296
Views
29
CrossRef citations to date
0
Altmetric
Theme: Pain - Review

Novel findings in pain processing pathways: implications for miRNAs as future therapeutic targets

, , &
Pages 515-525 | Published online: 09 Jan 2014

References

  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993).
  • Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev. 24(13), 1339–1344 (2010).
  • Hobert O. Gene regulation by transcription factors and microRNAs. Science 319(5871), 1785–1786 (2008).
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5(7), 522–531 (2004).
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20 (2005).
  • Xie X, Lu J, Kulbokas EJ et al. Systematic discovery of regulatory motifs in human promoters and 3´ UTRs by comparison of several mammals. Nature 434(7031), 338–345 (2005).
  • Ambros V. The functions of animal microRNAs. Nature 431(7006), 350–355 (2004).
  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer 6(4), 259–269 (2006).
  • Sullivan CS, Ganem D. MicroRNAs and viral infection. Mol. Cell 20(1), 3–7 (2005).
  • Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T. Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 164(2), 711–723 (2009).
  • Bai G, Ambalavanar R, Wei D, Dessem D. Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol. Pain 3, 15 (2007).
  • Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 32(4), 199–206 (2009).
  • Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J. 25(2), 544–560 (2011).
  • Zhao J, Lee MC, Momin A et al. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J. Neurosci. 30(32), 10860–10871 (2010).
  • Niederberger E, Kynast K, Lötsch J, Geisslinger G. MicroRNAs as new players in the pain game. Pain 152(7), 1455–1458 (2011).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004).
  • Kim S, Hwang do W, Lee DS. A study of microRNAs in silico and in vivo: bioimaging of microRNA biogenesis and regulation. FEBS J. 276(8), 2165–2174 (2009).
  • Gregory RI, Yan KP, Amuthan G et al. The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014), 235–240 (2004).
  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17(24), 3011–3016 (2003).
  • Preall JB, Sontheimer EJ. RNAi: RISC gets loaded. Cell 123(4), 543–545 (2005).
  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19(1), 92–105 (2009).
  • Kosik KS. The neuronal microRNA system. Nat. Rev. Neurosci. 7(12), 911–920 (2006).
  • Kusuda R, Cadetti F, Ravanelli MI et al. Differential expression of microRNAs in mouse pain models. Mol. Pain 7, 17 (2011).
  • Kynast KL, Russe OQ, Möser CV, Geisslinger G, Niederberger E. Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain 154(3), 368–376 (2013).
  • Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp. Neurol. 219(2), 424–429 (2009).
  • Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC. MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186, 146–160 (2011).
  • Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152(3 Suppl.), S2–S15 (2011).
  • Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10(11), 1361–1368 (2007).
  • Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).
  • Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26(12), 696–705 (2003).
  • Gräff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14(2), 97–111 (2013).
  • Wayman GA, Davare M, Ando H et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl Acad. Sci. USA 105(26), 9093–9098 (2008).
  • Vo N, Klein ME, Varlamova O et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102(45), 16426–16431 (2005).
  • Nudelman AS, DiRocco DP, Lambert TJ et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20(4), 492–498 (2010).
  • Schaefer A, O’Carroll D, Tan CL et al. Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204(7), 1553–1558 (2007).
  • Abrahamsen B, Zhao J, Asante CO et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321(5889), 702–705 (2008).
  • Wu D, Raafat A, Pak E, Clemens S, Murashov AK. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp. Neurol. 233(1), 555–565 (2012).
  • He Y, Yang C, Kirkmire CM, Wang ZJ. Regulation of opioid tolerance by let-7 family microRNA targeting the mu opioid receptor. J. Neurosci. 30(30), 10251–10258 (2010).
  • Ni J, Gao Y, Gong S, Guo S, Hisamitsu T, Jiang X. Regulation of µ-opioid type 1 receptors by microRNA134 in dorsal root ganglion neurons following peripheral inflammation. Eur. J. Pain 17(3), 313–323 (2012).
  • Recchiuti A, Serhan CN. Pro-resolving lipid mediators (SPMs) and their actions in regulating miRNA in novel resolution circuits in inflammation. Front. Immunol. 3, 298 (2012).
  • Xu ZZ, Zhang L, Liu T et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16(5), 592–597, 1p following 597 (2010).
  • Furer V, Greenberg JD, Attur M, Abramson SB, Pillinger MH. The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin. Immunol. 136(1), 1–15 (2010).
  • Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103(33), 12481–12486 (2006).
  • Tam Tam S, Bastian I, Zhou XF et al. MicroRNA-143 expression in dorsal root ganglion neurons. Cell Tissue Res. 346(2), 163–173 (2011).
  • Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267(5202), 1360–1363 (1995).
  • Poh KW, Yeo JF, Ong WY. MicroRNA changes in the mouse prefrontal cortex after inflammatory pain. Eur. J. Pain 15(8), 801.e1–801.e.12 (2011).
  • Worm J, Stenvang J, Petri A et al. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp β and down-regulation of G-CSF. Nucleic Acids Res. 37(17), 5784–5792 (2009).
  • Sun Y, Li XQ, Sahbaie P et al. miR-203 regulates nociceptive sensitization after incision by controlling phospholipase A2 activating protein expression. Anesthesiology 117(3), 626–638 (2012).
  • Ikeuchi M, Kolker SJ, Burnes LA, Walder RY, Sluka KA. Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137(3), 662–669 (2008).
  • Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA. Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 152(10), 2348–2356 (2011).
  • Biggs JE, Lu VB, Stebbing MJ, Balasubramanyan S, Smith PA. Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization? Mol. Pain 6, 44 (2010).
  • Zhao J, Seereeram A, Nassar MA et al.; London Pain Consortium. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol. Cell. Neurosci. 31(3), 539–548 (2006).
  • Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-a-PU.1 pathway. Nat. Med. 17(1), 64–70 (2011).
  • Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A. MicroRNA-124 as a novel treatment for persistent hyperalgesia. J. Neuroinflammation 9, 143 (2012).
  • Sengupta JN, Pochiraju S, Kannampalli P et al. MicroRNA-mediated GABA Aa-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats. Pain 154(1), 59–70 (2013).
  • Monastyrskaya K, Sánchez-Freire V, Hashemi Gheinani A et al. miR-199a-5p regulates urothelial permeability and may play a role in bladder pain syndrome. Am. J. Pathol. 182(2), 431–448 (2013).
  • Wu D, Raafat M, Pak E, Hammond S, Murashov AK. MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern. Neuroscience 190, 386–397 (2011).
  • von Schack D, Agostino MJ, Murray BS et al. Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS ONE 6(3), e17670 (2011).
  • Imai S, Saeki M, Yanase M et al. Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain. J. Neurosci. 31(43), 15294–15299 (2011).
  • Nakanishi K, Nakasa T, Tanaka N et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 48(3), 192–196 (2010).
  • Johnnidis JB, Harris MH, Wheeler RT et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182), 1125–1129 (2008).
  • Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS ONE 6(8), e23423 (2011).
  • Bhalala OG, Pan L, Sahni V et al. microRNA-21 regulates astrocytic response following spinal cord injury. J. Neurosci. 32(50), 17935–17947 (2012).
  • Bremer J, O’Connor T, Tiberi C, Rehrauer H, Weis J, Aguzzi A. Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination. PLoS ONE 5(8), e12450 (2010).
  • Pereira JA, Baumann R, Norrmén C et al. Dicer in Schwann cells is required for myelination and axonal integrity. J. Neurosci. 30(19), 6763–6775 (2010).
  • Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J. Neurosci. 31(48), 17358–17369 (2011).
  • Brandenburger T, Castoldi M, Brendel M et al. Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci. Lett. 506(2), 281–286 (2012).
  • Favereaux A, Thoumine O, Bouali-Benazzouz R et al. Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO J. 30(18), 3830–3841 (2011).
  • Chattopadhyay M, Zhou Z, Hao S, Mata M, Fink DJ. Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy. Mol. Pain 8, 17 (2012).
  • Alevizos I, Illei GG. MicroRNAs as biomarkers in rheumatic diseases. Nat. Rev. Rheumatol. 6(7), 391–398 (2010).
  • Alsaleh G, Suffert G, Semaan N et al. Bruton’s tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J. Immunol. 182(8), 5088–5097 (2009).
  • Nakamachi Y, Kawano S, Takenokuchi M et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 60(5), 1294–1304 (2009).
  • Nakasa T, Miyaki S, Okubo A et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58(5), 1284–1292 (2008).
  • Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10(4), R101 (2008).
  • Yamasaki K, Nakasa T, Miyaki S et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60(4), 1035–1041 (2009).
  • Yu C, Chen WP, Wang XH. MicroRNA in osteoarthritis. J. Int. Med. Res. 39(1), 1–9 (2011).
  • Li X, Gibson G, Kim JS et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 480(1–2), 34–41 (2011).
  • Akhtar N, Haqqi TM. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann. Rheum. Dis. 71(6), 1073–1080 (2012).
  • Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS ONE 7(3), e31861 (2012).
  • Sonkoly E, Wei T, Janson PC et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE 2(7), e610 (2007).
  • Sanchez Freire V, Burkhard FC, Kessler TM, Kuhn A, Draeger A, Monastyrskaya K. MicroRNAs may mediate the down-regulation of neurokinin-1 receptor in chronic bladder pain syndrome. Am. J. Pathol. 176(1), 288–303 (2010).
  • Zhou Q, Verne GN. New insights into visceral hypersensitivity – clinical implications in IBS. Nat. Rev. Gastroenterol. Hepatol. 8(6), 349–355 (2011).
  • Xiao J, Jing ZC, Ellinor PT et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J. Transl. Med. 9, 159 (2011).
  • Devaux Y, Vausort M, Goretti E et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin. Chem. 58(3), 559–567 (2012).
  • Widera C, Gupta SK, Lorenzen JM et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol. Cell. Cardiol. 51(5), 872–875 (2011).
  • Orlova IA, Alexander GM, Qureshi RA et al. MicroRNA modulation in complex regional pain syndrome. J. Transl. Med. 9, 195 (2011).
  • Krek A, Grün D, Poy MN et al. Combinatorial microRNA target predictions. Nat. Genet. 37(5), 495–500 (2005).
  • Tsuda N, Mine T, Ioannides CG, Chang DZ. Synthetic microRNA targeting glioma-associated antigen-1 protein. Methods Mol. Biol. 487, 435–449 (2009).
  • Krützfeldt J, Kuwajima S, Braich R et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35(9), 2885–2892 (2007).
  • Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 16(11), 2043–2050 (2010).
  • Haraguchi T, Ozaki Y, Iba H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res. 37(6), e43 (2009).
  • Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 10(3), 203–211 (2008).
  • Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18(10), 997–1006 (2008).
  • Krützfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat. Genet. 38(Suppl.), S14–S19 (2006).
  • Trang P, Wiggins JF, Daige CL et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 19(6), 1116–1122 (2011).
  • Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34(3), 263–264 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.