163
Views
28
CrossRef citations to date
0
Altmetric
Review

Angiogenic inhibition in high-grade gliomas: past, present and future

, &
Pages 733-747 | Published online: 09 Jan 2014

References

  • CBRTUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2004–2007. Central Brain Tumor Registry of the United States (CBRTUS), Hinsdale, IL, USA (2011).
  • Stupp R, Mason WP, van den Bent MJ et al.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups. National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
  • Stupp R, Hegi ME, Mason WP et al.; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups. National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009).
  • Prados MD, Gutin PH, Phillips TL et al. Highly anaplastic astrocytoma: a review of 357 patients treated between 1977 and 1989. Int. J. Radiat. Oncol. Biol. Phys. 23(1), 3–8 (1992).
  • Prados MD, Seiferheld W, Sandler HM et al. Phase III randomized study of radiotherapy plus procarbazine, lomustine, and vincristine with or without BUdR for treatment of anaplastic astrocytoma: final report of RTOG 9404. Int. J. Radiat. Oncol. Biol. Phys. 58(4), 1147–1152 (2004).
  • van de Bent MJ, Carpentier AF, Brandes AA et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer Phase III trial. J. Clin. Oncol. 24, 2715–2722 (2006).
  • Yung WK, Albright RE, Olson J et al. A Phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br. J. Cancer 83(5), 588–593 (2000).
  • Yung WK, Prados MD, Yaya-Tur R et al. Multicenter Phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. J. Clin. Oncol. 17(9), 2762–2771 (1999).
  • Friedman HS, Prados MD, Wen PY et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27(28), 4733–4740 (2009).
  • Avastin®, package insert. Genentech USA, Inc, CA, USA (2011).
  • Kreisl TN, Kim L, Moore K et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27(5), 740–745 (2009).
  • Carmeliet P. Angiogenesis in life, disease and medicine. Nature 438(7070), 932–936 (2005).
  • Risau W, Flamme I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91 (1995).
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257 (2000).
  • Folkman J, Cole P, Zimmerman S. Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Ann. Surg. 164(3), 491–502 (1966).
  • Folkman J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst. 82(1), 4–6 (1990).
  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186 (1971).
  • Holash J, Maisonpierre PC, Compton D et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422), 1994–1998 (1999).
  • Leenders WP, Kusters B, de Waal RM. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9(2), 83–87 (2002).
  • Zagzag D, Amirnovin R, Greco MA et al. Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab. Invest. 80(6), 837–849 (2000).
  • Kargiotis O, Rao JS, Kyritsis AP. Mechanisms of angiogenesis in gliomas. J. Neurooncol. 78(3), 281–293 (2006).
  • Folkman J. Angiogenesis: initiation and control. Ann. N. Y. Acad. Sci. 401, 212–227 (1982).
  • Folkman J. Tumor angiogenesis. Adv. Cancer Res. 43, 175–203 (1985).
  • Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture. Cancer Res. 46(2), 467–473 (1986).
  • Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67(6), 2729–2735 (2007).
  • Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 61(16), 6020–6024 (2001).
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat. Med. 9(6), 669–676 (2003).
  • Herold-Mende C, Steiner HH, Andl T et al. Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells. Lab. Invest. 79(12), 1573–1582 (1999).
  • Rahimi N, Dayanir V, Lashkari K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J. Biol. Chem. 275(22), 16986–16992 (2000).
  • Ellis LM. The role of neuropilins in cancer. Mol. Cancer Ther. 5, 1099–1107 (2006).
  • Takano S, Yoshii Y, Kondo S et al. Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res. 56(9), 2185–2190 (1996).
  • Schmidt N, Westphal M, Hagel C. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer 84, 10–18 (1999).
  • Ding H, Roncari L, Wu X et al. Expression and hypoxic regulation of angiopoietins in human astrocytomas. Neuro-oncology 3(1), 1–10 (2001).
  • Samoto K, Ikezaki K, Ono M et al. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res. 55(5), 1189–1193 (1995).
