125
Views
18
CrossRef citations to date
0
Altmetric
Review

Human influenza vaccines and assessment of immunogenicity

Pages 1423-1439 | Published online: 09 Jan 2014

References

  • Nicholson KG, Wood JM, Zambon M. Influenza. Lancet362(9397), 1733–1745 (2003).
  • Hibbert CL, Piedra PA, McLaurin KK, Vesikari T, Mauskopf J, Mahadevia PJ. Cost–effectiveness of live-attenuated influenza vaccine, trivalent in preventing influenza in young children attending day-care centres. Vaccine25(47), 8010–8020 (2007).
  • Stohr K. Influenza – WHO cares. Lancet Infect. Dis.2(9), 517 (2002).
  • Couch RB. Seasonal inactivated influenza virus vaccines. Vaccine26(Suppl. 4), D5–D9 (2008).
  • Fiore AE, Shay DK, Broder K et al. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep.58(RR-8), 1–52 (2009).
  • Treanor JJ, Kotloff K, Betts RF et al. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine18(9–10), 899–906 (1999).
  • Skowronski DM, Masaro C, Kwindt TL et al. Estimating vaccine effectiveness against laboratory-confirmed influenza using a sentinel physician network: results from the 2005–2006 season of dual A and B vaccine mismatch in Canada. Vaccine25(15), 2842–2851 (2007).
  • Gross PA, Hermogenes AW, Sacks HS, Lau J, Levandowski RA. The efficacy of influenza vaccine in elderly persons. A meta-analysis and review of the literature. Ann. Intern. Med.123(7), 518–527 (1995).
  • Ben-Yehuda A, Danenberg HD, Zakay-Rones Z, Gross DJ, Friedman G. The influence of sequential annual vaccination and of DHEA administration on the efficacy of the immune response to influenza vaccine in the elderly. Mech. Ageing Dev.102(2–3), 299–306 (1998).
  • Engelhard D, Nagler A, Hardan I et al. Antibody response to a two-dose regimen of influenza vaccine in allogeneic T cell-depleted and autologous BMT recipients. Bone Marrow Transplant.11(1), 1–5 (1993).
  • Admon D, Engelhard D, Strauss N, Goldman N, Zakay-Rones Z. Antibody response to influenza immunization in patients after heart transplantation. Vaccine15(14), 1518–1522 (1997).
  • Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, Thomas RE. Vaccines for preventing influenza in the elderly. Cochrane Database Syst. Rev.2, CD004876 (2010).
  • Smith DJ, Lapedes AS, de Jong JC et al. Mapping the antigenic and genetic evolution of influenza virus. Science (NY)305(5682), 371–376 (2004).
  • Zhou NN, Senne DA, Landgraf JS et al. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J. Virol.73(10), 8851–8856 (1999).
  • Barr IG, Komadina N, Hurt AC et al. An influenza A(H3) reassortant was epidemic in Australia and New Zealand in 2003. J. Med. Virol.76(3), 391–397 (2005).
  • Holmes EC, Ghedin E, Miller N et al. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol.3(9), e300 (2005).
  • Mossad SB. 2008–2009 Influenza update: a better vaccine match. Cleve. Clin. J. Med.75(12), 865–870 (2008).
  • de Jong JC, Beyer WE, Palache AM, Rimmelzwaan GF, Osterhaus AD. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol.61(1), 94–99 (2000).
  • Palese P, Garcia-Sastre A. Influenza vaccines: present and future. J. Clin. Invest.110(1), 9–13 (2002).
  • Wood JM. Selection of influenza vaccine strains and developing pandemic vaccines. Vaccine20(Suppl. 5), B40–B44 (2002).
  • Russell CA, Jones TC, Barr IG et al. Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine26(Suppl. 4), D31–D34 (2008).
  • Bianchi E, Liang X, Ingallinella P et al. Universal influenza B vaccine based on the maturational cleavage site of the hemagglutinin precursor. J. Virol.79(12), 7380–7388 (2005).
  • Belshe RB, Coelingh K, Ambrose CS, Woo JC, Wu X. Efficacy of live attenuated influenza vaccine in children against influenza B viruses by lineage and antigenic similarity. Vaccine28(9), 2149–2156 (2010).
  • Francis T, Salk JE, Pearson HE, Brown PN. Protective effect of vaccination against induced influenza A. J. Clin. Invest.24(4), 536–546 (1945).
  • Wood JM, Mumford J, Schild GC, Webster RG, Nicholson KG. Single-radial-immunodiffusion potency tests of inactivated influenza vaccines for use in man and animals. Dev. Biol. Standard.64, 169–177 (1986).
  • Couch RB, Winokur P, Brady R et al. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects. Vaccine25(44), 7656–7663 (2007).
  • Morag A, Levy R, Weil G, Zakay-Rones Z. Clinical and serological response in humans following immunization with Gripax influenza vaccine. J. Med. Virol.11(1), 67–75 (1983).
