213
Views
80
CrossRef citations to date
0
Altmetric
Review

Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target?

&
Pages 1143-1161 | Published online: 09 Jan 2014

References

  • Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349(9063), 1436–1442 (1997).
  • World Health Organization Cross-national comparisons of the prevalences and correlates of mental disorders. WHO International Consortium in Psychiatric Epidemiology. Bull. World. Health. Organ. 78, 413–426 (2000).
  • Kessler RC, Merikangas KR, Wang PS. Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the 21st Century. Annu. Rev. Clin. Psychol. 3, 137–158 (2007).
  • Burke KC, Burke JD Jr, Rae DS, Regier DA. Comparing age at onset of major depression and other psychiatric disorders by birth cohorts in five US community populations. Arch. Gen. Psychiatry 48(9), 789–795 (1991).
  • Chengappa KN, Kupfer DJ, Frank E et al. Relationship of birth cohort and early age at onset of illness in a bipolar disorder case registry. Am. J. Psychiatry 160(9), 1636–1642 (2003).
  • Perlis RH, Miyahara S, Marangell LB et al.; STEP-BD Investigators. Long-term implications of early onset in bipolar disorder: data from the first 1000 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Biol. Psychiatry 55(9), 875–881 (2004).
  • Conus P, Ward J, Hallam KT et al. The proximal prodrome to first-episode mania – a new target for early intervention. Bipolar Disord. 10(5), 555–565 (2008).
  • Goodwin FK, Jamison KR. Manic-Depressive Illness. Oxford University Press, NY, USA, 134–136 (1990).
  • Trivedi MH, Lin EH, Katon WJ. Consensus recommendations for improving adherence, self-management, and outcomes in patients with depression. CNS Spectr. 12(8 Suppl. 13), 1–27 (2007).
  • Angst F, Stassen HH, Clayton PJ, Angst J. Mortality of patients with mood disorders: follow-up over 34–38 years. J. Affect. Disord. 68(2–3), 167–181 (2002).
  • Osby U, Brandt L, Correia N, Ekbom A, Sparén P. Excess mortality in bipolar and unipolar disorder in Sweden. Arch. Gen. Psychiatry 58(9), 844–850 (2001).
  • Ehringer MA, Rhee SH, Young S, Corley R, Hewitt JK. Genetic and environmental contributions to common psychopathologies of childhood and adolescence: a study of twins and their siblings. J. Abnorm. Child Psychol. 34(1), 1–17 (2006).
  • Merikangas KR, Chakravarti A, Moldin SO et al. Future of genetics of mood disorders research. Biol. Psychiatry 52(6), 457–477 (2002).
  • Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157(10), 1552–1562 (2000).
  • Farmer A, Elkin A, McGuffin P. The genetics of bipolar affective disorder. Curr. Opin. Psychiatry 20(1), 8–12 (2007).
  • Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am. J. Med. Genet. C. Semin. Med. Genet. 123C(1), 48–58 (2003).
  • Taylor L, Faraone SV, Tsuang MT. Family, twin, and adoption studies of bipolar disease. Curr. Psychiatry Rep. 4(2), 130–133 (2002).
  • Weissman MM, Bland RC, Canino GJ et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 276(4), 293–299 (1996).
  • Portanova JP, Zhang Y, Anderson GD et al. Selective neutralization of prostaglandin E2 blocks inflammation, hyperalgesia, and interleukin-6 production in vivo. J. Exp. Med. 184(3), 883–891 (1996).
  • Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA. Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin-6 in rat adjuvant arthritis. J. Clin. Invest. 97(11), 2672–2679 (1996).
  • Wang P, Zhu F, Konstantopoulos K. Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A- and phosphatidylinositol 3-kinase-dependent NF-kappaB activation. Am. J. Physiol., Cell Physiol. 298(6), C1445–C1456 (2010).
  • Castell JV, Gómez-Lechón MJ, David M et al. Interleukin-6 is the major regulator of acute-phase protein synthesis in adult human hepatocytes. FEBS Lett. 242(2), 237–239 (1989).
  • Li SP, Liu TY, Goldman ND. cis-acting elements responsible for interleukin-6 inducible C-reactive protein gene expression. J. Biol. Chem. 265(7), 4136–4142 (1990).
  • Li SP, Goldman ND. Regulation of human C-reactive protein gene expression by two synergistic IL-6 responsive elements. Biochemistry 35(28), 9060–9068 (1996).
  • Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot. Essent. Fatty Acids 79(3–5), 101–108 (2008).
  • Bazan NG, Calandria JM, Serhan CN. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J. Lipid Res. 51(8), 2018–2031 (2010).
  • Groeger AL, Cipollina C, Cole MP et al. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat. Chem. Biol. 6(6), 433–441 (2010).
  • Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am. J. Pathol. 177(4), 1576–1591 (2010).
  • Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278(17), 14677–14687 (2003).
  • Calabrese JR, Skwerer RG, Barna B et al. Depression, immunocompetence, and prostaglandins of the E series. Psychiatry Res. 17(1), 41–47 (1986).
  • Lieb J, Karmali R, Horrobin D. Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins. Leukot. Med. 10(4), 361–367 (1983).
  • Nishino S, Ueno R, Ohishi K, Sakai T, Hayaishi O. Salivary prostaglandin concentrations: possible state indicators for major depression. Am. J. Psychiatry 146(3), 365–368 (1989).
  • Ohishi K, Ueno R, Nishino S, Sakai T, Hayaishi O. Increased level of salivary prostaglandins in patients with major depression. Biol. Psychiatry 23(4), 326–334 (1988).
  • Linnoila M, Whorton AR, Rubinow DR, Cowdry RW, Ninan PT, Waters RN. CSF prostaglandin levels in depressed and schizophrenic patients. Arch. Gen. Psychiatry 40(4), 405–406 (1983).
  • Rao JS, Ertley RN, DeMar JC Jr, Rapoport SI, Bazinet RP, Lee HJ. Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol. Psychiatry 12(2), 151–157 (2007).
  • Lin PY, Huang SY, Su KP. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol. Psychiatry 68(2), 140–147 (2010).
  • Adams PB, Lawson S, Sanigorski A, Sinclair AJ. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 31(Suppl.), S157–S161 (1996).
  • Conklin SM, Manuck SB, Yao JK, Flory JD, Hibbeln JR, Muldoon MF. High omega-6 and low omega-3 fatty acids are associated with depressive symptoms and neuroticism. Psychosom. Med. 69(9), 932–934 (2007).
  • Maes M, Smith R, Christophe A, Cosyns P, Desnyder R, Meltzer H. Fatty acid composition in major depression: decreased omega-3 fractions in cholesteryl esters and increased C20: 4 omega 6/C20:5 omega-3 ratio in cholesteryl esters and phospholipids. J. Affect. Disord. 38(1), 35–46 (1996).
  • McNamara RK, Jandacek R, Rider T, Tso P, Dwivedi Y, Pandey GN. Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. J. Affect. Disord. 126(1–2), 303–311 (2010).
