211
Views
14
CrossRef citations to date
0
Altmetric
Review

The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and α-1 anti-trypsin deficiency

, , &
Pages 395-411 | Published online: 09 Jan 2014

References

  • Mason DY, Cramer EM, Masse JM, Crystal R, Bassot JM, Breton-Gorius J. α1-antitrypsin is present within the primary granules of human polymorphonuclear leukocytes. Am. J. Pathol.139(3), 623–628 (1991).
  • Travis J, Shieh BH, Potempa J. The functional role of acute phase plasma proteinase inhibitors. Tokai J. Exp. Clin. Med.13(6), 313–320 (1988).
  • Hu C, Perlmutter DH. Cell-specific involvement of HNF-1β in α(1)-antitrypsin gene expression in human respiratory epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.282(4), L757–L765 (2002).
  • McCracken AA, Kruse KB, Brown JL. Molecular basis for defective secretion of the Z variant of human α-1-proteinase inhibitor: secretion of variants having altered potential for salt bridge formation between amino acids 290 and 342. Mol. Cell Biol.9(4), 1406–1414 (1989).
  • Lomas DA, Mahadeva R. α1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J. Clin. Invest.110(11), 1585–1590 (2002).
  • Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z α 1-antitrypsin accumulation in the liver. Nature357(6379), 605–607 (1992).
  • Zimmerman MR, Jensen AM, Sheehan GW. Agnaiyaaq: the autopsy of a frozen Thule mummy. Arctic Anthropol.37(2), 52–59 (2000).
  • Blanco I, de Serres FJ, Fernandez-Bustillo E, Lara B, Miravitlles M. Estimated numbers and prevalence of PI*S and PI*Z alleles of α1-antitrypsin deficiency in European countries. Eur. Respir. J.27(1), 77–84 (2006).
  • de Serres FJ. Worldwide racial and ethnic distribution of α1-antitrypsin deficiency: summary of an analysis of published genetic epidemiologic surveys. Chest122(5), 1818–1829 (2002).
  • Seyama K, Nukiwa T, Souma S, Shimizu K, Kira S. A 1-antitrypsin-deficient variant Siiyama (Ser53[TCC] to Phe53[TTC]) is prevalent in Japan. Status of α 1-antitrypsin deficiency in Japan. Am. J. Respir. Crit. Care Med.152(6 Pt 1), 2119–2126 (1995).
  • Luisetti M, Seersholm N. A1-antitrypsin deficiency. 1: epidemiology of α1-antitrypsin deficiency. Thorax59(2), 164–169 (2004).
  • Cox DW, Woo SL, Mansfield T. DNA restriction fragments associated with α1-antitrypsin indicate a single origin for deficiency allele PI Z. Nature316(6023), 79–81 (1985).
  • Lomas DA. The selective advantage of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med.173(10), 1072–1077 (2006).
  • Lace B, Sveger T, Krams A, Cernevska G, Krumina A. Age of SERPINA1 gene PI Z mutation: Swedish and Latvian population analysis. Ann. Hum. Genet.72(Pt 3), 300–304 (2008).
  • Campos MA, Wanner A, Zhang G, Sandhaus RA. Trends in the diagnosis of symptomatic patients with α1-antitrypsin deficiency between 1968 and 2003. Chest128(3), 1179–1186 (2005).
  • Stoller JK, Sandhaus RA, Turino G, Dickson R, Rodgers K, Strange C. Delay in diagnosis of α1-antitrypsin deficiency: a continuing problem. Chest128(4), 1989–1994 (2005).
  • Silverman EK, Sandhaus RA. Clinical practice. A1-antitrypsin deficiency. N. Engl. J. Med.360(26), 2749–2757 (2009).
  • Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized Pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J. Clin. Invest.86(1), 300–308 (1990).
  • Fick RB Jr, Naegel GP, Squier SU, Wood RE, Gee JB, Reynolds HY. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis. J. Clin. Invest.74(1), 236–248 (1984).
  • Smallman LA, Hill SL, Stockley RA. Reduction of ciliary beat frequency in vitro by sputum from patients with bronchiectasis: a serine proteinase effect. Thorax39(9), 663–667 (1984).
  • Weldon S, McNally P, McElvaney NG et al. Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J. Immunol.183(12), 8148–8156 (2009).
  • Guyot N, Butler MW, McNally P et al. Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J. Biol. Chem.283(47), 32377–32385 (2008).