  • Keitel WA, Atmar RL, Cate TR et al. Safety of high doses of influenza vaccine and effect on antibody responses in elderly persons. Arch. Intern. Med.166(10), 1121–1127 (2006).
  • Falsey AR, Treanor JJ, Tornieporth N, Capellan J, Gorse GJ. Randomized, double-blind controlled Phase 3 trial comparing the immunogenicity of high-dose and standard-dose influenza vaccine in adults 65 years of age and older. J. Infect. Dis.200(2), 172–180 (2009).
  • Maassab HF, Heilman CA, Herlocher ML. Cold-adapted influenza viruses for use as live vaccines for man. Adv. Biotechnol. Process.14, 203–242 (1990).
  • Cox RJ, Brokstad KA, Ogra P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand. J. Immunol.59(1), 1–15 (2004).
  • Buonagurio DA, Bechert TM, Yang CF et al. Genetic stability of live, cold-adapted influenza virus components of the FluMist/CAIV-T vaccine throughout the manufacturing process. Vaccine24(12), 2151–2160 (2006).
  • Vesikari T, Karvonen A, Korhonen T et al. A randomized, double-blind study of the safety, transmissibility and phenotypic and genotypic stability of cold-adapted influenza virus vaccine. Pediatr. Infect. Dis. J.25(7), 590–595 (2006).
  • Buonagurio DA, O’Neill RE, Shutyak L et al. Genetic and phenotypic stability of cold-adapted influenza viruses in a trivalent vaccine administered to children in a day care setting. Virology347(2), 296–306 (2006).
  • Belshe RB, Gruber WC, Mendelman PM et al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J. Infect. Dis.181(3), 1133–1137 (2000).
  • Belshe RB, Nichol KL, Black SB et al. Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5–49 years. Clin. Infect. Dis.39(7), 920–927 (2004).
  • Belshe RB, Edwards KM, Vesikari T et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med.356(7), 685–696 (2007).
  • Belshe RB, Toback SL, Yi T, Ambrose CS. Efficacy of live attenuated influenza vaccine in children 6 months to 17 years of age. Influenza Other Resp. Viruses4(3), 141–145 (2010).
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J. Immunol.183(11), 6883–6892 (2009).
  • Belshe RB, Gruber WC, Mendelman PM et al. Efficacy of vaccination with live attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine against a variant (A/Sydney) not contained in the vaccine. J. Pediatr.136(2), 168–175 (2000).
  • Ambrose CS, Luke C, Coelingh K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Resp. Viruses2(6), 193–202 (2008).
  • Mendelman PM, Rappaport R, Cho I et al. Live attenuated influenza vaccine induces cross-reactive antibody responses in children against an a/Fujian/411/2002-like H3N2 antigenic variant strain. Pediatr. Infect. Dis. J.23(11), 1053–1055 (2004).
  • Renegar KB, Small PA Jr, Boykins LG, Wright PF. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol.173(3), 1978–1986 (2004).
  • Bernstein DI, Yan L, Treanor J, Mendelman PM, Belshe R. Effect of yearly vaccinations with live, attenuated, cold-adapted, trivalent, intranasal influenza vaccines on antibody responses in children. Pediatr. Infect. Dis. J.22(1), 28–34 (2003).
  • Murphy BR, Coelingh K. Principles underlying the development and use of live attenuated cold-adapted influenza A and B virus vaccines. Viral Immunol.15(2), 295–323 (2002).
  • Gerhard W, Mozdzanowska K, Zharikova D. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis.12(4), 569–574 (2006).
  • Couch RB. An overview of serum antibody responses to influenza virus antigens. Dev. Biol.115, 25–30 (2003).
  • Potter CW, Oxford JS. Determinants of immunity to influenza infection in man. Br. Med. Bull.35(1), 69–75 (1979).
  • Gulati U, Kumari K, Wu W, Keitel WA, Air GM. Amount and avidity of serum antibodies against native glycoproteins and denatured virus after repeated influenza whole-virus vaccination. Vaccine23(11), 1414–1425 (2005).
  • Feng J, Gulati U, Zhang X et al. Antibody quantity versus quality after influenza vaccination. Vaccine27(45), 6358–6362 (2009).
  • Nauta JJ, Beyer WE, Osterhaus AD. On the relationship between mean antibody level, seroprotection and clinical protection from influenza. Biologicals37(4), 216–221 (2009).
  • Johansson BE, Kilbourne ED. Immunization with dissociated neuraminidase, matrix, and nucleoproteins from influenza A virus eliminates cognate help and antigenic competition. Virology225(1), 136–144 (1996).
  • Chen Z, Kadowaki S, Hagiwara Y et al. Cross-protection against a lethal influenza virus infection by DNA vaccine to neuraminidase. Vaccine18(28), 3214–3222 (2000).
