385
Views
163
CrossRef citations to date
0
Altmetric
Special Focus Issue: Influenza Vaccines - Review

Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments

, , &
Pages 499-508 | Published online: 09 Jan 2014

References

  • Jefferson TO, Rivetti D, Di Pietrantonj C, Rivetti A, Demicheli V. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst. Rev.2, CD001269 (2007).
  • Nichol KL, Nordin JD, Nelson DB, Mullooly JP, Hak E. Effectiveness of influenza vaccine in the community-dwelling elderly. N. Engl. J. Med.357(14), 1373–1381 (2007).
  • de Jong JC, Palache AM, Beyer WE et al. Haemagglutination-inhibiting antibody to influenza virus. Dev. Biol. (Basel)115, 63–73 (2003).
  • al-Mazrou A, Scheifele DW, Soong T, Bjornson G. Comparison of adverse reactions to whole-virion and split-virion influenza vaccines in hospital personnel. CMAJ145(3), 213–218 (1991).
  • Belshe R, Lee MS, Walker RE, Stoddard J, Mendelman PM. Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev. Vaccines3(6), 643–654 (2004).
  • Rudenko LG, Lonskaya NI, Klimov AI, Vasilieva RI, Ramirez A. Clinical and epidemiological evaluation of a live, cold-adapted influenza vaccine for 3–14-year-olds. Bull. WHO74(1), 77–84 (1996).
  • Mendelman PM, Rappaport R, Cho I et al. Live attenuated influenza vaccine induces cross-reactive antibody responses in children against an A/Fujian/411/2002-like H3N2 antigenic variant strain. Pediatr. Infect. Dis. J.23(11), 1053–1055 (2004).
  • The MIV Study Group. The macro-epidemiology of influenza vaccination in 56 countries, 1997–2003. Vaccine23(44), 5133–5143 (2005).
  • Plotkin JB, Dushoff J. Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc. Natl Acad. Sci. USA100(12), 7152–7157 (2003).
  • Kilbourne ED, Johansson BE, Grajower B. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc. Natl Acad. Sci. USA87(2), 786–790 (1990).
  • Skowronski DM, Masaro C, Kwindt TL et al. Estimating vaccine effectiveness against laboratory-confirmed influenza using a sentinel physician network: results from the 2005–2006 season of dual A and B vaccine mismatch in Canada. Vaccine25(15), 2842–2851 (2007).
  • Abdel-Ghafar AN, Chotpitayasunondh T, Gao Z et al. Update on avian influenza A (H5N1) virus infection in humans. N. Engl. J. Med.358(3), 261–273 (2008).
  • Claas EC, Osterhaus AD, van Beek R et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet351(9101), 472–477 (1998).
  • Chen R, Holmes EC. Avian influenza virus exhibits rapid evolutionary dynamics. Mol. Biol. Evol.23(12), 2336–2341 (2006).
  • Leroux-Roels I, Bernhard R, Gerard P et al. Broad clade 2 cross-reactive immunity induced by an adjuvanted clade 1 rH5N1 pandemic influenza vaccine. PLoS ONE3(2), e1665 (2008).
  • Tompkins SM, Zhao ZS, Lo CY et al. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerg. Infect. Dis.13(3), 426–435 (2007).
  • Black RA, Rota PA, Gorodkova N, Klenk HD, Kendal AP. Antibody response to the M2 protein of influenza A virus expressed in insect cells. J. Gen. Virol.74(Pt 1), 143–146 (1993).
  • Drummond JE, Shaw EE, Antonello JM et al. Design and optimization of a multiplex anti-influenza peptide immunoassay. J. Immunol. Methods334(1–2), 11–20 (2008).
  • Feng J, Zhang M, Mozdzanowska K et al. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol. J.3, 102 (2006).
  • Kitikoon P, Strait EL, Thacker EL. The antibody responses to swine influenza virus (SIV) recombinant matrix 1 (rM1), matrix 2 (M2), and hemagglutinin (HA) proteins in pigs with different SIV exposure. Vet. Microbiol.126(1–3), 51–62 (2008).