  • Wu MC, Eriksson S. Lung function, smoking and survival in severe α1-antitrypsin deficiency, PiZZ. J. Clin. Epidemiol.41(12), 1157–1165 (1988).
  • Parr DG, Stoel BC, Stolk J, Stockley RA. Pattern of emphysema distribution in α1-antitrypsin deficiency influences lung function impairment. Am. J. Respir. Crit. Care Med.170(11), 1172–1178 (2004).
  • Bernspang E, Sveger T, Piitulainen E. Respiratory symptoms and lung function in 30‑year-old individuals with α-1-antitrypsin deficiency. Respir. Med.101(9), 1971–1976 (2007).
  • Larsson C. Natural history and life expectancy in severe α1-antitrypsin deficiency, Pi Z. Acta Med. Scand.204(5), 345–351 (1978).
  • McElvaney NG, Stoller JK, Buist AS et al. Baseline characteristics of enrollees in the National Heart, Lung and Blood Institute Registry of α1-antitrypsin deficiency. α1-Antitrypsin Deficiency Registry Study Group. Chest111(2), 394–403 (1997).
  • Gishen P, Saunders AJ, Tobin MJ, Hutchison DC. α 1-antitrypsin deficiency: the radiological features of pulmonary emphysema in subjects of Pi type Z and Pi type SZ: a survey by the British Thoracic Association. Clin. Radiol.33(4), 371–377 (1982).
  • Stolk J, Ng WH, Bakker ME et al. Correlation between annual change in health status and computer tomography derived lung density in subjects with α1-antitrypsin deficiency. Thorax58(12), 1027–1030 (2003).
  • Tobin MJ, Cook PJ, Hutchison DC. α1 antitrypsin deficiency: the clinical and physiological features of pulmonary emphysema in subjects homozygous for Pi type Z. A survey by the British Thoracic Association. Br. J. Dis. Chest77(1), 14–27 (1983).
  • Seersholm N, Kok-Jensen A, Dirksen A. Decline in FEV1 among patients with severe hereditary α1-antitrypsin deficiency type PiZ. Am. J. Respir. Crit. Care Med.152(6 Pt 1), 1922–1925 (1995).
  • Brantly ML, Paul LD, Miller BH, Falk RT, Wu M, Crystal RG. Clinical features and history of the destructive lung disease associated with α-1-antitrypsin deficiency of adults with pulmonary symptoms. Am. Rev. Respir. Dis.138(2), 327–336 (1988).
  • Demeo DL, Campbell EJ, Barker AF et al. IL10 polymorphisms are associated with airflow obstruction in severe α1-antitrypsin deficiency. Am. J. Respir. Cell Mol. Biol.38(1), 114–120 (2008).
  • Sapey E, Wood AM, Ahmad A, Stockley RA. Tumor necrosis factor-{α} rs361525 polymorphism is associated with increased local production and downstream inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.182(2), 192–199 (2010).
  • The A-1-Antitrypsin Deficiency Registry Study Group. Survival and FEV1 decline in individuals with severe deficiency of α1-antitrypsin. Am. J. Respir. Crit. Care Med.158(1), 49–59 (1988).
  • Dawkins PA, Dowson LJ, Guest PJ, Stockley RA. Predictors of mortality in α1-antitrypsin deficiency. Thorax58(12), 1020–1026 (2003).
  • Schenkein JG, Nahm MH, Dransfield MT. Pneumococcal vaccination for patients with COPD: current practice and future directions. Chest133(3), 767–774 (2008).
  • O’Brien C, Guest PJ, Hill SL, Stockley RA. Physiological and radiological characterisation of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax55(8), 635–642 (2000).
  • Parr DG, Guest PG, Reynolds JH, Dowson LJ, Stockley RA. Prevalence and impact of bronchiectasis in α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med.176(12), 1215–1221 (2007).
  • Fallat RJ. Reactive airways disease and α 1-antitrypsin deficiency. In: α1-Antitrypsin Deficiency: Biology, Pathogenesis, Clinical Manifestation, Therapy. Crystal R (Ed.). Marcel Dekker, NY, USA, 259–279 (1996).
  • Cuvelier A, Muir JF, Hellot MF et al. Distribution of α(1)-antitrypsin alleles in patients with bronchiectasis. Chest117(2), 415–419 (2000).
  • Chan ED, Kaminska AM, Gill W et al. α-1-antitrypsin (AAT) anomalies are associated with lung disease due to rapidly growing mycobacteria and AAT inhibits Mycobacterium abscessus infection of macrophages. Scand. J. Infect. Dis.39(8), 690–696 (2007).