  • Peters BA, Diaz LA, Polyak K et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat. Med. 11(3), 261–262 (2005).
  • Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Circ. Res. 86(1), 24–29 (2000).
  • Maisonpierre PC, Suri C, Jones PF et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322), 55–60 (1997).
  • Yoshiji H, Kuriyama S, Yoshii J et al. Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology 35(4), 834–842 (2002).
  • Mandriota SJ, Pepper MS. Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor. J. Cell. Sci. 110(Pt 18), 2293–2302 (1997).
  • Guo P, Hu B, Gu W et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 162(4), 1083–1093 (2003).
  • Wang D, Huang HJ, Kazlauskas A, Cavenee WK. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res. 59(7), 1464–1472 (1999).
  • Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J. Neurooncol. 50(1–2), 121–137 (2000).
  • Koochekpour S, Merzak A, Pilkington GJ. Vascular endothelial growth factor production is stimulated by gangliosides and TGF-beta isoforms in human glioma cells in vitro. Cancer Lett. 102(1-2), 209–215 (1996).
  • Platten M, Wick W, Weller M. High-grade glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech. 52(4), 401–410 (2001).
  • Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Weller M. Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via Up-regulation of alpha(V)beta(3) integrin expression. Biochem. Biophys. Res. Commun. 268(2), 607–611 (2000).
  • Kunkel P, Müller S, Schirmacher P et al. Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro-oncology 3(2), 82–88 (2001).
  • Loeffler S, Fayard B, Weis J, Weissenberger J. Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int. J. Cancer 115(2), 202–213 (2005).
  • Wakabayashi Y, Shono T, Isono M et al. Dual pathways of tubular morphogenesis of vascular endothelial cells by human glioma cells: vascular endothelial growth factor/basic fibroblast growth factor and interleukin-8. Jpn. J. Cancer Res. 86(12), 1189–1197 (1995).
  • Rolhion C, Penault-Llorca F, Kémény JL et al. Interleukin-6 overexpression as a marker of malignancy in human gliomas. J. Neurosurg. 94(1), 97–101 (2001).
  • Maruno M, Kovach JS, Kelly PJ, Yanagihara T. Distribution of endogenous tumour necrosis factor alpha in gliomas. J. Clin. Pathol. 50(7), 559–562 (1997).
  • Roessler K, Suchanek G, Breitschopf H et al. Detection of tumor necrosis factor-alpha protein and messenger RNA in human glial brain tumors: comparison of immunohistochemistry with in situ hybridization using molecular probes. J. Neurosurg. 83(2), 291–297 (1995).
  • Chambaut-Guérin AM, Costa SL, Lefrançois T, Fages C, Gauthereau X, Tardy M. Effects of retinoic acid and tumor necrosis factor alpha on GL-15 glioblastoma cells. Neuroreport 11(2), 389–393 (2000).
  • Yoshida S, Ono M, Shono T et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol. Cell. Biol. 17(7), 4015–4023 (1997).
  • Bello L, Francolini M, Marthyn P et al. Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49(2), 380–389; discussion 390 (2001).
  • D'Abaco GM, Kaye AH. Integrins: molecular determinants of glioma invasion. J. Clin. Neurosci. 14(11), 1041–1048 (2007).
  • Binder DK, Berger MS. Proteases and the biology of glioma invasion. J. Neurooncol. 56(2), 149–158 (2002).
  • Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64(19), 7011–7021 (2004).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100(25), 15178–15183 (2003).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63(18), 5821–5828 (2003).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 432(7015), 396–401 (2004).
  • Bao S, Wu Q, McLendon RE et al. Stem cell-like glioma cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11(1), 69–82 (2007).
  • Folkins C, Shaked Y, Man S et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res. 69(18), 7243–7251 (2009).
  • Cheng L, Bao S, Rich JN. Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem. Pharmacol. 80(5), 654–665 (2010).
  • Lathia JD, Hitomi M, Gallagher J et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2, e200 (2011).
