406
Views
101
CrossRef citations to date
0
Altmetric
Review

Domain III of the envelope protein as a dengue vaccine target

, , , &
Pages 137-147 | Published online: 09 Jan 2014

References

  • Guzman MG, Kouri G. Dengue: an update. Lancet Infect. Dis.2(1), 33–42 (2002).
  • Kroeger A, Nathan MB. Dengue: setting the global research agenda. Lancet368(9554), 2193–2195 (2006).
  • Nathan MB, Dayal-Drager R. Recent epidemiological trends, the global strategy and public health advances in dengue. TDR/Scientific Working Group. Geneva, Switzerland, 1–5 October 2006.
  • Guzman MG, Vazquez S, Kouri G. Dengue: where are we today? Malaysian J. Med. Sciences16(3), 5–12 (2009).
  • Kuno G. Research on dengue and dengue-like illness in East Asia and the Western Pacific during the first half of the 20th Century. Rev. Med. Virol.17(5), 327–341 (2007).
  • Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st Century. Trends Microbiol.10(2), 100–103 (2002).
  • PAHO. Dengue and dengue hemorrhagic fever in the Americas: guidelines for prevention and control. Scientific publication no.548. PAHO, Washington, DC, USA (1994).
  • Kouri GP, Guzman MG, Bravo JR. Why dengue haemorrhagic fever in Cuba? 2. An integral analysis. Trans. R. Soc. Trop. Med. Hyg.81(5), 821–823 (1987).
  • Guzman MG, Kouri G. Dengue haemorrhagic fever integral hypothesis: confirming observations, 1987–2007. Trans. R. Soc. Trop. Med. Hyg.102(6), 522–523 (2008).
  • Bravo JR, Guzman MG, Kouri GP. Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Trans. R. Soc. Trop. Med. Hyg.81(5), 816–820 (1987).
  • Guzman MG, Kouri G, Bravo J et al. Effect of age on outcome of secondary dengue 2 infections. Int. J. Infect. Dis.6(2), 118–124 (2002).
  • Halstead SB. Dengue. Lancet370(9599), 1644–1652 (2007).
  • Gonzalez D, Castro OE, Kouri G et al. Classical dengue hemorrhagic fever resulting from two dengue infections spaced 20 years or more apart: Havana, dengue 3 epidemic, 2001–2002. Int. J. Infect. Dis.9(5), 280–285 (2005).
  • Sierra B, García G, Pérez AB et al. Ethnicity and difference in dengue virus-specific memory T cell responses in Cuban individuals. Viral Immunol.19(4), 662–668 (2006).
  • Kou Z, Quinn M, Chen H et al. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J. Med. Virol.80(1), 134–146 (2008).
  • Rodrigo WW, Jin X, Blackley SD, Rose RC, Schlesinger JJ. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcg RIA (CD64) or FcgRIIA (CD32). J. Virol.80(20), 10128–10138 (2006).
  • Kontny U, Kurane I, Ennis FA. g interferon augments Fc g receptor-mediated dengue virus infection of human monocytic cells. J. Virol.62(11), 3928–3933 (1988).
  • Littaua R, Kurane I, Ennis FA. Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J. Immunol.144(8), 3183–3186 (1990).
  • Halstead SB. Observations related to pathogenesis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J. Biol. Med.42(5), 350–362 (1970).
  • Halstead SB, Lan NT, Myint TT et al. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg. Infect. Dis.8(12), 1474–1479 (2002).
  • Libraty DH, Endy TP, Houng HS et al. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J. Infect. Dis.185(9), 1213–1221 (2002).
  • Vaughn DW, Green S, Kalayanarooj S et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis.181(1), 2–9 (2000).
  • Mongkolsapaya J, Duangchinda T, Dejnirattisai W et al. T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J. Immunol.176(6), 3821–3829 (2006).
  • Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J. Virol.80(23), 11418–11431 (2006).
  • Pang T, Cardosa MJ, Guzman MG. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol. Cell Biol.85(1), 43–45 (2007).
  • Hombach J. Vaccines against dengue: a review of current candidate vaccines at advanced development stages. Rev. Panam. Salud. Publica21(4), 254–260 (2007).
  • Guzman MG, Mune M, Kouri G. Dengue vaccine: priorities and progress. Expert Rev. Anti Infect. Ther.2(6), 895–911 (2004).
  • Barrett AD, Hombach J. Opportunities in the development of dengue vaccines. TDR/Scientific Working Group. WHO, Geneva, Switzerland, 1–5 October 2006.