  • Eden E, Hammel J, Rouhani FN et al. Asthma features in severe α1-antitrypsin deficiency: experience of the National Heart, Lung, and Blood Institute Registry. Chest123(3), 765–771 (2003).
  • Dowson LJ, Newall C, Guest PJ, Hill SL, Stockley RA. Exercise capacity predicts health status in α(1)-antitrypsin deficiency. Am. J. Respir. Crit. Care Med.163(4), 936–941 (2001).
  • Eden E, Mitchell D, Mehlman B et al. Atopy, asthma, and emphysema in patients with severe α-1-antitrypysin deficiency. Am. J. Respir. Crit. Care Med.156(1), 68–74 (1997).
  • Sigsgaard T, Brandslund I, Omland O et al. S and Z α1-antitrypsin alleles are risk factors for bronchial hyperresponsiveness in young farmers: an example of gene/environment interaction. Eur. Respir. J.16(1), 50–55 (2000).
  • Dycaico MJ, Grant SG, Felts K et al. Neonatal hepatitis induced by α1-antitrypsin: a transgenic mouse model. Science242(4884), 1409–1412 (1988).
  • Carlson JA, Rogers BB, Sifers RN et al. Accumulation of PiZ α 1-antitrypsin causes liver damage in transgenic mice. J. Clin. Invest.83(4), 1183–1190 (1989).
  • Jeppsson JO, Larsson C, Eriksson S. Characterization of α1-antitrypsin in the inclusion bodies from the liver in α 1-antitrypsin deficiency. N. Engl. J. Med.293(12), 576–579 (1975).
  • Sveger T. Liver disease in α1-antitrypsin deficiency detected by screening of 200,000 infants. N. Engl. J. Med.294(24), 1316–1321 (1976).
  • Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in α 1-antitrypsin deficiency. N. Engl. J. Med.314(12), 736–739 (1986).
  • Sharp HL, Bridges RA, Krivit W, Freier EF. Cirrhosis associated with α-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J. Lab. Clin. Med.73(6), 934–939 (1969).
  • Sveger T, Eriksson S. The liver in adolescents with α1-antitrypsin deficiency. Hepatology22(2), 514–517 (1995).
  • Eriksson S. α1-antitrypsin deficiency and liver cirrhosis in adults. An analysis of 35 Swedish autopsied cases. Acta Med. Scand.221(5), 461–467 (1987).
  • Piitulainen E, Carlson J, Ohlsson K, Sveger T. α1-antitrypsin deficiency in 26‑year-old subjects: lung, liver, and protease/protease inhibitor studies. Chest128(4), 2076–2081 (2005).
  • Bernspang E, Carlson J, Piitulainen E. The liver in 30‑year-old individuals with α(1)-antitrypsin deficiency. Scand. J. Gastroenterol.44(11), 1349–1355 (2009).
  • Kok KF, Wahab PJ, Houwen RH et al. Heterozygous α-I antitrypsin deficiency as a co-factor in the development of chronic liver disease: a review. Neth. J. Med.65(5), 160–166 (2007).
  • Rakela J, Goldschmiedt M, Ludwig J. Late manifestation of chronic liver disease in adults with α-1-antitrypsin deficiency. Dig. Dis. Sci.32(12), 1358–1362 (1987).
  • Voide N, Ardigo S, Morris M et al. α-1-antitrypsin deficiency in a 78‑year-old woman with isolated liver cirrhosis. J. Am. Geriatr. Soc.58(2), 415–416 (2010).
  • Pan S, Huang L, McPherson J et al. Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in α1-antitrypsin deficiency. Hepatology50(1), 275–281 (2009).
  • Bartlett JR, Friedman KJ, Ling SC et al. Gene Modifier Study Group. Genetic modifiers of liver disease in cystic fibrosis. JAMA302(10), 1076–1083 (2009).
  • Edmonds BK, Hodge JA, Rietschel RL. α1-antitrypsin deficiency-associated panniculitis: case report and review of the literature. Pediatr. Dermatol.8(4), 296–299 (1991).
  • Fortin PR, Fraser RS, Watts CS, Esdaile JM. α-1 antitrypsin deficiency and systemic necrotizing vasculitis. J. Rheumatol.18(10), 1613–1616 (1991).
  • Barnett VT, Sekosan M, Khurshid A. Wegener’s granulomatosis and α1-antitrypsin-deficiency emphysema: proteinase-related diseases. Chest116(1), 253–255 (1999).