  • Dowlati Y, Herrmann N, Swardfager W et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry 67(5), 446–457 (2010).
  • Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71(2), 171–186 (2009).
  • Kling MA, Alesci S, Csako G et al. Sustained low-grade proinflammatory state in unmedicated, remitted women with major depressive disorder as evidenced by elevated serum levels of the acute-phase proteins C-reactive protein and serum amyloid A. Biol. Psychiatry 62(4), 309–313 (2007).
  • Kop WJ, Gottdiener JS, Tangen CM et al. Inflammation and coagulation factors in persons >65 years of age with symptoms of depression but without evidence of myocardial ischemia. Am. J. Cardiol. 89(4), 419–424 (2002).
  • Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22(4), 370–379 (2000).
  • Penninx BW, Kritchevsky SB, Yaffe K et al. Inflammatory markers and depressed mood in older persons: results from the Health, Aging and Body Composition study. Biol. Psychiatry 54(5), 566–572 (2003).
  • Danner M, Kasl SV, Abramson JL, Vaccarino V. Association between depression and elevated C-reactive protein. Psychosom. Med. 65(3), 347–356 (2003).
  • Ford DE, Erlinger TP. Depression and C-reactive protein in US adults: data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 164(9), 1010–1014 (2004).
  • Liukkonen T, Silvennoinen–Kassinen S, Jokelainen J et al. The association between C-reactive protein levels and depression: Results from the northern Finland 1966 birth cohort study. Biol. Psychiatry 60(8), 825–830 (2006).
  • Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS. Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature. J. Clin. Psychiatry 70(8), 1078–1090 (2009).
  • Noponen M, Sanfilipo M, Samanich K et al. Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol. Psychiatry 34(9), 641–649 (1993).
  • Chiu CC, Huang SY, Su KP et al. Polyunsaturated fatty acid deficit in patients with bipolar mania. Eur. Neuropsychopharmacol. 13(2), 99–103 (2003).
  • Sublette ME, Bosetti F, DeMar JC et al. Plasma free polyunsaturated fatty acid levels are associated with symptom severity in acute mania. Bipolar Disord. 9(7), 759–765 (2007).
  • Brietzke E, Stertz L, Fernandes BS et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J. Affect. Disord. 116(3), 214–217 (2009).
  • Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J. Psychiatr. Res. 29(2), 141–152 (1995).
  • Kim YK, Jung HG, Myint AM, Kim H, Park SH. Imbalance between proinflammatory and anti-inflammatory cytokines in bipolar disorder. J. Affect. Disord. 104(1–3), 91–95 (2007).
  • O’Brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J. Affect. Disord. 90(2–3), 263–267 (2006).
  • Ortiz-Domínguez A, Hernández ME, Berlanga C et al. Immune variations in bipolar disorder: phasic differences. Bipolar Disord. 9(6), 596–602 (2007).
  • Breunis MN, Kupka RW, Nolen WA et al. High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol. Psychiatry 53(2), 157–165 (2003).
  • Padmos RC, Hillegers MH, Knijff EM et al. A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch. Gen. Psychiatry 65(4), 395–407 (2008).
  • Tsai SY, Chen KP, Yang YY et al. Activation of indices of cell-mediated immunity in bipolar mania. Biol. Psychiatry 45(8), 989–994 (1999).
  • Tsai SY, Yang YY, Kuo CJ, Chen CC, Leu SJ. Effects of symptomatic severity on elevation of plasma soluble interleukin-2 receptor in bipolar mania. J. Affect. Disord. 64(2–3), 185–193 (2001).
  • Cunha AB, Andreazza AC, Gomes FA et al. Investigation of serum high-sensitive C-reactive protein levels across all mood states in bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 258(5), 300–304 (2008).
  • Huang TL, Lin FC. High-sensitivity C-reactive protein levels in patients with major depressive disorder and bipolar mania. Prog. Neuropsychopharmacol. Biol. Psychiatry 31(2), 370–372 (2007).
  • Wadee AA, Kuschke RH, Wood LA, Berk M, Ichim L, Maes M. Serological observations in patients suffering from acute manic episodes. Hum. Psychopharmacol. 17(4), 175–179 (2002).
  • Tsai SY, Chung KH, Wu JY, Kuo CJ, Lee HC, Huang SH. Inflammatory markers and their relationships with leptin and insulin from acute mania to full remission in bipolar disorder. J. Affect. Disord. 136(1–2), 110–116 (2012).
  • De Berardis D, Conti CM, Campanella D et al. Evaluation of C-reactive protein and total serum cholesterol in adult patients with bipolar disorder. Int. J. Immunopathol. Pharmacol. 21(2), 319–324 (2008).
  • Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R. Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 31(4), 952–955 (2007).
  • Goldstein BI, Collinger KA, Lotrich F et al. Preliminary findings regarding proinflammatory markers and brain-derived neurotrophic factor among adolescents with bipolar spectrum disorders. J. Child Adolesc. Psychopharmacol. 21(5), 479–484 (2011).
  • Boufidou F, Nikolaou C, Alevizos B, Liappas IA, Christodoulou GN. Cytokine production in bipolar affective disorder patients under lithium treatment. J. Affect. Disord. 82(2), 309–313 (2004).
  • Padmos RC, Bekris L, Knijff EM et al. A high prevalence of organ-specific autoimmunity in patients with bipolar disorder. Biol. Psychiatry 56(7), 476–482 (2004).
  • Kupka RW, Nolen WA, Post RM et al. High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure. Biol. Psychiatry 51(4), 305–311 (2002).
  • Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 40(4), 171–176 (1999).
  • Stübner S, Schön T, Padberg F et al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci. Lett. 259(3), 145–148 (1999).
  • Carpenter LL, Heninger GR, Malison RT, Tyrka AR, Price LH. Cerebrospinal fluid interleukin (IL)-6 in unipolar major depression. J. Affect. Disord. 79(1–3), 285–289 (2004).
  • Söderlund J, Olsson SK, Samuelsson M et al. Elevation of cerebrospinal fluid interleukin-1b in bipolar disorder. J. Psychiatry Neurosci. 36(2), 114–118 (2011).
  • Kim HW, Rapoport SI, Rao JS. Altered arachidonic acid cascade enzymes in postmortem brain from bipolar disorder patients. Mol. Psychiatry 16(4), 419–428 (2011).
  • Maida ME, Hurley SD, Daeschner JA, Moore AH, O’Banion MK. Cytosolic prostaglandin E2 synthase (cPGES) expression is decreased in discrete cortical regions in psychiatric disease. Brain Res. 1103(1), 164–172 (2006).
  • Ross BM, Hughes B, Kish SJ, Warsh JJ. Serum calcium-independent phospholipase A2 activity in bipolar affective disorder. Bipolar Disord. 8(3), 265–270 (2006).
  • McNamara RK, Jandacek R, Rider T et al. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 160(3), 285–299 (2008).
  • Igarashi M, Ma K, Gao F et al. Brain lipid concentrations in bipolar disorder. J. Psychiatr. Res. 44(3), 177–182 (2010).
  • Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J. Affect. Disord. 120(1–3), 245–248 (2010).
  • Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar-disorder patients. Mol. Psychiatry 15(4), 384–392 (2010).
  • Lindqvist D, Janelidze S, Hagell P et al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol. Psychiatry 66(3), 287–292 (2009).
  • Tonelli LH, Stiller J, Rujescu D et al. Elevated cytokine expression in the orbitofrontal cortex of victims of suicide. Acta Psychiatr. Scand. 117(3), 198–206 (2008).
  • Pandey GN, Rizavi HS, Ren X et al. Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. J. Psychiatr. Res. 46(1), 57–63 (2012).
  • Lalovic A, Levy E, Canetti L, Sequeira A, Montoudis A, Turecki G. Fatty acid composition in postmortem brains of people who completed suicide. J. Psychiatry Neurosci. 32(5), 363–370 (2007).
  • McNamara RK, Jandacek R, Rider T et al. Fatty acid composition of the postmortem prefrontal cortex of adolescent male and female suicide victims. Prostaglandins Leukot. Essent. Fatty Acids 80(1), 19–26 (2009).
  • Garland MR, Hallahan B, McNamara M et al. Lipids and essential fatty acids in patients presenting with self-harm. Br. J. Psychiatry 190, 112–117 (2007).
  • Huan M, Hamazaki K, Sun Y et al. Suicide attempt and n-3 fatty acid levels in red blood cells: a case control study in China. Biol. Psychiatry 56(7), 490–496 (2004).
  • Sublette ME, Hibbeln JR, Galfalvy H, Oquendo MA, Mann JJ. Omega-3 polyunsaturated essential fatty acid status as a predictor of future suicide risk. Am. J. Psychiatry 163(6), 1100–1102 (2006).
  • Capuron L, Hauser P, Hinze-Selch D, Miller AH, Neveu PJ. Treatment of cytokine-induced depression. Brain Behav. Immun. 16(5), 575–580 (2002).
  • Musselman DL, Lawson DH, Gumnick JF et al. Paroxetine for the prevention of depression induced by high-dose interferon-α. N. Engl. J. Med. 344(13), 961–966 (2001).
  • Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27(1), 24–31 (2006).
  • Dan AA, Crone C, Wise TN et al. Anger experiences among hepatitis C patients: relationship to depressive symptoms and health-related quality of life. Psychosomatics 48(3), 223–229 (2007).
  • Préau M, Marcellin F, Spire B et al. Impaired anger control as an underappreciated side effect of treatments for chronic HCV infection in HIV–HCV coinfected patients. J. Clin. Gastroenterol. 42(1), 92–96 (2008).
  • Lotrich FE, Ferrell RE, Rabinovitz M, Pollock BG. Labile anger during interferon-α treatment is associated with a polymorphism in tumor necrosis factor-α. Clin. Neuropharmacol. 33(4), 191–197 (2010).
  • Constant A, Castera L, Dantzer R et al. Mood alterations during interferon-α therapy in patients with chronic hepatitis C: evidence for an overlap between manic/hypomanic and depressive symptoms. J. Clin. Psychiatry 66(8), 1050–1057 (2005).
  • Prather AA, Rabinovitz M, Pollock BG, Lotrich FE. Cytokine-induced depression during IFN-α treatment: the role of IL-6 and sleep quality. Brain Behav. Immun. 23(8), 1109–1116 (2009).
  • Raison CL, Borisov AS, Majer M et al. Activation of central nervous system inflammatory pathways by interferon-α: relationship to monoamines and depression. Biol. Psychiatry 65(4), 296–303 (2009).
  • Reichenberg A, Yirmiya R, Schuld A et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch. Gen. Psychiatry 58(5), 445–452 (2001).
  • Glaser R, Robles TF, Sheridan J, Malarkey WB, Kiecolt-Glaser JK. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch. Gen. Psychiatry 60(10), 1009–1014 (2003).
  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9(1), 46–56 (2008).
  • Simen BB, Duman CH, Simen AA, Duman RS. TNF-α signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol. Psychiatry 59(9), 775–785 (2006).
  • Chourbaji S, Urani A, Inta I et al. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol. Dis. 23(3), 587–594 (2006).
  • Felger JC, Alagbe O, Hu F et al. Effects of interferon-α on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol. Psychiatry 62(11), 1324–1333 (2007).
  • Hayley S, Brebner K, Lacosta S, Merali Z, Anisman H. Sensitization to the effects of tumor necrosis factor-α: neuroendocrine, central monoamine, and behavioral variations. J. Neurosci. 19(13), 5654–5665 (1999).
  • McNamara RK, Jandacek R, Rider T, Tso P, Cole-Strauss A, Lipton JW. Omega-3 fatty acid deficiency increases constitutive proinflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot. Essent. Fatty Acids 83(4–6), 185–191 (2010).
  • Mingam R, Moranis A, Bluthé RM et al. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur. J. Neurosci. 28(9), 1877–1886 (2008).
  • DeMar JC Jr, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J. Lipid Res. 47(1), 172–180 (2006).
  • Skelin I, Kovacevic T, Sato H, Diksic M. Upregulated arachidonic acid signalling in the olfactory bulbectomized rat model of depression. Neurochem. Int. 58(4), 483–488 (2011).
  • Song C, Zhang XY, Manku M. Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J. Neurosci. 29(1), 14–22 (2009).
  • Green P, Gispan-Herman I, Yadid G. Increased arachidonic acid concentration in the brain of Flinders Sensitive Line rats, an animal model of depression. J. Lipid Res. 46(6), 1093–1096 (2005).
  • Zakynthinos E, Pappa N. Inflammatory biomarkers in coronary artery disease. J. Cardiol. 53(3), 317–333 (2009).
  • Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. N. Engl. J. Med. 343(16), 1139–1147 (2000).
  • Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336(14), 973–979 (1997).
  • Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15), 1767–1772 (2000).
  • Ozdemir O, Gundogdu F, Karakelleoglu S et al. Comparison of serum levels of inflammatory markers and allelic variant of interleukin-6 in patients with acute coronary syndrome and stable angina pectoris. Coron. Artery Dis. 19(1), 15–19 (2008).
  • Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin-6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 286(17), 2107–2113 (2001).
  • Harris WS. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 87(6), 1997S–2002S (2008).
  • McNamara RK. Membrane omega-3 fatty acid deficiency as a preventable risk factor for comorbid coronary heart disease in major depressive disorder. Cardiovasc. Psychiatry Neurol. 9, 1–13 (2009).
  • McElroy SL, Frye MA, Suppes T et al. Correlates of overweight and obesity in 644 patients with bipolar disorder. J. Clin. Psychiatry 63(3), 207–213 (2002).
  • Fagiolini A, Frank E, Houck PR et al. Prevalence of obesity and weight change during treatment in patients with bipolar I disorder. J. Clin. Psychiatry 63(6), 528–533 (2002).