  • Alvarez M, Rodriguez-Roche R, Bernardo L et al. Dengue hemorrhagic fever caused by sequential dengue 1–3 virus infections over a long time interval: Havana epidemic, 2001–2002. Am. J. Trop. Med. Hyg.75(6), 1113–1117 (2006).
  • Hombach J, Cardosa MJ, Sabchareon A, Vaughn DW, Barrett AD. Scientific consultation on immunological correlates of protection induced by dengue vaccines report from a meeting held at the World Health Organization 17–18 November 2005. Vaccine25(21), 4130–4139 (2007).
  • Guzman MG, Kouri G, Valdes L et al. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev. Panam. Salud. Publica11(4), 223–227 (2002).
  • Blaney JE Jr, Matro JM, Murphy BR, Whitehead SS. Recombinant, live-attenuated tetravalent dengue virus vaccine formulations induce a balanced, broad, and protective neutralizing antibody response against each of the four serotypes in rhesus monkeys. J. Virol.79(9), 5516–5528 (2005).
  • Brandler S, Tangy F. Recombinant vector derived from live attenuated measles virus: potential for flavivirus vaccines. Comp. Immunol. Microbiol. Infect Dis.31(2–3), 271–291 (2008).
  • Guirakhoo F, Kitchener S, Morrison D et al. Live attenuated chimeric yellow fever dengue type 2 (ChimeriVax-DEN2) vaccine: Phase I clinical trial for safety and immunogenicity: effect of yellow fever pre-immunity in induction of cross neutralizing antibody responses to all 4 dengue serotypes. Hum. Vaccin.2(2), 60–67 (2006).
  • Putnak RJ, Coller BA, Voss G et al. An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model. Vaccine23(35), 4442–4452 (2005).
  • Sun W, Cunningham D, Wasserman SS et al. Phase 2 clinical trial of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naive adults. Hum. Vaccin.5(1), 33–40 (2009).
  • Velzing J, Groen J, Drouet MT et al. Induction of protective immunity against dengue virus type 2: comparison of candidate live attenuated and recombinant vaccines. Vaccine17(11–12), 1312–1320 (1999).
  • Apt D, Raviprakash K, Brinkman A et al. Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen. Vaccine24(3), 335–344 (2006).
  • Blair PJ, Kochel TJ, Raviprakash K et al. Evaluation of immunity and protective efficacy of a dengue-3 pre-membrane and envelope DNA vaccine in Aotus nancymae monkeys. Vaccine24(9), 1427–1432 (2006).
  • Sabchareon A, Lang J, Chanthavanich P et al. Safety and immunogenicity of tetravalent live-attenuated dengue vaccines in Thai adult volunteers: role of serotype concentration, ratio, and multiple doses. Am. J. Trop. Med. Hyg.66(3), 264–272 (2002).
  • Simmons M, Porter KR, Hayes CG, Vaughn DW, Putnak R. Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in rhesus macaques. J. Virol.80(19), 9577–9585 (2006).
  • Zhang W, Chipman PR, Corver J et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol.10(11), 907–912 (2003).
  • Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature427(6972), 313–319 (2004).
  • Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol.75(16), 7769–7773 (2001).
  • Hung JJ, Hsieh MT, Young MJ et al. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J. Virol.78(1), 378–388 (2004).
  • Chen Y, Maguire T, Hileman RE et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med.3(8), 866–871 (1997).
  • Huerta V, Chinea G, Fleitas N et al. Characterization of the interaction of domain III of the envelope protein of dengue virus with putative receptors from CHO cells. Virus Res.137(2), 225–234 (2008).
  • Roehrig JT, Volpe KE, Squires J et al. Contribution of disulfide bridging to epitope expression of the dengue type 2 virus envelope glycoprotein. J. Virol.78(5), 2648–2652 (2004).
  • Kuhn RJ, Zhang W, Rossmann MG et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell108(5), 717–725 (2002).
  • Chin JF, Chu JJ, Ng ML. The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect.9(1), 1–6 (2007).
  • Roehrig JT. Antigenic structure of flavivirus proteins. Adv. Virus Res.59, 141–175 (2003).
  • Lok SM, Ng ML, Aaskov J. Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralisation by IgM antibody. J. Med. Virol.65(2), 315–323 (2001).
  • Lok SM, Kostyuchenko V, Nybakken GE et al. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Biol.15(3), 312–317 (2008).
  • Gromowski GD, Barrett AD. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology366(2), 349–360 (2007).
  • Hiramatsu K, Tadano M, Men R, Lai CJ. Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence. Virology224(2), 437–445 (1996).