  • Schievink WI, Puumala MR, Meyer FB, Raffel C, Katzmann JA, Parisi JE. Giant intracranial aneurysm and fibromuscular dysplasia in an adolescent with α1-antitrypsin deficiency. J. Neurosurg.85(3), 503–506 (1996).
  • Yang P, Bamlet WR, Sun Z et al. α1-antitrypsin and neutrophil elastase imbalance and lung cancer risk. Chest128(1), 445–452 (2005).
  • Davis ID, Burke B, Freese D, Sharp HL, Kim Y. The pathologic spectrum of the nephropathy associated with α1-antitrypsin deficiency. Hum. Pathol.23(1), 57–62 (1992).
  • Schievink WI, Björnsson J, Parisi JE, Prakash UB. Arterial fibromuscular dysplasia associated with severe α1-antitrypsin deficiency. Mayo Clin. Proc.69(11), 1040–1043 (1994).
  • Novis BH, Young GO, Bank S, Marks IN. Chronic pancreatitis and α-1 antitrypsin. Lancet2(7938), 748–749 (1975).
  • Schmechel DE, Browndyke J, Ghio A. Strategies for dissecting genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology27(5), 637–657 (2006).
  • Russo AJ, Neville L, Wroge C. Low Serum α-1 Antitrypsin (AAT) in Family Members of Individuals with Autism Correlates with PiMZ Genotype. Biomark. Insights4(1), 45–56 (2009).
  • Schmechel DE. Art, α-1-antitrypsin polymorphisms and intense creative energy: blessing or curse? Neurotoxicology28(5), 899–914 (2007).
  • Zandi PP, Willour VL, Huo Y et al. National Institute of Mental Health Genetics Initiative Bipolar Group. Genome scan of a second wave of NIMH genetics initiative bipolar pedigrees: chromosomes 2, 11, 13, 14, and X. Am. J. Med. Genet. B Neuropsychiatr. Genet.119B(1), 69–76 (2003).
  • Beyer J, Kuchibhatla M, Gersing K, Krishnan KR. Medical comorbidity in a bipolar outpatient clinical population. Neuropsychopharmacology30(2), 401–404 (2005).
  • Baugh RJ, Travis J. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry15(4), 836–841 (1976).
  • Lee WL, Downey GP. Leukocyte elastase: physiological functions and role in acute lung injury. Am. J. Respir. Crit. Care Med.164(5), 896–904 (2001).
  • Cooley J, Takayama TK, Shapiro SD, Schechter NM, Remold-O’Donnell E. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry40(51), 15762–15770 (2001).
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res.69(3), 562–573 (2006).
  • Gaggar A, Jackson PL, Noerager BD et al. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J. Immunol.180(8), 5662–5669 (2008).
  • Lin M, Jackson P, Tester AM et al. Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am. J. Pathol.173(1), 144–153 (2008).
  • Berger M, Sorensen RU, Tosi MF, Dearborn DG, Doring G. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J. Clin. Invest.84(4), 1302–1313 (1989).
  • Zhu YK, Liu XD, Skold CM et al. Synergistic neutrophil elastase-cytokine interaction degrades collagen in three-dimensional culture. Am. J. Physiol. Lung Cell Mol. Physiol.281(4), L868–L878 (2001).
  • Abrahamson M, Mason RW, Hansson H, Buttle DJ, Grubb A, Ohlsson K. Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem. J.273(Pt 3), 621–626 (1991).
  • Hirche TO, Benabid R, Deslee G et al. Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa. J. Immunol.181(7), 4945–4954 (2008).
  • Belaaouaj A, McCarthy R, Baumann M et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat. Med.4(5), 615–618 (1998).
  • Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J. Infect. Dis.190(7), 1245–1253 (2004).
  • Hartl D, Latzin P, Hordijk P et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat. Med.13(12), 1423–1430 (2007).
  • Nemoto E, Sugawara S, Tada H, Takada H, Shimauchi H, Horiuchi H. Cleavage of CD14 on human gingival fibroblasts cocultured with activated neutrophils is mediated by human leukocyte elastase resulting in down-regulation of lipopolysaccharide-induced IL-8 production. J. Immunol.165(10), 5807–5813 (2000).
  • Campbell EJ, Campbell MA, Owen CA. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J. Immunol.165(6), 3366–3374 (2000).