  • Fagiolini A, Frank E, Scott JA, Turkin S, Kupfer DJ. Metabolic syndrome in bipolar disorder: findings from the Bipolar Disorder Center for Pennsylvanians. Bipolar Disord. 7(5), 424–430 (2005).
  • Wang PW, Sachs GS, Zarate CA et al. Overweight and obesity in bipolar disorders. J. Psychiatr. Res. 40(8), 762–764 (2006).
  • Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, Miller DD, Haynes WG. Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann. Clin. Psychiatry 20(3), 131–137 (2008).
  • Hansen D, Dendale P, Beelen M et al. Plasma adipokine and inflammatory marker concentrations are altered in obese, as opposed to nonobese, Type 2 diabetes patients. Eur. J. Appl. Physiol. 109(3), 397–404 (2010).
  • Stelzer I, Zelzer S, Raggam RB et al. Link between leptin and interleukin-6 levels in the initial phase of obesity related inflammation. Transl. Res. 159(2), 118–124 (2012).
  • Goodwin RD, Jacobi F, Thefeld W. Mental disorders and asthma in the community. Arch. Gen. Psychiatry 60(11), 1125–1130 (2003).
  • Hetrick S, Merry S, McKenzie J, Sindahl P, Proctor M. Selective serotonin reuptake inhibitors (SSRIs) for depressive disorders in children and adolescents. Cochrane Database Syst. Rev. 3, CD004851 (2007).
  • Hammad TA, Laughren T, Racoosin J. Suicidality in pediatric patients treated with antidepressant drugs. Arch. Gen. Psychiatry 63(3), 332–339 (2006).
  • Baumer FM, Howe M, Gallelli K, Simeonova DI, Hallmayer J, Chang KD. A pilot study of antidepressant-induced mania in pediatric bipolar disorder: characteristics, risk factors, and the serotonin transporter gene. Biol. Psychiatry 60(9), 1005–1012 (2006).
  • Cicero D, El-Mallakh RS, Holman J, Robertson J. Antidepressant exposure in bipolar children. Psychiatry 66(4), 317–322 (2003).
  • Faedda GL, Baldessarini RJ, Glovinsky IP, Austin NB. Treatment-emergent mania in pediatric bipolar disorder: a retrospective case review. J. Affect. Disord. 82(1), 149–158 (2004).
  • Martin A, Young C, Leckman JF, Mukonoweshuro C, Rosenheck R, Leslie D. Age effects on antidepressant-induced manic conversion. Arch. Pediatr. Adolesc. Med. 158(8), 773–780 (2004).
  • Findling RL, Frazier TW, Youngstrom EA et al. Double-blind, placebo-controlled trial of divalproex monotherapy in the treatment of symptomatic youth at high risk for developing bipolar disorder. J. Clin. Psychiatry 68(5), 781–788 (2007).
  • Geller B, Cooper TB, Zimerman B et al. Lithium for prepubertal depressed children with family history predictors of future bipolarity: a double-blind, placebo-controlled study. J. Affect. Disord. 51(2), 165–175 (1998).
  • Verrotti A, la Torre R, Trotta D, Mohn A, Chiarelli F. Valproate-induced insulin resistance and obesity in children. Horm. Res. 71(3), 125–131 (2009).
  • Fraguas D, Correll CU, Merchán-Naranjo J et al. Efficacy and safety of second-generation antipsychotics in children and adolescents with psychotic and bipolar spectrum disorders: comprehensive review of prospective head-to-head and placebo-controlled comparisons. Eur. Neuropsychopharmacol. 21(8), 621–645 (2011).
  • Smith LA, Cornelius V, Warnock A, Bell A, Young AH. Effectiveness of mood stabilizers and antipsychotics in the maintenance phase of bipolar disorder: a systematic review of randomized controlled trials. Bipolar Disord. 9(4), 394–412 (2007).
  • Scherk H, Pajonk FG, Leucht S. Second-generation antipsychotic agents in the treatment of acute mania: a systematic review and meta-analysis of randomized controlled trials. Arch. Gen. Psychiatry 64(4), 442–455 (2007).
  • Bond DJ, Lam RW, Yatham LN. Divalproex sodium versus placebo in the treatment of acute bipolar depression: a systematic review and meta-analysis. J. Affect. Disord. 124(3), 228–234 (2010).
  • Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA 302(16), 1765–1773 (2009).
  • Castanon N, Leonard BE, Neveu PJ, Yirmiya R. Effects of antidepressants on cytokine production and actions. Brain Behav. Immun. 16(5), 569–574 (2002).
  • Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int. J. Neuropsychopharmacol. 5(4), 401–412 (2002).
  • Yirmiya R, Pollak Y, Barak O et al. Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Neuropsychopharmacology 24(5), 531–544 (2001).
  • Yaron I, Shirazi I, Judovich R, Levartovsky D, Caspi D, Yaron M. Fluoxetine and amitriptyline inhibit nitric oxide, prostaglandin E2, and hyaluronic acid production in human synovial cells and synovial tissue cultures. Arthritis Rheum. 42(12), 2561–2568 (1999).
  • Porterfield VM, Zimomra ZR, Caldwell EA, Camp RM, Gabella KM, Johnson JD. Rat strain differences in restraint stress-induced brain cytokines. Neuroscience 188, 48–54 (2011).
  • Lee HJ, Rao JS, Ertley RN, Chang L, Rapoport SI, Bazinet RP. Chronic fluoxetine increases cytosolic phospholipase A(2) activity and arachidonic acid turnover in brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl.) 190(1), 103–115 (2007).
  • Lee HJ, Rao JS, Chang L, Rapoport SI, Kim HW. Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to ‘switching’ in bipolar disorder? Mol. Psychiatry 15(6), 602–614 (2010).
  • Rao JS, Lee HJ, Rapoport SI, Bazinet RP. Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol. Psychiatry 13(6), 585–596 (2008).
  • Post RM, Altshuler LL, Leverich GS et al. Mood switch in bipolar depression: comparison of adjunctive venlafaxine, bupropion and sertraline. Br. J. Psychiatry 189, 124–131 (2006).
  • Jazayeri S, Keshavarz SA, Tehrani-Doost M et al. Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1β and interleukin-6 concentrations in patients with major depressive disorder. Psychiatry Res. 178(1), 112–115 (2010).
  • Maes M, Meltzer HY, Bosmans E et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J. Affect. Disord. 34(4), 301–309 (1995).
  • Sluzewska A, Sobieska M, Rybakowski JK. Changes in acute-phase proteins during lithium potentiation of antidepressants in refractory depression. Neuropsychobiology 35(3), 123–127 (1997).
  • Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment-resistant depression. Cytokine 9(11), 853–858 (1997).
  • Müller N, Schwarz MJ, Dehning S et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatry 11(7), 680–684 (2006).
  • Musil R, Schwarz MJ, Riedel M et al. Elevated macrophage migration inhibitory factor and decreased transforming growth factor-β levels in major depression – no influence of celecoxib treatment. J. Affect. Disord. 134(1–3), 217–225 (2011).
  • Akhondzadeh S, Jafari S, Raisi F et al. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double-blind and placebo-controlled trial. Depress. Anxiety 26(7), 607–611 (2009).
  • Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int. Clin. Psychopharmacol. 21(4), 227–231 (2006).
  • Jazayeri S, Tehrani-Doost M, Keshavarz SA et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust. N. Z. J. Psychiatry 42(3), 192–198 (2008).
  • Gertsik L, Poland RE, Bresee C, Rapaport MH. Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J. Clin. Psychopharmacol. 32(1), 61–64 (2012).
  • Peet M, Horrobin DF. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch. Gen. Psychiatry 59(10), 913–919 (2002).
  • McNamara RK, Sullivan J, Richtand NM. Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult mice: prevention by chronic lithium treatment. J. Psychiatr. Res. 42(6), 458–468 (2008).
  • Rapoport SI. Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins Leukot. Essent. Fatty Acids 79(3–5), 153–156 (2008).
  • Basselin M, Kim HW, Chen M et al. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J. Lipid Res. 51(5), 1049–1056 (2010).
  • Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. Brain Res. Rev. 61(2), 185–209 (2009).
  • Knijff EM, Breunis MN, Kupka RW et al. An imbalance in the production of IL-1β and IL-6 by monocytes of bipolar patients: restoration by lithium treatment. Bipolar Disord. 9(7), 743–753 (2007).
  • Rapaport MH, Guylai L, Whybrow P. Immune parameters in rapid cycling bipolar patients before and after lithium treatment. J. Psychiatr. Res. 33(4), 335–340 (1999).
  • Nery FG, Monkul ES, Hatch JP et al. Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum. Psychopharmacol. 23(2), 87–94 (2008).
  • Stolk P, Souverein PC, Wilting I et al. Is aspirin useful in patients on lithium? A pharmacoepidemiological study related to bipolar disorder. Prostaglandins Leukot. Essent. Fatty Acids 82(1), 9–14 (2010).
  • Clayton EH, Hanstock TL, Hirneth SJ Kable CJ, Garg ML, Hazell PL. Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty acid supplementation. Eur. J. Clin. Nutr. 63(8), 1037–1040 (2009).
  • Stoll AL, Severus WE, Freeman MP et al. Omega-3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch. Gen. Psychiatry 56(5), 407–412 (1999).
  • Richtand NM, Welge JA, Logue AD, Keck PE Jr, Strakowski SM, McNamara RK. Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology 32(8), 1715–1726 (2007).
  • Garcia MC, Kim HY. Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res. 768(1–2), 43–48 (1997).
  • Nilsson CL, Hellstrand M, Ekman A, Eriksson E. Direct dopamine D2-receptor-mediated modulation of arachidonic acid release in transfected CHO cells without the concomitant administration of a Ca2+-mobilizing agent. Br. J. Pharmacol. 124(8), 1651–1658 (1998).
  • Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC. Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature 353(6340), 164–167 (1991).
  • Qu Y, Chang L, Klaff J, Balbo A, Rapoport SI. Imaging brain phospholipase A2 activation in awake rats in response to the 5-HT2A/2C agonist (+/−)2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI). Neuropsychopharmacology 28(2), 244–252 (2003).
  • Basselin M, Chang L, Bell JM, Rapoport SI. Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 30(6), 1064–1075 (2005).
  • Bhattacharjee AK, Chang L, White L, Bazinet RP, Rapoport SI. d-amphetamine stimulates D2 dopamine receptor-mediated brain signaling involving arachidonic acid in unanesthetized rats. J. Cereb. Blood Flow Metab. 26(11), 1378–1388 (2006).
  • Kim HW, Cheon Y, Modi HR, Rapoport SI, Rao JS. Effects of chronic clozapine administration on markers of arachidonic acid cascade and synaptic integrity in rat brain. Psychopharmacology (Berl.) 222(4), 663–674 (2012).
  • Cheon Y, Park JY, Modi HR et al. Chronic olanzapine treatment decreases arachidonic acid turnover and prostaglandin E2 concentration in rat brain. J. Neurochem. 119(2), 364–376 (2011).
  • Bian Q, Kato T, Monji A et al. The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-γ. Prog. Neuropsychopharmacol. Biol. Psychiatry 32(1), 42–48 (2008).
  • Kato T, Monji A, Hashioka S, Kanba S. Risperidone significantly inhibits interferon-γ-induced microglial activation in vitro. Schizophr. Res. 92(1–3), 108–115 (2007).
  • Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y. Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 33(2), 303–307 (2009).
  • McNamara RK, Jandacek R, Rider T, Tso P. Chronic risperidone normalizes elevated proinflammatory cytokine and C-reactive protein production in omega-3 fatty acid deficient rats. Eur. J. Pharmacol. 652(1–3), 152–156 (2011).
  • Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS. Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav. Immun. 20(6), 532–545 (2006).
  • Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B. Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr. Res. 90(1–3), 179–185 (2007).
  • Berger GE, Proffitt TM, McConchie M et al. Ethyl-eicosapentaenoic acid in first-episode psychosis: a randomized, placebo-controlled trial. J. Clin. Psychiatry 68(12), 1867–1875 (2007).
  • Arango V, Underwood MD, Mann JJ. Serotonin brain circuits involved in major depression and suicide. Prog. Brain Res. 136, 443–453 (2002).
  • Vaswani M, Linda FK, Ramesh S. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog. Neuropsychopharmacol. Biol. Psychiatry 27(1), 85–102 (2003).
  • Rosa-Neto P, Diksic M, Okazawa H et al. Measurement of brain regional a-[11C]methyl-l-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch. Gen. Psychiatry 61(6), 556–563 (2004).
  • Barton DA, Esler MD, Dawood T et al. Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch. Gen. Psychiatry 65(1), 38–46 (2008).
  • Lundmark J, Wålinder J, Alling C, Manniche PM, Dalgaard L. The effect of paroxetine on cerebrospinal fluid concentrations of neurotransmitter metabolites in depressed patients. Eur. Neuropsychopharmacol. 4(1), 1–6 (1994).
  • De Bellis MD, Geracioti TD Jr, Altemus M, Kling MA. Cerebrospinal fluid monoamine metabolites in fluoxetine-treated patients with major depression and in healthy volunteers. Biol. Psychiatry 33(8–9), 636–641 (1993).
  • Potter WZ, Scheinin M, Golden RN et al. Selective antidepressants and cerebrospinal fluid. Lack of specificity on norepinephrine and serotonin metabolites. Arch. Gen. Psychiatry 42(12), 1171–1177 (1985).
  • Sheline Y, Bardgett ME, Csernansky JG. Correlated reductions in cerebrospinal fluid 5-HIAA and MHPG concentrations after treatment with selective serotonin reuptake inhibitors. J. Clin. Psychopharmacol. 17(1), 11–14 (1997).
  • Unceta N, Barrondo S, Ruiz de Azúa I et al. Determination of fluoxetine, norfluoxetine and their enantiomers in rat plasma and brain samples by liquid chromatography with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852(1–2), 519–528 (2007).