  • Lin B, Parrish CR, Murray JM, Wright PJ. Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology202(2), 885–890 (1994).
  • Zulueta A, Martin J, Hermida L et al. Amino acid changes in the recombinant Dengue 3 envelope domain III determine its antigenicity and immunogenicity in mice. Virus Res.121(1), 65–73 (2006).
  • Gromowski GD, Barrett ND, Barrett AD. Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J. Virol.82(17), 8828–8837 (2008).
  • Añez G, Men R, Eckels KH, Lai CJ. Passage of dengue virus type 4 vaccine candidates in fetal rhesus lung cells selects heparin-sensitive variants that result in loss of infectivity and immunogenicity in rhesus macaques. J. Virol.83(20), 10384–10394 (2009).
  • Megret F, Hugnot JP, Falconar A et al. Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology187(2), 480–491 (1992).
  • Roehrig JT, Bolin RA, Kelly RG. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology246(2), 317–328 (1998).
  • Simmons M, Nelson WM, Wu SJ, Hayes CG. Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue 2 virus infection in mice. Am. J. Trop. Med. Hyg.58(5), 655–662 (1998).
  • Simmons M, Murphy GS, Hayes CG. Short report: antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am. J. Trop. Med. Hyg.65(2), 159–161 (2001).
  • Khanam S, Etemad B, Khanna N, Swaminathan S. Induction of neutralizing antibodies specific to dengue virus serotypes 2 and 4 by a bivalent antigen composed of linked envelope domains III of these two serotypes. Am. J. Trop. Med. Hyg.74(2), 266–277 (2006).
  • Wahala WM, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology392(1), 103–113 (2009).
  • Crill WD, Hughes HR, Delorey MJ, Chang GJ. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One4(4), e4991 (2009).
  • Fonseca BAL, Khoshnood K, Shope RE, Mason PW. Flavivirus type-specific antigens produced from fusions of a portion of the E protein gene with the Escherichia coli TRPE gene. Am. J. Trop. Med. Hyg.44(5), 500–508 (1991).
  • Srivastava AK, Putnak JR, Warren RL, Hoke CH Jr. Mice immunized with a dengue type 2 virus E and NS1 fusion protein made in Escherichia coli are protected against lethal dengue virus infection. Vaccine13(13), 1251–1258 (1995).
  • Simmons M, Murphy GS, Kochel T, Raviprakash K, Hayes CG. Characterization of antibody responses to combinations of a dengue-2 DNA and dengue-2 recombinant subunit vaccine. Am. J. Trop. Med. Hyg.65(5), 420–426 (2001).
  • Jaiswal S, Khanna N, Swaminathan S. High-level expression and one-step purification of recombinant dengue virus type 2 envelope domain III protein in Escherichia coli. Protein Expr. Purif.33(1), 80–91 (2004).
  • Etemad B, Batra G, Raut R et al. An envelope domain III-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four dengue virus serotypes. Am. J. Trop. Med. Hyg.79(3), 353–363 (2008).
  • Khanam S, Pilankatta R, Khanna N, Swaminathan S. An adenovirus type 5 (AdV5) vector encoding an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity. Vaccine27(43), 6011–6021 (2009).
  • Chen S, Yu M, Jiang T et al. Induction of tetravalent protective immunity against four dengue serotypes by the tandem domain III of the envelope protein. DNA Cell Biol.26(6), 361–367 (2007).
  • Zhang ZS, Yan YS, Weng YW et al. High-level expression of recombinant dengue virus type 2 envelope domain III protein and induction of neutralizing antibodies in BALB/C mice. J. Virol. Methods143(2), 125–131 (2007).
  • Babu JP, Pattnaik P, Gupta N et al. Immunogenicity of a recombinant envelope domain III protein of dengue virus type-4 with various adjuvants in mice. Vaccine26(36), 4655–4663 (2008).
  • Pattnaik P, Babu JP, Verma SK, Tak V, Rao PV. Bacterially expressed and refolded envelope protein (domain III) of dengue virus type-4 binds heparan sulfate. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.846(1–2), 184–194 (2007).
  • Leng CH, Liu SJ, Tsai JP et al. A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect.11(2), 288–295 (2009).
  • Mota J, Acosta M, Argotte R et al. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine23(26), 3469–3476 (2005).
  • Khanam S, Khanna N, Swaminathan S. Induction of neutralizing antibodies and T cell responses by dengue virus type 2 envelope domain III encoded by plasmid and adenoviral vectors. Vaccine24(42–43), 6513–6525 (2006).
  • Khanam S, Rajendra P, Khanna N, Swaminathan S. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes. BMC Biotechnol.7, 10 (2007).