  • Geraghty P, Rogan MP, Greene CM et al. α-1-antitrypsin aerosolised augmentation abrogates neutrophil elastase-induced expression of cathepsin B and matrix metalloprotease 2 in vivo and in vitro. Thorax63(7), 621–626 (2008).
  • Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood96(8), 2673–2681 (2000).
  • Rouhani F, Paone G, Smith NK, Krein P, Barnes P, Brantly ML. Lung neutrophil burden correlates with increased pro-inflammatory cytokines and decreased lung function in individuals with α(1)-antitrypsin deficiency. Chest117(5 Suppl. 1), 250S–251S (2000).
  • Devaney JM, Greene CM, Taggart CC, Carroll TP, O’Neill SJ, McElvaney NG. Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Lett.544(1–3), 129–132 (2003).
  • Geraghty P, Rogan MP, Greene CM et al. Neutrophil elastase up-regulates cathepsin B and matrix metalloprotease-2 expression. J. Immunol.178(9), 5871–5878 (2007).
  • Ramachandran R, Hollenberg MD. Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br. J. Pharmacol.153(Suppl. 1), S263–S282 (2008).
  • Ostrowska E, Sokolova E, Reiser G. PAR-2 activation and LPS synergistically enhance inflammatory signaling in airway epithelial cells by raising PAR expression level and interleukin-8 release. Am. J. Physiol. Lung Cell. Mol. Physiol.293(5), L1208–L1218 (2007).
  • Kuwahara I, Lillehoj EP, Lu W et al. Neutrophil elastase induces IL-8 gene transcription and protein release through p38/NF-{κ}B activation via EGFR transactivation in a lung epithelial cell line. Am. J. Physiol. Lung Cell. Mol. Physiol.291(3), L407–L416 (2006).
  • Shao MX, Nadel JA. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl Acad. Sci. USA102(3), 767–772 (2005).
  • Bergin DA, Greene CM, Sterchi EE et al. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway. J. Biol. Chem.283(46), 31736–31744 (2008).
  • Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. J. Immunol.175(6), 4009–4016 (2005).
  • Griffin S, Carroll TP, Greene CM, O’Neill SJ, Taggart CC, McElvaney NG. Effect of pro-inflammatory stimuli on mucin expression and inhibition by secretory leucoprotease inhibitor. Cell. Microbiol.9(3), 670–679 (2007).
  • Gadek JE, Klein HG, Holland PV, Crystal RG. Replacement therapy of α1 antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. J. Clin. Invest.68(5), 1158–1165 (1981).
  • Abboud RT, Ford GT, Chapman KR. α1-antitrypsin deficiency: a position statement of the Canadian Thoracic Society. Can. Respir. J.8, 81–88 (2001).
  • Wewers MD, Casolaro MA, Sellers SE et al. Replacement therapy for α-1 antitrypsin deficiency associated with emphysema. N. Engl. J. Med.316, 1055–1062 (1987).
  • Russi EW. α-1 antitrypsin: now available, but do we need it? Swiss Med. Wkly.138, 191–196 (2008).
  • Seersholm N, Wencker M, Banik N et al. Does α1-antitrypsin augmentation therapy slow the annual decline in FEV1 in patients with severe hereditary α1-antitrypsin deficiency? Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen (WATL) α1-AT study group. Eur. Respir. J.10, 2260–2263 (1997).
  • Dirksen A, Dijkman JH, Madsen F et al. A randomized clinical trial of α(1)-antitrypsin augmentation therapy. Am. J. Respir. Crit. Care Med.160, 1468–1472 (1999).
  • Dirksen A, Piitulainen E, Parr DG et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in α1-antitrypsin deficiency. Eur. Respir. J.33, 1345–1353 (2009).
  • Tonelli AR, Rouhani F, Li N et al. α-1-antitrypsin augmentation therapy in deficient individuals enrolled in the α-1 Foundation DNA and Tissue Bank. Int. J. Chron. Obstruct. Pulmon. Dis.4, 443–452 (2009).
  • Parr DG, Dirksen A, Piitulainen E, Deng C, Wencker M, Stockley RA. Exploring the optimum approach to the use of CT densitometry in a randomised placebo-controlled study of augmentation therapy in α 1-antitrypsin deficiency. Respir. Res.10, 75 (2009).