  • Liu W, Li H, Chen YH. N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol. Med. Microbiol.35(2), 141–146 (2003).
  • Mozdzanowska K, Feng J, Eid M et al. Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine21(19–20), 2616–2626 (2003).
  • Zharikova D, Mozdzanowska K, Feng J, Zhang M, Gerhard W. Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein 2. J. Virol.79(11), 6644–6654 (2005).
  • Gerhard W, Mozdzanowska K, Zharikova D. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis.12(4), 569–574 (2006).
  • Lamb RA, Choppin PW. Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virology112(2), 729–737 (1981).
  • Lamb RA, Zebedee SL, Richardson CD. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell40(3), 627–633 (1985).
  • Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature451(7178), 591–595 (2008).
  • Stouffer AL, Acharya R, Salom D et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature451(7178), 596–599 (2008).
  • Ciampor F, Thompson CA, Grambas S, Hay AJ. Regulation of pH by the M2 protein of influenza A viruses. Virus Res.22(3), 247–258 (1992).
  • Sakaguchi T, Leser GP, Lamb RA. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J. Cell. Biol.133(4), 733–747 (1996).
  • Takeuchi K, Lamb RA. Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J. Virol.68(2), 911–919 (1994).
  • Iwatsuki-Horimoto K, Horimoto T, Noda T et al. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J. Virol.80(11), 5233–5240 (2006).
  • McCown MF, Pekosz A. The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J. Virol.79(6), 3595–3605 (2005).
  • Chen BJ, Leser GP, Jackson D, Lamb RA. The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J. Virol.82(20), 10059–10070 (2008).
  • McCown MF, Pekosz A. Distinct domains of the influenza a virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. J. Virol.80(16), 8178–8189 (2006).
  • Zebedee SL, Lamb RA. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol.62(8), 2762–2772 (1988).
  • Treanor JJ, Tierney EL, Zebedee SL, Lamb RA, Murphy BR. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J. Virol.64(3), 1375–1377 (1990).
  • Wang R, Song A, Levin J et al. Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antiviral Res.80(2), 168–177 (2008).
  • Straight TM, Ottolini MG, Prince GA, Eichelberger MC. Antibody contributes to heterosubtypic protection against influenza A-induced tachypnea in cotton rats. Virol. J.5, 44 (2008).
  • Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N. Engl. J. Med.357(14), 1450–1451 (2007).
  • Neirynck S, Deroo T, Saelens X et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med.5(10), 1157–1163 (1999).
  • Slepushkin VA, Katz JM, Black RA et al. Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine13(15), 1399–1402 (1995).
  • Lalor PA, Webby RJ, Morrow J et al. Plasmid DNA-based vaccines protect mice and ferrets against lethal challenge with A/Vietnam/1203/04 (H5N1) influenza virus. J. Infect. Dis.197(12), 1643–1652 (2008).
  • Lo CY, Wu Z, Misplon JA et al. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime–adenovirus boost strategies. Vaccine26(17), 2062–2072 (2008).
  • Jameson J, Cruz J, Ennis FA. Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J. Virol.72(11), 8682–8689 (1998).
  • Rimmelzwaan GF, Boon AC, Voeten JT et al. Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Res.103(1–2), 97–100 (2004).
  • Wu F, Huang JH, Yuan XY, Huang WS, Chen YH. Characterization of immunity induced by M2e of influenza virus. Vaccine25(52), 8868–8873 (2007).
  • Bessa J, Schmitz N, Hinton HJ et al. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: implications for vaccine design. Eur. J. Immunol.38(1), 114–126 (2008).
  • Denis J, Acosta-Ramirez E, Zhao Y et al. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine26(27–28), 3395–3403 (2008).
  • Ionescu RM, Przysiecki CT, Liang X et al. Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J. Pharm. Sci.95(1), 70–79 (2006).
