213
Views
26
CrossRef citations to date
0
Altmetric
Review

DNA vaccines for biodefense

&
Pages 1739-1754 | Published online: 09 Jan 2014

References

  • Hartikka J, Bozoukova V, Ferrari M et al. Vaxfectin enhances the humoral immune response to plasmid DNA-encoded antigens. Vaccine19(15–16), 1911–1923 (2001).
  • Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods40(1), 86–97 (2006).
  • Luxembourg A, Evans CF, Hannaman D. Electroporation-based DNA immunisation: translation to the clinic. Expert Opin Biol. Ther.7(11), 1647–1664 (2007).
  • Milne JC, Blanke SR, Hanna PC, Collier RJ. Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus. Mol. Microbiol.15(4), 661–666 (1995).
  • Duesbery NS, Webb CP, Leppla SH et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science280(5364), 734–737 (1998).
  • Leppla SH. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl Acad. Sci. USA79(10), 3162–3166 (1982).
  • Ivins BE, Welkos SL. Cloning and expression of the Bacillus anthracis protective antigen gene in Bacillus subtilis. Infect. Immun.54(2), 537–542 (1986).
  • Welkos S, Little S, Friedlander A et al. The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology147(Pt 6), 1677–1685 (2001).
  • Welkos SL. Plasmid-associated virulence factors of non-toxigenic (pX01-) Bacillus anthracis. Microb. Pathog.10(3), 183–198 (1991).
  • Perkins SD, Flick-Smith HC, Garmory HS, Essex-Lopresti AE, Stevenson FK, Phillpotts RJ. Evaluation of the VP22 protein for enhancement of a DNA vaccine against anthrax. Genet. Vaccines Ther.3(1), 3 (2005).
  • Pitt ML, Little SF, Ivins BE et al.In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine19(32), 4768–4773 (2001).
  • Welkos SL, Vietri NJ, Gibbs PH. Non-toxigenic derivatives of the Ames strain of Bacillus anthracis are fully virulent for mice: role of plasmid pX02 and chromosome in strain-dependent virulence. Microb. Pathog.14(5), 381–388 (1993).
  • Welkos SL, Keener TJ, Gibbs PH. Differences in susceptibility of inbred mice to Bacillus anthracis. Infect. Immun.51(3), 795–800 (1986).
  • Welkos SL, Friedlander AM. Pathogenesis and genetic control of resistance to the Sterne strain of Bacillus anthracis. Microb. Pathog.4(1), 53–69 (1988).
  • Welkos SL, Friedlander AM. Comparative safety and efficacy against Bacillus anthracis of protective antigen and live vaccines in mice. Microb. Pathog.5(2), 127–139 (1988).
  • Flick-Smith HC, Waters EL, Walker NJ et al. Mouse model characterisation for anthrax vaccine development: comparison of one inbred and one outbred mouse strain. Microb. Pathog.38(1), 33–40 (2005).
  • Gu ML, Leppla SH, Klinman DM. Protection against anthrax toxin by vaccination with a DNA plasmid encoding anthrax protective antigen. Vaccine17(4), 340–344 (1999).
  • Tucker SN, Lin K, Stevens S, Scollay R, Bennett MJ, Olson DC. Systemic and mucosal antibody responses following retroductal gene transfer to the salivary gland. Mol. Ther.8(3), 392–399 (2003).
  • Riemenschneider J, Garrison A, Geisbert J et al. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine21(25–26), 4071–4080 (2003).
  • Luxembourg A, Hannaman D, Nolan E et al. Potentiation of an anthrax DNA vaccine with electroporation. Vaccine26(40), 5216–5222 (2008).
  • Hahn UK, Alex M, Czerny CP, Bohm R, Beyer W. Protection of mice against challenge with Bacillus anthracis STI spores after DNA vaccination. Int. J. Med. Microbiol.294(1), 35–44 (2004).
  • Hahn UK, Aichler M, Boehm R, Beyer W. Comparison of the immunological memory after DNA vaccination and protein vaccination against anthrax in sheep. Vaccine24(21), 4595–4597 (2006).
  • Ribeiro S, Rijpkema SG, Durrani Z, Florence AT. PLGA-dendron nanoparticles enhance immunogenicity but not lethal antibody production of a DNA vaccine against anthrax in mice. Int. J. Pharm.331(2), 228–232 (2007).