  • Stockley RA, Parr DG, Piitulainen E, Stolk J, Stoel BC, Dirksen A. Therapeutic efficacy of α-1 antitrypsin augmentation therapy on the loss of lung tissue: an integrated analysis of 2 randomised clinical trials using computed tomography densitometry. Respir. Res.11, 136 (2010)
  • Chapman KR, Stockley RA, Dawkins C, Wilkes MM, Navickis RJ. Augmentation therapy for α1 antitrypsin deficiency: a meta-analysis. COPD6(3), 177–184 (2009).
  • McCarthy C, Dimitrov BD. Augmentation therapy for α-1 antitrypsin deficiency – not enough evidence to support its use yet! COPD7(3), 234 (2010).
  • Hubbard RC, McElvaney NG, Sellers SE, Healy JT, Czerski DB, Crystal RG. Recombinant DNA-produced α 1-antitrypsin administered by aerosol augments lower respiratory tract antineutrophil elastase defenses in individuals with α 1-antitrypsin deficiency. J. Clin. Invest.84(4), 1349–1354 (1989).
  • McElvaney NG, Hubbard RC, Birrer P et al. Aerosol α 1-antitrypsin treatment for cystic fibrosis. Lancet337(8738), 392–394 (1991).
  • Griese M, Latzin P, Kappler M et al. α1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur. Respir. J.29(2), 240–250 (2007).
  • Henriksen PA, Hitt M, Xing Z et al. Adenoviral gene delivery of elafin and secretory leukocyte protease inhibitor attenuates NF-κ B-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. J. Immunol.172(7), 4535–4544 (2004).
  • Simpson AJ, Maxwell AI, Govan JR, Haslett C, Sallenave JM. Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett.452(3), 309–313 (1999).
  • Doumas S, Kolokotronis A, Stefanopoulos P. Anti-inflammatory and antimicrobial roles of secretory leukocyte protease inhibitor. Infect. Immun.73(3), 1271–1274 (2005).
  • Sallenave JM, Shulmann J, Crossley J, Jordana M, Gauldie J. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am. J. Respir. Cell. Mol. Biol.11(6), 733–741 (1994).
  • Zhang Y, DeWitt DL, McNeely TB, Wahl SM, Wahl LM. Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases. J. Clin. Invest.99(5), 894–900 (1997).
  • Yang J, Zhu J, Sun D, Ding A. Suppression of macrophage responses to bacterial lipopolysaccharide (LPS) by secretory leukocyte protease inhibitor (SLPI) is independent of its anti-protease function. Biochim. Biophys. Acta1745(3), 310–317 (2005).
  • Birrer P, McElvaney NG, Gillissen A et al. Intravenous recombinant secretory leukoprotease inhibitor augments antineutrophil elastase defense. J. Appl. Physiol.73(1), 317–323 (1992).
  • Vogelmeier C, Buhl R, Hoyt RF et al. Aerosolization of recombinant SLPI to augment antineutrophil elastase protection of pulmonary epithelium. J. Appl. Physiol.69(5), 1843–1848 (1990).
  • McElvaney NG, Nakamura H, Birrer P et al. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J. Clin. Invest.90(4), 1296–1301 (1992).
  • Zani ML, Baranger K, Guyot N, Dallet-Choisy S, Moreau T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci.18(3), 579–594 (2009).
  • Delacourt C, Herigault S, Delclaux C et al. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am. J. Respir. Cell. Mol. Biol.26(3), 290–297 (2002).
  • Greene CM, Miller SD, Carroll T et al. α-1 antitrypsin deficiency: a conformational disease associated with lung and liver manifestations. J. Inherit. Metab. Dis.31(1), 21–34 (2008).
  • Greene CM, McElvaney NG. Z α-1 antitrypsin deficiency and the endoplasmic reticulum stress response. World J. Gastrointest. Pharmacol. Ther.1(5), 94–101 (2010).
  • Greene CM, McElvaney NG. Protein misfolding and obstructive lung disease. Proc. Am. Thorac. Soc.7(6), 346–355 (2010).
  • Carroll TP, McElvaney NG, Greene CM, Gain-of-function effects of Z α-1 antitrypsin. Antiinflamm. Antiallergy Agents Med. Chem.9, 336–346 (2010).
  • Lawless MW, Greene CM, Mulgrew A, Taggart CC, O’Neill SJ, McElvaney NG. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z α 1-antitrypsin deficiency. J. Immunol.172(9), 5722–5726 (2004).
  • Miller SD, Greene CM, McLean C et al. Tauroursodeoxycholic acid inhibits apoptosis induced by Z α-1 antitrypsin via inhibition of Bad. Hepatology46(2), 496–503 (2007).