  • Bachmann MF, Rohrer UH, Kundig TM et al. The influence of antigen organization on B cell responsiveness. Science262(5138), 1448–1451 (1993).
  • De Filette M, Min Jou W, Birkett A et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology337(1), 149–161 (2005).
  • Ernst WA, Kim HJ, Tumpey TM et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine24(24), 5158–5168 (2006).
  • Fan J, Liang X, Horton MS et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine22(23–24), 2993–3003 (2004).
  • Frace AM, Klimov AI, Rowe T, Black RA, Katz JM. Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine17(18), 2237–2244 (1999).
  • Huleatt JW, Nakaar V, Desai P et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine26(2), 201–214 (2008).
  • Liu W, Peng Z, Liu Z et al. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine23(3), 366–371 (2004).
  • Mozdzanowska K, Furchner M, Zharikova D, Feng J, Gerhard W. Roles of CD4+ T-cell-independent and -dependent antibody responses in the control of influenza virus infection: evidence for noncognate CD4+ T-cell activities that enhance the therapeutic activity of antiviral antibodies. J. Virol.79(10), 5943–5951 (2005).
  • Eriksson AM, Schon KM, Lycke NY. The cholera toxin-derived CTA1-DD vaccine adjuvant administered intranasally does not cause inflammation or accumulate in the nervous tissues. J. Immunol.173(5), 3310–3319 (2004).
  • Eliasson DG, El Bakkouri K, Schon K et al. CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine. Vaccine26(9), 1243–1252 (2008).
  • Huber VC, Lynch JM, Bucher DJ, Le J, Metzger DW. Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. J. Immunol.166(12), 7381–7388 (2001).
  • Jegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol.172(9), 5598–5605 (2004).
  • Mozdzanowska K, Zharikova D, Cudic M, Otvos L, Gerhard W. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol. J.4, 118 (2007).
  • Buckland BC. The process development challenge for a new vaccine. Nature Med.11(4 Suppl.), S16–S19 (2005).
  • De Filette M, Martens W, Roose K et al. An influenza A vaccine based on tetrameric ectodomain of matrix protein 2. J. Biol. Chem.283(17), 11382–11387 (2008).
  • Govaert TM, Thijs CT, Masurel N et al. The efficacy of influenza vaccination in elderly individuals. A randomized double-blind placebo-controlled trial. JAMA272(21), 1661–1665 (1994).
  • Lin YP, Gregory V, Bennett M, Hay A. Recent changes among human influenza viruses. Virus Res.103(1–2), 47–52 (2004).
  • Bianchi E, Liang X, Ingallinella P et al. Universal influenza B vaccine based on the maturational cleavage site of the hemagglutinin precursor. J. Virol.79(12), 7380–7388 (2005).
  • De Filette M, Ramne A, Birkett A et al. The universal influenza vaccine M2e–HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine24(5), 544–551 (2006).
  • Stephenson I, Zambon MC, Rudin A et al. Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J. Virol.80(10), 4962–4970 (2006).
  • Jimenez GS, Planchon R, Wei Q et al. Vaxfectin-formulated influenza DNA vaccines encoding NP and M2 viral proteins protect mice against lethal viral challenge. Hum. Vaccin.3(5), 157–164 (2007).
  • De Filette M, Fiers W, Martens W et al. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine24(44–46), 6597–6601 (2006).
  • De Filette M, Martens W, Smet A et al. Universal influenza A M2e-HBc vaccine protects against disease even in the presence of pre-existing anti-HBc antibodies. Vaccine26(51), 6503–6507 (2008)
  • Heinen PP, Rijsewijk FA, de Boer-Luijtze EA, Bianchi AT. Vaccination of pigs with a DNA construct expressing an influenza virus M2–nucleoprotein fusion protein exacerbates disease after challenge with influenza A virus. J. Gen. Virol.83(Pt 8), 1851–1859 (2002).
  • Laddy DJ, Yan J, Kutzler M et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS ONE3(6), e2517 (2008).
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32(5), 1792–1797 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.