  • Garcia JL, Perez-Caro M, Gomez-Moreta JA et al. Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC Cancer 10, 454 (2010).
  • Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312(5777), 1171–1175 (2006).
  • Sathornsumetee S, Rich JN. Antiangiogenic therapy in high-grade glioma: promise and challenge. Curr. Pharm. Des. 13(35), 3545–3558 (2007).
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706), 58–62 (2005).
  • Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from Phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol. 3(1), 24–40 (2006).
  • Gorski DH, Beckett MA, Jaskowiak NT et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59(14), 3374–3378 (1999).
  • Shaked Y, Kerbel RS. Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res. 67(15), 7055–7058 (2007).
  • Browder T, Butterfield CE, Kräling BM et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60(7), 1878–1886 (2000).
  • Bertolini F, Paul S, Mancuso P et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 63(15), 4342–4346 (2003).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66(16), 7843–7848 (2006).
  • Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3(5), 391–400 (2004).
  • Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350(23), 2335–2342 (2004).
  • Stark Vance V. Bevacizumab and CPT-11 in the treatment of relapsed high-grade glioma. Neuro-Oncology 7, Abstract 342 (2005).
  • Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66(8), 1258–1260 (2006).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Phase II trial of bevacizumab and irinotecan in recurrent high-grade glioma. Clin. Cancer Res. 13(4), 1253–1259 (2007).
  • Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for Phase II studies of supratentorial high-grade glioma. J. Clin. Oncol. 8(7), 1277–1280 (1990).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25(30), 4722–4729 (2007).
  • Desjardins A, Vredenburgh JJ, Reardon DA et al. Long-term survival from the initial trial of bevacizumab and irinotecan. J. Clin. Oncol. 28(Suppl. 15), Abstract 2045 (2010).
  • Vredenburgh JJ, Cloughesy T, Samant M et al. Corticosteroid use in patients with glioblastoma at first or second relapse treated with bevacizumab in the BRAIN study. Oncologist 15(12), 1329–1334 (2010).
  • Wefel JS, Cloughesy T, Zazzali JL et al. Neurocognitive function in patients with recurrent glioblastoma treated with bevacizumab. Neuro-oncology 13(6), 660–668 (2011).
  • Taillibert S, Vincent LA, Granger B et al. Bevacizumab and irinotecan for recurrent oligodendroglial tumors. Neurology 72(18), 1601–1606 (2009).
  • Reardon DA, Desjardins A, Vredenburgh JJ et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent high-grade glioma: a Phase II study. Br. J. Cancer 101(12), 1986–1994 (2009).
  • Chinot OL, de La Motte Rouge T, Moore N et al. Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme (ND-GBM) [abstract]. Neuro. Oncol. 11(5), 628 (2009).
  • Desjardins A, Reardon DA, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent WHO grade 3 high-grade gliomas. Clin. Cancer Res. 14(21), 7068–7073 (2008).
  • Kreisl TN, Zhang W, Odia Y et al. A Phase II trial of single-agent bevacizumab in patients with recurrent anaplastic glioma. Neuro-oncology 13(10), 1143–1150 (2011).
  • Francesconi AB, Dupre S, Matos M et al. Carboplatin and etoposide combined with bevacizumab for the treatment of recurrent glioblastoma multiforme. J. Clin. Neurosci. 17(8), 970–974 (2010).
  • Kang TY, Jin T, Elinzano H, Peereboom D. Irinotecan and bevacizumab in progressive primary brain tumors, an evaluation of efficacy and safety. J. Neurooncol. 89(1), 113–118 (2008).
  • Zuniga RM, Torcuator R, Jain R et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J. Neurooncol. 91(3), 329–336 (2009).
  • Ali SA, McHayleh WM, Ahmad A et al. Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases. J. Neurosurg. 109(2), 268–272 (2008).
  • Bokstein F, Shpigel S, Blumenthal DT. Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 112(10), 2267–2273 (2008).
  • Hasselbalch B, Lassen U, Hansen S et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a Phase II trial. Neuro-oncology 12(5), 508–516 (2010).