  • McNamara RK, Able JA, Rider T, Tso P, Jandacek R. Effect of chronic fluoxetine treatment on male and female rat erythrocyte and prefrontal cortex fatty acid composition. Prog. Neuropsychopharmacol. Biol. Psychiatry 34(7), 1317–1321 (2010).
  • Wang J, Dunn AJ. Mouse interleukin-6 stimulates the HPA axis and increases brain tryptophan and serotonin metabolism. Neurochem. Int. 33(2), 143–154 (1998).
  • Zhang J, Terreni L, De Simoni MG, Dunn AJ. Peripheral interleukin-6 administration increases extracellular concentrations of serotonin and the evoked release of serotonin in the rat striatum. Neurochem. Int. 38(4), 303–308 (2001).
  • Clement HW, Buschmann J, Rex S et al. Effects of interferon-γ, interleukin-1β, and tumor necrosis factor-α on the serotonin metabolism in the nucleus raphe dorsalis of the rat. J. Neural Transm. 104(10), 981–991 (1997).
  • Sato T, Suzuki E, Yokoyama M, Semba J, Watanabe S, Miyaoka H. Chronic intraperitoneal injection of interferon-α reduces serotonin levels in various regions of rat brain, but does not change levels of serotonin transporter mRNA, nitrite or nitrate. Psychiatry Clin. Neurosci. 60(4), 499–506 (2006).
  • Hayley S, Lacosta S, Merali Z, van Rooijen N, Anisman H. Central monoamine and plasma corticosterone changes induced by a bacterial endotoxin: sensitization and cross-sensitization effects. Eur. J. Neurosci. 13(6), 1155–1165 (2001).
  • Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatry 49(5), 391–404 (2001).
  • Ströhle A, Holsboer F. Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 36(Suppl. 3), S207–S214 (2003).
  • Beishuizen A, Thijs LG. Endotoxin and the hypothalamo–pituitary–adrenal (HPA) axis. J. Endotoxin Res. 9(1), 3–24 (2003).
  • Grinevich V, Ma XM, Herman JP, Jezova D, Akmayev I, Aguilera G. Effect of repeated lipopolysaccharide administration on tissue cytokine expression and hypothalamic–pituitary–adrenal axis activity in rats. J. Neuroendocrinol. 13(8), 711–723 (2001).
  • Jankord R, Zhang R, Flak JN, Solomon MB, Albertz J, Herman JP. Stress activation of IL-6 neurons in the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299(1), R343–R351 (2010).
  • Frank MG, Miguel ZD, Watkins LR, Maier SF. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav. Immun. 24(1), 19–30 (2010).
  • Pace TW, Miller AH. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann. NY Acad. Sci. 1179, 86–105 (2009).
  • Pluess TT, Hayoz D, Berger MM et al. Intravenous fish oil blunts the physiological response to endotoxin in healthy subjects. Intensive Care Med. 33(5), 789–797 (2007).
  • Michaeli B, Berger MM, Revelly JP, Tappy L, Chioléro R. Effects of fish oil on the neuroendocrine responses to an endotoxin challenge in healthy volunteers. Clin. Nutr. 26(1), 70–77 (2007).
  • Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 122(2), 155–170 (2011).
  • Chwastiak LA, Ehde DM. Psychiatric issues in multiple sclerosis. Psychiatr. Clin. North Am. 30(4), 803–817 (2007).
  • Chwastiak L, Ehde DM, Gibbons LE, Sullivan M, Bowen JD, Kraft GH. Depressive symptoms and severity of illness in multiple sclerosis: epidemiologic study of a large community sample. Am. J. Psychiatry 159(11), 1862–1868 (2002).
  • Iacovides A, Andreoulakis E. Bipolar disorder and resembling special psychopathological manifestations in multiple sclerosis: a review. Curr. Opin. Psychiatry 24(4), 336–340 (2011).
  • Scolozzi R, Boccafogli A, Tola MR et al. T-cell phenotypic profiles in the cerebrospinal fluid and peripheral blood of multiple sclerosis patients. J. Neurol. Sci. 108(1), 93–98 (1992).
  • Trotter JL, Clifford DB, Anderson CB, van der Veen RC, Hicks BC, Banks G. Elevated serum interleukin-2 levels in chronic progressive multiple sclerosis. N. Engl. J. Med. 318(18), 1206 (1988).
  • Drexhage RC, Hoogenboezem TH, Versnel MA, Berghout A, Nolen WA, Drexhage HA. The activation of monocyte and T-cell networks in patients with bipolar disorder. Brain Behav. Immun. 25(6), 1206–1213 (2011).
  • Aston C, Jiang L, Sokolov BP. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol. Psychiatry 10(3), 309–322 (2005).
  • Tkachev D, Mimmack ML, Ryan MM et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362(9386), 798–805 (2003).
  • Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley KC. Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res. 151(3), 179–188 (2007).
  • Hasan KM, Gupta RK, Santos RM, Wolinsky JS, Narayana PA. Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J. Magn. Reson. Imaging 21(6), 735–743 (2005).
  • Benedetti F, Absinta M, Rocca MA et al. Tract-specific white matter structural disruption in patients with bipolar disorder. Bipolar Disord. 13(4), 414–424 (2011).
  • Heng S, Song AW, Sim K. White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J. Neural Transm. 117(5), 639–654 (2010).
  • Zanetti MV, Jackowski MP, Versace A et al. State-dependent microstructural white matter changes in bipolar I depression. Eur. Arch. Psychiatry Clin. Neurosci. 259(6), 316–328 (2009).
  • Wu F, Tang Y, Xu K et al. Whiter matter abnormalities in medication-naive subjects with a single short-duration episode of major depressive disorder. Psychiatry Res. 191(1), 80–83 (2011).
  • Zhu X, Wang X, Xiao J, Zhong M, Liao J, Yao S. Altered white matter integrity in first-episode, treatment-naive young adults with major depressive disorder: a tract-based spatial statistics study. Brain Res. 1369, 223–229 (2011).
  • Eugster HP, Frei K, Kopf M, Lassmann H, Fontana A. IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur. J. Immunol. 28(7), 2178–2187 (1998).
  • Mendel I, Katz A, Kozak N, Ben-Nun A, Revel M. Interleukin-6 functions in autoimmune encephalomyelitis: a study in gene-targeted mice. Eur. J. Immunol. 28(5), 1727–1737 (1998).
  • Stolp HB, Dziegielewska KM, Ek CJ, Potter AM, Saunders NR. Long-term changes in blood–brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur. J. Neurosci. 22(11), 2805–2816 (2005).
  • Stolp HB, Ek CJ, Johansson PA et al. Factors involved in inflammation-induced developmental white matter damage. Neurosci. Lett. 451(3), 232–236 (2009).
  • Tuzun F, Kumral A, Dilek M et al. Maternal omega-3 fatty acid supplementation protects against lipopolysaccharide-induced white matter injury in the neonatal rat brain. J. Matern. Fetal. Neonatal. Med. 25(6), 849–854 (2012).