  • Midha S, Bhatnagar R. Anthrax protective antigen administered by DNA vaccination to distinct subcellular locations potentiates humoral and cellular immune responses. Eur. J. Immunol.39(1), 159–177 (2009).
  • Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR. Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect. Immun.69(7), 4509–4515 (2001).
  • Hermanson G, Whitlow V, Parker S et al. A cationic lipid-formulated plasmid DNA vaccine confers sustained antibody-mediated protection against aerosolized anthrax spores. Proc. Natl Acad. Sci. USA101(37), 13601–13606 (2004).
  • Vilalta A, Mahajan RK, Hartikka J et al. II. Cationic lipid-formulated plasmid DNA-based Bacillus anthracis vaccine: evaluation of plasmid DNA persistence and integration potential. Hum. Gene Ther.16(10), 1151–1156 (2005).
  • Keitel WA, Treanor JJ, El Sahly HM et al. Evaluation of a plasmid DNA-based anthrax vaccine in rabbits, nonhuman primates and healthy adults. Hum. Vaccin.5(8), 536–544 (2009).
  • Hahn UK, Boehm R, Beyer W. DNA vaccination against anthrax in mice – combination of anti-spore and anti-toxin components. Vaccine24(21), 4569–4571 (2006).
  • McConnell MJ, Hanna PC, Imperiale MJ. Adenovirus-based prime–boost immunization for rapid vaccination against anthrax. Mol. Ther.15(1), 203–210 (2007).
  • Leroy EM, Epelboin A, Mondonge V et al. Human ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis. (2009) (Epub ahead of print).
  • Towner JS, Amman BR, Sealy TK et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog.5(7), e1000536 (2009).
  • Alibek K, Handelman S. Biohazard: The Chilling True Story of the Largest Covert Biological Weapons Program in the World Told. Dell Publishing, NY, USA (1999).
  • Towner JS, Sealy TK, Khristova ML et al. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog.4(11), e1000212 (2008).
  • Feldmann H, Geisbert T, Jahrling P et al.Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball L (Eds). Elsevier/Academic Press, CA, USA (2005).
  • Reed DS, Mohamadzadeh M. Status and challenges of filovirus vaccines. Vaccine25(11), 1923–1934 (2007).
  • Volchkov VE, Volchkova VA, Muhlberger E et al. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science291(5510), 1965–1969 (2001).
  • Volchkov VE, Feldmann H, Volchkova VA, Klenk HD. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl Acad. Sci. USA95(10), 5762–5767 (1998).
  • Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis.179(Suppl. 1), S248–S258 (1999).
  • Warfield KL, Bradfute SB, Wells J et al. Development and characterization of a mouse model for marburg hemorrhagic fever. J. Virol.83(13), 6404–6415 (2009).
  • Vanderzanden L, Bray M, Fuller D et al. DNA vaccines expressing either the GP or NP genes of Ebola virus protect mice from lethal challenge. Virology246(1), 134–144 (1998).
  • Xu L, Sanchez A, Yang Z et al. Immunization for Ebola virus infection. Nat. Med.4(1), 37–42 (1998).
  • Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ. Development of a preventive vaccine for Ebola virus infection in primates. Nature408(6812), 605–609 (2000).
  • Martin JE, Sullivan NJ, Enama ME et al. A DNA vaccine for Ebola virus is safe and immunogenic in a Phase I clinical trial. Clin. Vaccine Immunol.13(11), 1267–1277 (2006).
  • Sullivan NJ, Geisbert TW, Geisbert JB et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature424(6949), 681–684 (2003).
  • Richardson JS, Yao MK, Tran KN et al. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine. PLoS ONE4(4), e5308 (2009).
  • Geisbert TW, Geisbert JB, Leung A et al. Single injection vaccine protects nonhuman primates against Marburg virus and three species of Ebola virus. J. Virol.83(14), 7296–7304 (2009).
  • Geisbert TW, Daddario-Dicaprio KM, Lewis MG et al. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog.4(11), e1000225 (2008).
  • Swenson DL, Wang D, Luo M et al. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin. Vaccine Immunol.15(3), 460–467 (2008).
  • Yang ZY, Wyatt LS, Kong WP, Moodie Z, Moss B, Nabel GJ. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J. Virol.77(1), 799–803 (2003).
  • Hevey M, Negley D, Van der Zanden L et al. Marburg virus vaccines: comparing classical and new approaches. Vaccine20(3–4), 586–593 (2001).
  • Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology254(1), 71–80 (1999).
  • Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology266(2), 329–339 (2000).
  • Hooper JW, Custer DM, Thompson E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology306(1), 181–195 (2003).
  • Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine25(10), 1814–1823 (2007).
  • Pulford DJ, Gates A, Bridge SH, Robinson JH, Ulaeto D. Differential efficacy of vaccinia virus envelope proteins administered by DNA immunisation in protection of BALB/c mice from a lethal intranasal poxvirus challenge. Vaccine22(25–26), 3358–3366 (2004).
  • Sakhatskyy P, Wang S, Chou TH, Lu S. Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology355(2), 164–174 (2006).
  • Golden JW, Josleyn MD, Hooper JW. Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine26(27–28), 3507–3515 (2008).
  • Shinoda K, Wyatt LS, Irvine KR, Moss B. Engineering the vaccinia virus L1 protein for increased neutralizing antibody response after DNA immunization. Virol. J.6, 28 (2009).
  • Su HP, Golden JW, Gittis AG, Hooper JW, Garboczi DN. Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein. Virology368(2), 331–341 (2007).
  • Hooper JW, Thompson E, Wilhelmsen C et al. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J. Virol.78(9), 4433–4443 (2004).
  • Otero M, Calarota SA, Dai A, De Groot AS, Boyer JD, Weiner DB. Efficacy of novel plasmid DNA encoding vaccinia antigens in improving current smallpox vaccination strategy. Vaccine24(21), 4461–4470 (2006).
  • Heraud JM, Edghill-Smith Y, Ayala V et al. Subunit recombinant vaccine protects against monkeypox. J. Immunol.177(4), 2552–2564 (2006).
  • Sakhatskyy P, Wang S, Zhang C, Chou TH, Kishko M, Lu S. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens. Virology371(1), 98–107 (2008).
  • Golden JW, Hooper JW. Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology377(1), 19–29 (2008).
  • Bennett AM, Phillpotts RJ, Perkins SD, Jacobs SC, Williamson ED. Gene gun mediated vaccination is superior to manual delivery for immunisation with DNA vaccines expressing protective antigens from Yersinia pestis or Venezuelan equine encephalitis virus. Vaccine18(7–8), 588–596 (1999).
  • Nagata LP, Hu WG, Masri SA et al. Efficacy of DNA vaccination against western equine encephalitis virus infection. Vaccine23(17–18), 2280–2283 (2005).
  • Dupuy LC, Locher CP, Paidhungat M et al. Directed molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine. Vaccine27(31), 4152–4160 (2009).
  • Perkins SD, O’Brien LM, Phillpotts RJ. Boosting with an adenovirus-based vaccine improves protective efficacy against Venezuelan equine encephalitis virus following DNA vaccination. Vaccine24(17), 3440–3445 (2006).
  • Zanin MP, Webster DE, Wesselingh SL. A DNA prime, orally delivered protein boost vaccination strategy against viral encephalitis. J. Neurovirol.13(3), 284–289 (2007).
  • Dupuy LC, Richards M, Ellefsen B, Hannaman D, Livingston B, Schmaljohn SC. Improved potency of codon-optimized encephalitic alphavirus DNA vaccines delivered by electroporation. Presented at: 7th Annual ASM Biodefense and Emerging Diseases Research Meeting. Baltimore, MD, USA, 22–25 February 2009.
  • Williamson ED, Beedham RJ, Bennett AM, Perkins SD, Miller J, Baillie LW. Presentation of protective antigen to the mouse immune system: immune sequelae. J. Appl. Microbiol.87(2), 315–317 (1999).
  • Williamson ED, Bennett AM, Perkins SD, Beedham RJ, Miller J, Baillie LW. Co-immunisation with a plasmid DNA cocktail primes mice against anthrax and plague. Vaccine20(23–24), 2933–2941 (2002).
  • Galloway D, Liner A, Legutki J, Mateczun A, Barnewall R, Estep J. Genetic immunization against anthrax. Vaccine22(13–14), 1604–1608 (2004).
  • Cui Z, Sloat BR. Topical immunization onto mouse skin using a microemulsion incorporated with an anthrax protective antigen protein-encoding plasmid. Int. J. Pharm.317(2), 187–191 (2006).
  • Mellquist-Riemenschneider JL, Garrison AR, Geisbert JB et al. Comparison of the protective efficacy of DNA and baculovirus-derived protein vaccines for ebola virus in guinea pigs. Virus Res.92(2), 187–193 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.