  • Nghiemphu PL, Liu W, Lee Y et al. Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72(14), 1217–1222 (2009).
  • Norden AD, Young GS, Setayesh K et al. Bevacizumab for recurrent high-grade gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10), 779–787 (2008).
  • Sathornsumetee S, Desjardins A, Vredenburgh JJ et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent high-grade glioma. Neuro-oncology 12(12), 1300–1310 (2010).
  • Gutin PH, Iwamoto FM, Beal K et al. Safety and efficacy of bevacizumab with hypofrationated stereotactic irradiation for recurrent high-grade gliomas. Int. J. Radiar. Oncol. Biol. Phys. 75(1), 156–163 (2009).
  • Mathieu V, De Nève N, Le Mercier M et al. Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 10(12), 1383–1392 (2008).
  • Holash J, Davis S, Papadopoulos N et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99(17), 11393–11398 (2002).
  • Gomez-Manzano C, Holash J, Fueyo J et al. VEGF Trap induces antiglioma effect at different stages of disease. Neuro-oncology 10(6), 940–945 (2008).
  • de Groot JF, Lamborn KR, Chang SM et al. Phase II study of aflibercept in recurrent high-grade glioma: a North American Brain Tumor Consortium study. J. Clin. Oncol. 29(19), 2689–2695 (2011).
  • Wachsberger PR, Burd R, Cardi C et al. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 67(5), 1526–1537 (2007).
  • Reardon DA, Desjardins A, Rich JN, Vredenburgh JJ. The emerging role of anti-angiogenic therapy for high-grade glioma. Curr. Treat. Options Oncol. 9(1), 1–22 (2008).
  • Brandsma D, van den Bent MJ. Molecular targeted therapies and chemotherapy in high-grade gliomas. Curr. Opin. Oncol. 19(6), 598–605 (2007).
  • Batchelor TT, Sorensen AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1), 83–95 (2007).
  • Batchelor TT, Duda DG, di Tomaso E et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 28(17), 2817–2823 (2010).
  • Batchelor T, Mulholland P, Neyns B. The efficacy of cediranib as monotherapy and in combination with lomustine compared to lomustine alone in patients with recurrent glioblastoma: a Phase III randomized study. Neuro-Oncology, 12(Suppl. 4), iv69–iv78 (2010).
  • Neyns B, Sadones J, Chaskis C et al. Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J. Neurooncol. 103(3), 491–501 (2011).
  • Iwamoto FM, Lamborn KR, Robins HI et al. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-oncology 12(8), 855–861 (2010).
  • de Groot JF, Prados M, Urquhart, T et al. A Phase II study of XL184 in patients with progressive glioblastoma multiforme (GBM) in first or second relapse. J. Clin. Oncol. 27(Suppl. 15), Abstract 2047 (2009).
  • Lacouture M, Lenihan D, Quaggin S. Targeting Tumor Angiogenesis. Antiangiogenic therapy: tolerability and management of side effects. The Angiogenesis Foundation (2009).
  • Armstrong TS, Wen PY, Gilbert MR, Schiff D et al. Management of treatment associated toxicities of anti-anigogenic therapy in patients with brain tumors. Neuro-Oncol doi:10.1093/neuonc/nor223 (2012) (Epub ahead of print).
  • Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 96(12), 1788–1795 (2007).
  • Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am. J. Kidney Dis. 49(2), 186–193 (2007).
  • Eremina V, Jefferson JA, Kowalewska J et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358(11), 1129–1136 (2008).
  • Levy CF, Oo KZ, Fireman F et al. Reversible posterior leukoencephalopathy syndrome in a child treated with bevacizumab. Pediatr. Blood Cancer 52(5), 669–671 (2009).
  • Scappaticci FA, Fehrenbacher L, Cartwright T et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J. Surg. Oncol. 91(3), 173–180 (2005).
  • Shen Q, Goderie SK, Jin L et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304(5675), 1338–1340 (2004).
  • Dietrich J, Han R, Yang Y, Mayer-Pröschel M, Noble M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J. Biol. 5(7), 22 (2006).
