psychiatry159, 813–820 (2002).
  • Jones DK, Catani M, Pierpaoli C et al. Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Hum. Brain Mapp.27(3), 230–238 (2006).
  • Karlsgodt KH, Van Erp TG, Poldrack RA, Bearden CE, Nuechterlein KH, Cannon TD. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol. Psychiatry63(5), 512–518 (2008).
  • Buchsbaum MS, Schoenknecht P, Torosjan Y et al. Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia. Ann. Gen. Psychiatry5, 19 (2006).
  • Schlosser RG, Nenadic I, Wagner G et al. White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophr. Res.89(1–3), 1–11 (2007).
  • Mitelman SA, Newmark RE, Torosjan Y et al. White matter fractional anisotropy and outcome in schizophrenia. Schizophr. Res.87(1–3), 138–159 (2006).
  • Agartz I, Andersson J, Skare S. Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study. Neuroreport12, 2251–2254 (2001).
  • Ardekani B, Nierenberg J, Hoptman M, Javitt D, Lim K. MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport14, 2025–2029 (2003).
  • Caan MW, Vermeer KA, Van Vliet LJ et al. Shaving diffusion tensor images in discriminant analysis: a study into schizophrenia. Med. Image Anal.10(6), 841–849 (2006).
  • Mori T, Ohnishi T, Hashimoto R et al. Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging. Psychiatry Res.154(2), 133–145 (2007).
  • Nestor PG, Kubicki M, Gurrera RJ et al. Neuropsychological correlates of diffusion tensor imaging in schizophrenia. Neuropsychology18(4), 629–637 (2004).
  • Shergill SS, Kanaan RA, Chitnis XA et al. A diffusion tensor imaging study of fasciculi in schizophrenia. Am. J. Psychiatry164(3), 467–473 (2007).
  • Hao Y, Liu Z, Jiang T et al. White matter integrity of the whole brain is disrupted in first-episode schizophrenia. Neuroreport17(1), 23–26 (2006).
  • Fujiwara H, Namiki C, Hirao K et al. Anterior and posterior cingulum abnormalities and their association with psychopathology in schizophrenia: a diffusion tensor imaging study. Schizophr. Res.95(1–3), 215–222 (2007).
  • Seal ML, Yucel M, Fornito A et al. Abnormal white matter microstructure in schizophrenia: a voxelwise analysis of axial and radial diffusivity. Schizophr. Res.101(1–3), 106–110 (2008).
  • Burns J, Job D, Bastin M et al. Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study. Br. J. Psychiatry182, 439–443 (2003).
  • Hoptman M, Ardekani B, Butler P, Nierenberg J, Javitt D, Lim K. DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport15, 2467–2470 (2004).
  • Perez-Iglesias R, Tordesillas-Gutierrez D, Mcguire PK et al. White matter integrity and cognitive impairment in first-episode psychosis. Am. J. Psychiatry167(4), 451–458 (2010).
  • Skelly LR, Calhoun V, Meda SA, Kim J, Mathalon DH, Pearlson GD. Diffusion tensor imaging in schizophrenia: relationship to symptoms. Schizophr. Res.98(1–3), 157–162 (2008).
  • Szeszko PR, Ardekani BA, Ashtari M et al. White matter abnormalities in first-episode schizophrenia or schizoaffective disorder: a diffusion tensor imaging study. Am. J. Psychiatry162(3), 602–605 (2005).
  • Kyriakopoulos M, Frangou S. Recent diffusion tensor imaging findings in early stages of schizophrenia. Curr. Opin. Psychiatry22(2), 168–176 (2009).
  • Perez-Iglesias R, Tordesillas-Gutierrez D, Barker GJ et al. White matter defects in first episode psychosis patients: a voxelwise analysis of diffusion tensor imaging. Neuroimage49(1), 199–204 (2010).
  • Karlsgodt KH, Niendam TA, Bearden CE, Cannon TD. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol. Psychiatry66(6), 562–569 (2009).
  • Munoz Maniega S, Lymer GK, Bastin ME et al. A diffusion tensor MRI study of white matter integrity in subjects at high genetic risk of schizophrenia. Schizophr. Res.106(2–3), 132–139 (2008).