  • Ward RE, Huang W, Curran OE, Priestley JV, Michael-Titus AT. Docosahexaenoic acid prevents white matter damage after spinal cord injury. J. Neurotrauma 27(10), 1769–1780 (2010).
  • Kempton MJ, Geddes JR, Ettinger U, Williams SC, Grasby PM. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch. Gen. Psychiatry 65(9), 1017–1032 (2008).
  • Kempton MJ, Salvador Z, Munafò MR et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry 68(7), 675–690 (2011).
  • Campbell LR, Pang Y, Ojeda NB, Zheng B, Rhodes PG, Alexander BT. Intracerebral lipopolysaccharide induces neuroinflammatory change and augmented brain injury in growth-restricted neonatal rats. Pediatr. Res. 71(6), 645–652 (2012).
  • Hauss-Wegrzyniak B, Galons JP, Wenk GL. Quantitative volumetric analyses of brain magnetic resonance imaging from rat with chronic neuroinflammation. Exp. Neurol. 165(2), 347–354 (2000).
  • Carrasco E, Casper D, Werner P. PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J. Neurosci. Res. 85(14), 3109–3117 (2007).
  • Kawaguchi K, Hickey RW, Rose ME, Zhu L, Chen J, Graham SH. Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus. Brain Res. 1050(1–2), 130–137 (2005).
  • Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochem. Res. 37(5), 903–910 (2012).
  • Myint AM, Schwarz MJ, Müller N. The role of the kynurenine metabolism in major depression. J. Neural Transm. 119(2), 245–251 (2012).
  • Conklin SM, Gianaros PJ, Brown SM et al. Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in healthy adults. Neurosci. Lett. 421(3), 209–212 (2007).
  • Padmos RC, Van Baal GC, Vonk R et al. Genetic and environmental influences on proinflammatory monocytes in bipolar disorder: a twin study. Arch. Gen. Psychiatry 66(9), 957–965 (2009).
  • Pearce BD, Kruszon-Moran D, Jones JL. The relationship between Toxoplasma gondii infection and mood disorders in the third national health and nutrition survey. Biol. Psychiatry 72(4), 290–295 (2012).
  • Lee HC, Tsai SY, Lin HC. Seasonal variations in bipolar-disorder admissions and the association with climate: a population-based study. J. Affect Disord. 97(1–3), 61–69 (2007).
  • Cassidy F, Carroll BJ. Seasonal variation of mixed and pure episodes of bipolar disorder. J. Affect. Disord. 68(1), 25–31 (2002).
  • Dickerson F, Stallings C, Origoni A et al. Markers of gluten sensitivity and celiac disease in bipolar disorder. Bipolar Disord. 13(1), 52–58 (2011).
  • Post RM, Leverich GS. The role of psychosocial stress in the onset and progression of bipolar disorder and its comorbidities: the need for earlier and alternative modes of therapeutic intervention. Dev. Psychopathol. 18(4), 1181–1211 (2006).
  • Danese A, Pariante CM, Caspi A, Taylor A, Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc. Natl Acad. Sci. USA 104(4), 1319–1324 (2007).
  • McDade TW, Hawkley LC, Cacioppo JT. Psychosocial and behavioral predictors of inflammation in middle-aged and older adults: the Chicago health, aging, and social relations study. Psychosom. Med. 68(3), 376–381 (2006).
  • Miller GE, Rohleder N, Cole SW. Chronic interpersonal stress predicts activation of pro- and anti-inflammatory signaling pathways 6 months later. Psychosom. Med. 71(1), 57–62 (2009).
  • Spitzer C, Barnow S, Völzke H et al. Association of posttraumatic stress disorder with low-grade elevation of C-reactive protein: evidence from the general population. J. Psychiatr. Res. 44(1), 15–21 (2010).
  • von Känel R, Hepp U, Kraemer B et al. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J. Psychiatr. Res. 41(9), 744–752 (2007).
  • Pace TW, Mletzko TC, Alagbe O et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am. J. Psychiatry 163(9), 1630–1633 (2006).
  • Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th Century. Am. J. Clin. Nutr. 93(5), 950–962 (2011).
  • Kelley DS, Taylor PC, Nelson GJ, Mackey BE. Arachidonic acid supplementation enhances synthesis of eicosanoids without suppressing immune functions in young healthy men. Lipids 33(2), 125–130 (1998).
  • Song C, Li X, Leonard BE, Horrobin DF. Effects of dietary n-3 or n-6 fatty acids on interleukin-1β-induced anxiety, stress, and inflammatory responses in rats. J. Lipid Res. 44(10), 1984–1991 (2003).
  • Song C, Manku MS, Horrobin DF. Long-chain polyunsaturated fatty acids modulate interleukin-1β-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J. Nutr. 138(5), 954–963 (2008).
  • Kelley DS, Taylor PC, Nelson GJ, Schmidt PC, Mackey BE, Kyle D. Effects of dietary arachidonic acid on human immune response. Lipids 32(4), 449–456 (1997).
  • Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296(15), 1885–1899 (2006).
  • Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor-α and interleukin-1β production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 63(1), 116–122 (1996).
  • Endres S, Ghorbani R, Kelley VE et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 320(5), 265–271 (1989).
  • Meydani SN, Endres S, Woods MM et al. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J. Nutr. 121(4), 547–555 (1991).
  • Lopez-Garcia E, Schulze MB, Manson JE et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J. Nutr. 134(7), 1806–1811 (2004).
  • Pischon T, Hankinson SE, Hotamisligil GS, Rifai N, Willett WC, Rimm EB. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation 108(2), 155–160 (2003).
  • Ferrucci L, Cherubini A, Bandinelli S et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J. Clin. Endocrinol. Metab. 91(2), 439–446 (2006).
  • Micallef MA, Munro IA, Garg ML. An inverse relationship between plasma n-3 fatty acids and C-reactive protein in healthy individuals. Eur. J. Clin. Nutr. 63(9), 1154–1156 (2009).
  • Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA. Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The Heart and Soul Study. Atherosclerosis 205(2), 538–543 (2009).
  • Tartibian B, Maleki BH, Abbasi A. Omega-3 fatty acids supplementation attenuates inflammatory markers after eccentric exercise in untrained men. Clin. J. Sport Med. 21(2), 131–137 (2011).
  • Ranjekar PK, Hinge A, Hegde MV et al. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res. 121(2), 109–122 (2003).
  • Hibbeln JR. Fish consumption and major depression. Lancet 351(9110), 1213 (1998).
  • Hibbeln JR. Seafood consumption, the DHA content of mothers’ milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J. Affect. Disord. 69(1–3), 15–29 (2002).
  • Noaghiul S, Hibbeln JR. Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am. J. Psychiatry 160(12), 2222–2227 (2003).
  • Peet M. International variations in the outcome of schizophrenia and the prevalence of depression in relation to national dietary practices: an ecological analysis. Br. J. Psychiatry 184, 404–408 (2004).
  • Appleton KM, Rogers PJ, Ness AR. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am. J. Clin. Nutr. 91(3), 757–770 (2010).