  • Greene CM, Miller SD, Carroll TP et al. Anti-apoptotic effects of Z α1-antitrypsin in human bronchial epithelial cells. Eur. Respir. J.35(5), 1155–1163 (2010).
  • Carroll T, Greene CM, O’Connor CA, Nolan A, O’Neill SJ, McElvaney NG. Evidence for unfolded protein response (UPR) activation in monocytes from individuals with α-1 antitrypsin deficiency. J. Immunol.184(8), 4538–4546 (2010).
  • Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH. Accumulation of mutant α1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFκB, and BAP31 but not the unfolded protein response. J. Biol. Chem.280(47), 39002–39015 (2005).
  • Bergin DA, Reeves EP, Meleady P et al. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J. Clin. Invest.120(12), 4236–4250 (2010).
  • Elliott PR, Bilton D, Lomas DA. Lung polymers in Z α1-antitrypsin deficiency-related emphysema. Am. J. Respir. Cell. Mol. Biol.18(5), 670–674 (1998).
  • Mulgrew AT, Taggart CC, Lawless MW et al. Z α1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest125(5), 1952–1957 (2004).
  • Mahadeva R, Atkinson C, Li Z et al. Polymers of Z α1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am. J. Pathol.166(2), 377–386 (2005).
  • Brodsky JL, McCracken AA. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol.10(5), 507–513 (1999).
  • Perlmutter DH, Brodsky JL, Balistreri WF, Trapnell BC. Molecular pathogenesis of α-1-antitrypsin deficiency-associated liver disease: a meeting review. Hepatology45(5), 1313–1323 (2007).
  • Perlmutter DH. α-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu. Rev. Med.62, 333–345 (2011).
  • Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. Int. Rev. Cell Mol. Biol.266, 207–247 (2008).
  • Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease. Annu. Rev. Pathol.3, 427–455 (2008).
  • Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta1793(4), 664–673 (2009).
  • Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep.9(9), 859–864 (2008).
  • Perlmutter DH. The role of autophagy in α-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy2(4), 258–263 (2006).
  • Perlmutter DH. Liver injury in α1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J. Clin. Invest.110(11), 1579–1583 (2002).
  • Teckman JH, Perlmutter DH. Retention of mutant α(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol. Gastrointest. Liver Physiol.279(5), G961–G974 (2000).
  • Teckman JH, An JK, Loethen S, Perlmutter DH. Fasting in α1-antitrypsin deficient liver: constitutive [correction of consultative] activation of autophagy. Am. J. Physiol. Gastrointest. Liver Physiol.283(5), G1156–G1165 (2002).
  • Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy and injury in the liver in α 1-antitrypsin deficiency. Am. J. Physiol. Gastrointest. Liver Physiol.286(5), G851–G862 (2004).
  • Wood AM, Tan SL, Stockley RA. Chronic obstructive pulmonary disease: towards pharmacogenetics. Genome Med.1(11), 112 (2009).
  • Silverman EK. Genetics of chronic obstructive pulmonary disease. Novartis Found. Symp.234(1), 45–58 (2001).
  • Wood AM, Needham M, Simmonds MJ, Newby PR, Gough SC, Stockley RA. Phenotypic differences in α 1 antitrypsin-deficient sibling pairs may relate to genetic variation. COPD5(6), 353–359 (2008).
  • Seersholm N. Pi MZ and COPD: will we ever know? Thorax59(10), 823–825 (2004).
  • Hersh CP, Dahl M, Ly NP, Berkey CS, Nordestgaard BG, Silverman EK. Chronic obstructive pulmonary disease in α1-antitrypsin PI MZ heterozygotes: a meta-analysis. Thorax59(10), 843–849 (2004).
  • Silverman EK, Province MA, Rao DC, Pierce JA, Campbell EJ. A family study of the variability of pulmonary function in α 1-antitrypsin deficiency. Quantitative phenotypes. Am. Rev. Respir. Dis.142(5), 1015–1021 (1990).
  • Sorheim IC, Bakke P, Gulsvik A et al. α-1 Antitrypsin protease inhibitor MZ heterozygosity is associated with airflow obstruction in two large cohorts. Chest138(5), 1125–1132 (2010).
  • Malerba M, Ricciardolo F, Radaeli A et al. Neutrophilic inflammation and IL-8 levels in induced sputum of α-1-antitrypsin PiMZ subjects. Thorax61(2), 129–133 (2006).