  • Hoptman MJ, Nierenberg J, Bertisch HC et al. A DTI study of white matter microstructure in individuals at high genetic risk for schizophrenia. Schizophr. Res.106(2–3), 115–124 (2008).
  • Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr. Res.108(1–3), 3–10 (2009).
  • Jeong B, Wible CG, Hashimoto R, Kubicki M. Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia. Hum. Brain Mapp.30(12), 4138–4151 (2009).
  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl Acad. Sci. USA98(7), 4259–4264 (2001).
  • Raichle ME, Macleod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc. Natl Acad. Sci. USA98(2), 676–682 (2001).
  • Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage43(3), 554–561 (2008).
  • Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex19(1), 72–78 (2009).
  • Teipel SJ, Bokde AL, Meindl T et al. White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage49(3), 2021–2032 (2010).
  • Skudlarski P, Jagannathan K, Anderson K et al. Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol. Psychiatry68(1), 61–69 (2010).
  • Whitford TJ, Ford JM, Mathalon DH, Kubicki M, Shenton ME. Schizophrenia, myelination, and delayed corollary discharges: a hypothesis. Schizophr. Bull. DOI: 10.1093/schbul/sbq105 (2010) (Epub ahead of print).
  • Whitford TJ, Mathalon DH, Shenton ME et al. Electrophysiological and diffusion tensor imaging evidence of delayed corollary discharges in patients with schizophrenia. Psychol. Med.41(5), 959–969 (2011).
  • Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J. Psychiatr. Res.17(4), 319–334 (1982).
  • Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry59(10), 929–939 (2006).
  • Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull.35(3), 509–527 (2009).
  • Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr. Bull.4(4), 636–640 (1978).
  • Frith C. The Cognitive Neuropsychology of Schizophrenia. Lawrence Erlbaum Associates, Hove, UK (1992).
  • Smieskova R, Fusar-Poli P, Allen P et al. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? – A systematic review. Curr. Pharm. Des.15(22), 2535–2549 (2009).
  • Vita A, De Peri L. The effects of antipsychotic treatment on cerebral structure and function in schizophrenia. Int. Rev. Psychiatry19(4), 429–436 (2007).
  • Lieberman JA, Tollefson GD, Charles C et al. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch. Gen. Psychiatry62(4), 361–370 (2005).
  • Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch. Gen. Psychiatry68(2), 128–137 (2011).
  • Dorph-Petersen KA, Pierri JN, Perel JM, Sun Z, Sampson AR, Lewis DA. The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys. Neuropsychopharmacology30(9), 1649–1661 (2005).
  • Wang HD, Dunnavant FD, Jarman T, Deutch AY. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology29(7), 1230–1238 (2004).
  • Niu J, Mei F, Li N et al. Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell cultures. Biochem. Cell. Biol.88(4), 611–620 (2010).
  • Wang H, Xu H, Niu J et al. Haloperidol activates quiescent oligodendroglia precursor cells in the adult mouse brain. Schizophr. Res.119(1–3), 164–174 (2010).
  • Zhang Y, Xu H, Jiang W et al. Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr. Res.106(2–3), 182–191 (2008).
  • Xiao L, Xu H, Zhang Y et al. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol. Psychiatry13(7), 697–708 (2008).
  • Yamauchi T, Tatsumi K, Makinodan M et al. Olanzapine increases cell mitotic activity and oligodendrocyte-lineage cells in the hypothalamus. Neurochem. Int.57(5), 565–571 (2010).
  • Rosin C, Colombo S, Calver AA, Bates TE, Skaper SD. Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia52(4), 336–343 (2005).
  • Konopaske GT, Dorph-Petersen KA, Sweet RA et al. Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol. Psychiatry63(8), 759–765 (2008).
  • Steiner J, Sarnyai Z, Westphal S et al. Protective effects of haloperidol and clozapine on energy-deprived OLN-93 oligodendrocytes. Eur. Arch. Psychiatry Clin. Neurosci. DOI: 10.1007/s00406-011-0197-3 (2011) (Epub ahead of print).
  • Fernø J, Rader M, Vik-Mo A et al. Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J.5(5), 298–304 (2005).