  • Freeman MP, Hibbeln JR, Wisner KL et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J. Clin. Psychiatry 67(12), 1954–1967 (2006).
  • Lin PY, Su KP. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatry 68(7), 1056–1061 (2007).
  • Stoffel W, Holz B, Jenke B et al. ∆6-desaturase (FADS2) deficiency unveils the role of omega-3- and omega-6-polyunsaturated fatty acids. EMBO J. 27(17), 2281–2292 (2008).
  • Obukowicz MG, Welsch DJ, Salsgiver WJ et al. Novel, selective ∆6 or ∆5 fatty acid desaturase inhibitors as anti-inflammatory agents in mice. J. Pharmacol. Exp. Ther. 287(1), 157–166 (1998).
  • Merino DM, Ma DW, Mutch DM. Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids Health Dis. 9, 63 (2010).
  • Do HJ, Chung HK, Moon J, Shin MJ. Relationship between the estimates of desaturase activities and cardiometabolic phenotypes in Koreans. J. Clin. Biochem. Nutr. 49(2), 131–135 (2011).
  • Martinelli N, Girelli D, Malerba G et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am. J. Clin. Nutr. 88(4), 941–949 (2008).
  • Standl M, Sausenthaler S, Lattka E et al.; GINIplus and LISAplus Study Group. FADS gene variants modulate the effect of dietary fatty acid intake on allergic diseases in children. Clin. Exp. Allergy 41(12), 1757–1766 (2011).
  • Yu G, Björkstén B. Polyunsaturated fatty acids in school children in relation to allergy and serum IgE levels. Pediatr. Allergy Immunol. 9(3), 133–138 (1998).
  • Malerba G, Schaeffer L, Xumerle L et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 43(4), 289–299 (2008).
  • Marquardt A, Stöhr H, White K, Weber BH. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66(2), 175–183 (2000).
  • Tanaka T, Shen J, Abecasis GR et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study. PLoS Genet. 5(1), e1000338 (2009).
  • Stafford AN, Rider SH, Hopkin JM, Cookson WO, Monaco AP. A 2.8 Mb YAC contig in 11q12-q13 localizes candidate genes for atopy: Fc epsilon RI β and CD20. Hum. Mol. Genet. 3(5), 779–785 (1994).
  • Chapman K, Mustafa Z, Irven C et al. Osteoarthritis-susceptibility locus on chromosome 11q, detected by linkage. Am. J. Hum. Genet. 65(1), 167–174 (1999).
  • Daniels SE, Bhattacharrya S, James A et al. A genome-wide search for quantitative trait loci underlying asthma. Nature 383(6597), 247–250 (1996).
  • Palmer LJ, Daniels SE, Rye PJ et al. Linkage of chromosome 5q and 11q gene markers to asthma-associated quantitative traits in Australian children. Am. J. Respir. Crit. Care Med. 158(6), 1825–1830 (1998).
  • Aulchenko YS, Ripatti S, Lindqvist I et al.; ENGAGE Consortium. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41(1), 47–55 (2009).
  • Fallin MD, Lasseter VK, Wolyniec PS et al. Genome-wide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am. J. Hum. Genet. 75(2), 204–219 (2004).
  • Liu Y, McNamara RK. Elevated ∆6-desaturase (FADS2) gene expression in the prefrontal cortex of patients with bipolar disorder. J. Psychiatr. Res. 45(2), 269–272 (2011).
  • Barbosa NR, Junqueira RM, Vallada HP, Gattaz WF. Association between BanI genotype and increased phospholipase A2 activity in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 257(6), 340–343 (2007).
  • Dikeos DG, Papadimitriou GN, Souery D et al. Lack of genetic association between the phospholipase A2 gene and bipolar mood disorder in a European multicentre case–control study. Psychiatr. Genet. 16(4), 169–171 (2006).
  • Meira-Lima I, Jardim D, Junqueira R, Ikenaga E, Vallada H. Allelic association study between phospholipase A2 genes and bipolar affective disorder. Bipolar Disord. 5(4), 295–299 (2003).
  • Pae CU, Yu HS, Kim JJ et al. BanI polymorphism of the cytosolic phospholipase A2 gene and mood disorders in the Korean population. Neuropsychobiology 49(4), 185–188 (2004).
  • Su KP, Huang SY, Peng CY et al. Phospholipase A2 and cyclooxygenase-2 genes influence the risk of interferon-α-induced depression by regulating polyunsaturated fatty acids levels. Biol. Psychiatry 67(6), 550–557 (2010).
  • Papiol S, Rosa A, Gutiérrez B et al. Interleukin-1 cluster is associated with genetic risk for schizophrenia and bipolar disorder. J. Med. Genet. 41(3), 219–223 (2004).
  • Czerski PM, Rybakowski F, Kapelski P et al. Association of tumor necrosis factor-308G/A promoter polymorphism with schizophrenia and bipolar affective disorder in a Polish population. Neuropsychobiology 57(1–2), 88–94 (2008).
  • Pae CU, Lee KU, Han H, Serretti A, Jun TY. Tumor necrosis factor-α gene-G308A polymorphism associated with bipolar I disorder in the Korean population. Psychiatry Res. 125(1), 65–68 (2004).
  • Meira-Lima IV, Pereira AC, Mota GF et al. Analysis of a polymorphism in the promoter region of the tumor necrosis factor-α gene in schizophrenia and bipolar disorder: further support for an association with schizophrenia. Mol. Psychiatry 8(8), 718–720 (2003).
  • Amminger GP, Schäfer MR, Papageorgiou K et al. Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch. Gen. Psychiatry 67(2), 146–154 (2010).
  • Nemets H, Nemets B, Apter A, Bracha Z, Belmaker RH. Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am. J. Psychiatry 163(6), 1098–1100 (2006).
  • Soczynska JK, Kennedy SH, Goldstein BI, Lachowski A, Woldeyohannes HO, McIntyre RS. The effect of tumor necrosis factor antagonists on mood and mental health-associated quality of life: novel hypothesis-driven treatments for bipolar depression? Neurotoxicology 30(4), 497–521 (2009).
  • Kekow J, Moots R, Khandker R, Melin J, Freundlich B, Singh A. Improvements in patient-reported outcomes, symptoms of depression and anxiety, and their association with clinical remission among patients with moderate-to-severe active early rheumatoid arthritis. Rheumatology (Oxford) 50(2), 401–409 (2011).
  • Tyring S, Gottlieb A, Papp K et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised Phase III trial. Lancet 367(9504), 29–35 (2006).
  • Stolk P, Souverein PC, Leufkens HG, Weil JG, Egberts AC, Heerdink ER. The association between exposure to COX-2 inhibitors and schizophrenia deterioration. A nested case–control study. Pharmacopsychiatry 40(3), 111–115 (2007).
  • Elisa B, Beny L. Induction of manic switch by the tumour necrosis factor-α antagonist infliximab. Psychiatry Clin. Neurosci. 64(4), 442–443 (2010).
  • Esposito G, Giovacchini G, Liow JS et al. Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J. Nucl. Med. 49(9), 1414–1421 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.