  • Brandler S, Lucas-Hourani M, Moris A et al. Pediatric measles vaccine expressing a dengue antigen induces durable serotype-specific neutralizing antibodies to dengue virus. PLoS Negl. Trop. Dis.1(3), e96 (2007).
  • Catteau A, Kalinina O, Wagner MC et al. Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. J. Gen. Virol.84(Pt 10), 2781–2793 (2003).
  • Saejung W, Fujiyama K, Takasaki T et al. Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine25(36), 6646–6654 (2007).
  • Sim AC, Lin W, Tan GK et al. Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine26(9), 1145–1154 (2008).
  • González S, Álvarez A, Caballero E. P64k meningococcal protein as immunological carrier for weak immunogens. Scand. J. Immunol.52(2), 113–116 (2000).
  • Perez A, Dickinson F, Cinza Z et al. Safety and preliminary immunogenicity of the recombinant outer membrane protein P64k of Neisseria meningitidis in human volunteers. Biotechnol. Appl. Biochem.34(Pt 2), 121–125 (2001).
  • Hermida L, Rodriguez R, Lazo L et al. A dengue-2 envelope fragment inserted within the structure of the P64k meningococcal protein carrier enables a functional immune response against the virus in mice. J. Virol. Methods115(1), 41–49 (2004).
  • Hermida L, Rodriguez R, Lazo L et al. A fragment of the envelope protein from dengue-1 virus, fused in two different sites of the meningococcal P64k protein carrier, induces a functional immune response in mice. Biotechnol. Appl. Biochem.39(Pt 1), 107–114 (2004).
  • Zulueta A, Hermida L, Lazo L et al. The fusion site of envelope fragments from each serotype of Dengue virus in the P64k protein, influence some parameters of the resulting chimeric constructs. Biochem. Biophys. Res. Commun.308(3), 619–626 (2003).
  • Hermida L, Bernardo L, Martin J et al. A recombinant fusion protein containing the domain III of the dengue-2 envelope protein is immunogenic and protective in nonhuman primates. Vaccine24(16), 3165–3171 (2006).
  • Lazo L, Zulueta A, Hermida L et al. Dengue-4 envelope domain III fused twice within the meningococcal P64k protein carrier induces partial protection in mice. Biotechnol. Appl. Biochem.52(Pt 4), 265–271 (2009).
  • Bernardo L, Izquierdo A, Alvarez M et al. Immunogenicity and protective efficacy of a recombinant fusion protein containing the domain III of the dengue 1 envelope protein in non-human primates. Antiviral Res.80(2), 194–199 (2008).
  • Valdes I, Hermida L, Martin J et al. Immunological evaluation in nonhuman primates of formulations based on the chimeric protein P64k-domain III of dengue 2 and two components of Neisseria meningitidis. Vaccine27(7), 995–1001 (2009).
  • Izquierdo A, Bernardo L, Martin J et al. Serotype-specificity of recombinant fusion proteins containing domain III of dengue virus. Virus Res.138(1–2), 135–138 (2008).
  • Bernardo L, Hermida L, Martin J et al. Anamnestic antibody response after viral challenge in monkeys immunized with dengue 2 recombinant fusion proteins. Arch. Virol.153(5), 849–854 (2008).
  • Valdés I, Hermida L, Gil L et al. Heterologous prime–boost strategy in nonhuman primates combining the infective dengue virus and a recombinant protein in a formulation suitable for human use. Int. J. Infect. Dis. DOI: 10.1016/j.ijid.2009.06.017 (2009) (Epub ahead of print).
  • Sabchareon A, Lang J, Chanthavanich P et al. Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five- to twelve-year-old Thai children. Pediatr. Infect. Dis. J.23(2), 99–109 (2004).
  • Simasathien S, Thomas SJ, Watanaveeradej V et al. Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus naive children. Am. J. Trop. Med. Hyg.78(3), 426–433 (2008).
  • Guy B, Nougarede N, Begue S et al. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. Vaccine26(45), 5712–5721 (2008).
  • Lazo L, Hermida L, Zulueta A et al. A recombinant capsid protein from dengue-2 induces protection in mice against homologous virus. Vaccine25(6), 1064–1070 (2007).
  • Gil L, López C, Lazo L et al. Recombinant nucleocapsid-like particles from dengue-2 virus induce protective CD4+ and CD8+ cells against viral encephalitis in mice. Int. Immunol.21(10), 1175–1183 (2009).
  • Valdés I, Bernardo L, Gil L et al. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice. Virology394(2), 249–258 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.