  • Narayan S, Kass KE, Thomas EA. Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain. J. Neurosci. Res.85(4), 757–765 (2007).
  • Thomas EA, George RC, Danielson PE et al. Antipsychotic drug treatment alters expression of mRNAs encoding lipid metabolism-related proteins. Mol. Psychiatry8(12), 983–993, 950 (2003).
  • Thomas EA, Danielson PE, Nelson PA et al. Clozapine increases apolipoprotein D expression in rodent brain: towards a mechanism for neuroleptic pharmacotherapy. J. Neurochem.76(3), 789–796 (2001).
  • Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol. Med.39(11), 1763–1777 (2009).
  • Bartzokis G, Lu PH, Nuechterlein KH et al. Differential effects of typical and atypical antipsychotics on brain myelination in schizophrenia. Schizophr. Res.93(1–3), 13–22 (2007).
  • Bartzokis G, Lu PH, Stewart SB et al. In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr. Res.113(2–3), 322–331 (2009).
  • Christensen J, Holcomb J, Garver D. State-related changes in cerebral white matter may underlie psychosis exacerbation. Psychiatry Res. Neuroimaging30, 71–78 (2004).
  • Garver DL, Holcomb JA, Christensen JD. Compromised myelin integrity during psychosis with repair during remission in drug-responding schizophrenia. Int. Neuropsychopharmacol.11(1), 49–61 (2008).
  • Girgis RR, Diwadkar VA, Nutche JJ, Sweeney JA, Keshavan MS, Hardan AY. Risperidone in first-episode psychosis: a longitudinal, exploratory voxel-based morphometric study. Schizophr. Res.82(1), 89–94 (2006).
  • Bartzokis G, Lu PH, Stewart SB et al. In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr. Res.113(2–3), 322–331 (2009).
  • Orre K, Wennstrom M, Tingstrom A. Chronic lithium treatment decreases NG2 cell proliferation in rat dentate hilus, amygdala and corpus callosum. Prog. Neuropsychopharmacol. Biol. Psychiatry33(3), 503–510 (2009).
  • Dill J, Wang H, Zhou F, Li S. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J. Neurosci.28(36), 8914–8928 (2008).
  • Macritchie KA, Lloyd AJ, Bastin ME et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br. J. Psychiatry196(1), 52–58 (2010).
  • Manning SM, Talos DM, Zhou C et al. NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J. Neurosci.28(26), 6670–6678 (2008).
  • Krivoy A, Weizman A, Laor L, Hellinger N, Zemishlany Z, Fischel T. Addition of memantine to antipsychotic treatment in schizophrenia inpatients with residual symptoms: a preliminary study. Eur. Neuropsychopharmacol.18(2), 117–121 (2008).
  • Afshar H, Roohafza H, Mousavi G et al. Topiramate add-on treatment in schizophrenia: a randomised, double-blind, placebo-controlled clinical trial. J. Psychopharmacol.23(2), 157–162 (2009).
  • Skihar V, Silva C, Chojnacki A et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc. Natl Acad. Sci. USA106(42), 17992–17997 (2009).
  • Lavedan C, Volpi S, Polymeropoulos MH, Wolfgang CD. Effect of a ciliary neurotrophic factor polymorphism on schizophrenia symptom improvement in an iloperidone clinical trial. Pharmacogenomics9(3), 289–301 (2008).
  • Tanaka Y, Ujike H, Fujiwara Y et al. Schizophrenic psychoses and the CNTF null mutation. Neuroreport9(6), 981–983 (1998).
  • Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA101(21), 8180–8185 (2004).
  • Kipnis J, Cardon M, Strous RD, Schwartz M. Loss of autoimmune T cells correlates with brain diseases: possible implications for schizophrenia? Trends Mol. Med.12(3), 107–112 (2006).
  • Bartzokis G. Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacol.27, 672–683 (2002).
  • Peters A, Sethares C. Oligodendrocytes, their progenitors and other neuroglial cells in the aging primate cerebral cortex. Cereb. Cortex14(9), 995–1007 (2004).
  • Peters A. Structural changes in the normally aging cerebral cortex of primates. Prog. Brain Res.136, 455–465 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.