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8(8), 592–603 (2008).
  • Du R, Lu KV, Petritsch C et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3), 206–220 (2008).
  • Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat. Rev. Neurol. 5(11), 610–620 (2009).
  • Ebos JM, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl Acad. Sci. USA 104(43), 17069–17074 (2007).
  • Erber R, Thurnher A, Katsen AD et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 18(2), 338–340 (2004).
  • Motzer R, Escudier B, Oudard S et al.; RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled Phase III trial. Lancet 372(9637), 449–456 (2008).
  • Jaeckle KA, Schiff D, Anderson SK et al. NCCTG N0572 Phase I/II trial of sorafenib and temsirolimus in patients with recurrent glioblastoma: a North Central Cancer Treatment Group study. J. Clin. Oncol. 29(Suppl.), Abstract 2033 (2011).
  • Blouw B, Song H, Tihan T et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4(2), 133–146 (2003).
  • Miletic H, Niclou SP, Johansson M, Bjerkvig R. Anti-VEGF therapies for high-grade glioma: treatment effects and escape mechanisms. Expert Opin. Ther. Targets 13(4), 455–468 (2009).
  • Keunen O, Johansson M, Oudin A et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl Acad. Sci. USA 108(9), 3749–3754 (2011).
  • Iwamoto FM, Abrey LE, Beal K et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 73(15), 1200–1206 (2009).
  • Fischer I, Cunliffe CH, Bollo RJ et al. High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro-oncology 10(5), 700–708 (2008).
  • Wick A, Dörner N, Schäfer N et al. Bevacizumab does not increase the risk of remote relapse in high-grade glioma. Ann. Neurol. 69(3), 586–592 (2011).
  • Pope WB, Xia Q, Paton VE et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology 76(5), 432–437 (2011).
  • Wen PY, Macdonald DR, Reardon DA et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010).
  • Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J. Clin. Oncol. 24(20), 3293–3298 (2006).
  • Sorensen AG, Batchelor TT, Zhang W-T et al. A ‘vascular normalization index’ as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69, 5296–5300 (2009).
  • Jain R, Scarpace LM, Ellika S et al. Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J. Neurooncol. 96(3), 423–431 (2010).
  • Gerstner ER, Chen PJ, Wen PY, Jain RK, Batchelor TT, Sorensen G. Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro-oncology 12(5), 466–472 (2010).
  • Essock-Burns E, Lupo JM, Cha S et al. Assessment of perfusion MRI-derived parameters in evaluating and predicting response to antiangiogenic therapy in patients with newly diagnosed glioblastoma. Neuro-oncology 13(1), 119–131 (2011).
  • Chen W, Delaloye S, Silverman DH et al. Predicting treatment response of high-grade gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol. 25(30), 4714–4721 (2007).
  • Prados M, Cloughesy T, Samant M et al. Response as a predictor of survival in patients with recurrent glioblastoma treated with bevacizumab. Neuro-oncology 13(1), 143–151 (2011).
  • Sathornsumetee S, Cao Y, Marcello JE et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol. 26(2), 271–278 (2008).
  • Hasselbalch B, Eriksen JG, Broholm H et al. Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan. APMIS 118(8), 585–594 (2010).
  • de Groot JF, Piao Y, Tran H et al. Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept. Clin. Cancer Res. 17(14), 4872–4881 (2011).
  • Olson RA, Brastianos PK, Palma DA. Prognostic and predictive value of epigenetic silencing of MGMT in patients with high grade gliomas: a systematic review and meta-analysis. J. Neurooncol. 105(2), 325–335 (2011).
  • Pallini R, Ricci-Vitiani L, Montano N et al. Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer 117(1), 162–174 (2011).
  • Zhou Q, Gallo JM. Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model. Neuro-oncology 11(3), 301–310 (2009).
  • de Groot JF. High-dose antiangiogenic therapy for glioblastoma: less may be more? Clin. Cancer Res. 17(19), 6109–6111 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.