  • Larsson C, Dirksen H, Sundstrom G, Eriksson S. Lung function studies in asymptomatic individuals with moderately (Pi SZ) and severely (Pi Z) reduced levels of α1-antitrypsin. Scand. J. Respir. Dis.57(6), 267–280 (1976).
  • Turino GM, Barker AF, Brantly ML et al. Clinical features of individuals with PI*SZ phenotype of α 1-antitrypsin deficiency. α 1-Antitrypsin Deficiency Registry Study Group. Am. J. Respir. Crit. Care Med.154(6 Pt 1), 1718–1725 (1996).
  • Holme J, Stockley RA. CT scan appearance, densitometry, and health status in protease inhibitor SZ α1-antitrypsin deficiency. Chest136(5), 1284–1290 (2009).
  • Dahl M, Hersh CP, Ly NP, Berkey CS, Silverman EK, Nordestgaard BG. The protease inhibitor PI*S allele and COPD: a meta-analysis. Eur. Respir. J.26(1), 67–76 (2005).
  • Sandhaus RA, Turino G, Stocks J et al. A1-Antitrypsin augmentation therapy for PI*MZ heterozygotes: a cautionary note. Chest134(4), 831–834 (2008).
  • Senn O, Russi EW, Imboden M, Probst-Hensch NM. α1-Antitrypsin deficiency and lung disease: risk modification by occupational and environmental inhalants. Eur. Respir. J.26(5), 909–917 (2005).
  • American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with α-1 antitrypsin deficiency. Am. J. Respir. Crit. Care Med.168(7), 818–900 (2003).
  • Spencer LT, Humphries JE, Brantly ML.Transgenic Human α 1-Antitrypsin Study Group. Antibody response to aerosolized transgenic human α1-antitrypsin. N. Engl. J. Med.352(19), 2030–2031 (2005).
  • McLean C, Greene CM, McElvaney NG. Gene targeted therapeutics for liver disease in α-1 antitrypsin deficiency. Biologics3, 63–75 (2009).
  • McNab GL, Ahmad A, Mistry D, Stockley RA. Modification of gene expression and increase in α1-antitrypsin (α1-AT) secretion after homologous recombination in α1-AT-deficient monocytes. Hum. Gene Ther.18(11), 1171–1177 (2007).
  • Argyros O, Wong SP, Niceta M et al. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther.15(24), 1593–1605 (2008).
  • Chulay JD, Knop DR, Ye GJ et al. Preclinical evaluation of a recombinant adeno-associated virus vector expressing human α-1 antitrypsin made using a recombinant herpes simplex virus production method. Hum. Gene Ther.22(2), 155–165 (2010).
  • Brantly ML, Chulay JD, Wang L et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc. Natl Acad. Sci. USA106(38), 16363–16368 (2009).
  • Liqun Wang R, McLaughlin T, Cossette T et al. Recombinant AAV serotype and capsid mutant comparison for pulmonary gene transfer of α-1-antitrypsin using invasive and noninvasive delivery. Mol. Ther.17(1), 81–87 (2009).
  • Flotte TR, Conlon TJ, Poirier A, Campbell-Thompson M, Byrne BJ. Preclinical characterization of a recombinant adeno-associated virus type 1-pseudotyped vector demonstrates dose-dependent injection site inflammation and dissemination of vector genomes to distant sites. Hum. Gene Ther.18(3), 245–256 (2007).
  • Brantly ML, Spencer LT, Humphries M et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 αl-antitrypsin (AAT) vector in AAT-deficient adults. Hum. Gene Ther.17(12), 1177–1186 (2006).
  • Ghaedi M, Lotfi AS, Soleimani M. Establishment of lentiviral-vector-mediated model of human α-1 antitrypsin delivery into hepatocyte-like cells differentiated from mesenchymal stem cells. Tissue Cell42(3), 181–189 (2010).
  • Sifers RN. Medicine. Clearing conformational disease. Science329(5988), 154–155 (2010).
  • Hidvegi T, Ewing M, Hale P et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science329(5988), 229–232 (2010).
  • Kelly E, Greene CM, Carroll TP, McElvaney NG, O’Neill SJ. Selenoprotein S/Seps1 modifies endoplasmic reticulum stress in z variant α1-antitrypsin deficiency. J. Biol. Chem.284(25), 16891–16897 (2009).
  • Somers A, Jean JC, Sommer CA et al. Generation of transgene-free lung disease specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells28(10), 1728–1740 (2010).
  • Pillai SG, Ge D, Zhu G et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet.5(3), e1000421 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.