  • Wu G, Yan S. Prediction of mutation trend in hemagglutinins and neuraminidases from influenza A viruses by means of cross-impact analysis. Biochem. Biophys. Res. Commun.326(2), 475–482 (2005).
  • Kilbourne ED, Johansson BE, Grajower B. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc. Natl Acad. Sci. USA87(2), 786–790 (1990).
  • Sandbulte MR, Jimenez GS, Boon AC, Smith LR, Treanor JJ, Webby RJ. Cross-reactive neuraminidase antibodies afford partial protection against H5N1 in mice and are present in unexposed humans. PLoS Med.4(2), e59 (2007).
  • Chen Z, Yoshikawa T, Kadowaki S et al. Protection and antibody responses in different strains of mouse immunized with plasmid DNAs encoding influenza virus haemagglutinin, neuraminidase and nucleoprotein. J. Gen. Virol.80(Pt 10), 2559–2564 (1999).
  • Varghese JN, Colman PM. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J. Mol. Biol.221(2), 473–486 (1991).
  • Johansson BE, Bucher DJ, Kilbourne ED. Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. J. Virol.63(3), 1239–1246 (1989).
  • Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. Lancet355(9206), 827–835 (2000).
  • Kendal AP, Bozeman FM, Ennis FA. Further studies of the neuraminidase content of inactivated influenza vaccines and the neuraminidase antibody responses after vaccination of immunologically primed and unprimed populations. Infect. Immun.29(3), 966–971 (1980).
  • Muhamed G, Greenbaum E, Zakay-Rones Z. Neuraminidase antibody response to inactivated influenza virus vaccine following intranasal and intramuscular vaccination. Isr. Med. Assoc. J.8(3), 155–158 (2006).
  • Powers DC, Kilbourne ED, Johansson BE. Neuraminidase-specific antibody responses to inactivated influenza virus vaccine in young and elderly adults. Clin. Diagn. Lab. Immunol.3(5), 511–516 (1996).
  • Johansson BE, Pokorny BA, Tiso VA. Supplementation of conventional trivalent influenza vaccine with purified viral N1 and N2 neuraminidases induces a balanced immune response without antigenic competition. Vaccine20(11–12), 1670–1674 (2002).
  • Webster RG, Campbell CH. An inhibition test for identifying the neuraminidase antigen on influenza viruses. Avian Dis.16(5), 1057–1066 (1972).
  • Zalan E, Wilson C, Freitag R. The role of hemagglutinin in the inhibition of neuraminidase activity of influenza virus by concanavalin A. Brief report. Arch. Virol.47(2), 177–179 (1975).
  • Aymard-Henry M, Coleman MT, Dowdle WR, Laver WG, Schild GC, Webster RG. Influenzavirus neuraminidase and neuraminidase-inhibition test procedures. Bull. World Health Organ.48(2), 199–202 (1973).
  • Warren L. The thiobarbituric acid assay of sialic acids. J. Biol. Chem.234(8), 1971–1975 (1959).
  • Luther P, Klett GE, Weber S, Pechmann H, Bergmann KC. The lectin neuraminidase inhibition test: a new method for the detection of antibodies to neuraminidase. J. Biol. Standard.11(2), 115–121 (1983).
  • Potier M, Mameli L, Belisle M, Dallaire L, Melancon SB. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-α-D-N-acetylneuraminate) substrate. Anal. Biochem.94(2), 287–296 (1979).
  • Gubareva LV, Robinson MJ, Bethell RC, Webster RG. Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en. J. Virol.71(5), 3385–3390 (1997).
  • Reading PC, Morey LS, Crouch EC, Anders EM. Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J. Virol.71(11), 8204–8212 (1997).
  • Tecle T, White MR, Crouch EC, Hartshorn KL. Inhibition of influenza viral neuraminidase activity by collectins. Arch. Virol.152(9), 1731–1742 (2007).
  • Erickson AH, Kilbourne ED. Comparative amino acid analysis of influenza A viral proteins. Virology100(1), 34–42 (1980).
  • Takahashi T, Suzuki T, Hidari KI, Miyamoto D, Suzuki Y. A molecular mechanism for the low-pH stability of sialidase activity of influenza A virus N2 neuraminidases. FEBS Lett.543(1–3), 71–75 (2003).
  • Johansson BE. Immunization with influenza A virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine. Vaccine17(15–16), 2073–2080 (1999).
  • Brett IC, Johansson BE. Variation in the divalent cation requirements of influenza A virus N1 neuraminidases. J. Biochem.139(3), 439–447 (2006).
  • Johansson BE, Moran TM, Bona CA, Popple SW, Kilbourne ED. Immunologic response to influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. II. Sequential infection of mice simulates human experience. J. Immunol.139(6), 2010–2014 (1987).
  • Johansson BE, Moran TM, Kilbourne ED. Antigen-presenting B cells and helper T cells cooperatively mediate intravirionic antigenic competition between influenza A virus surface glycoproteins. Proc. Natl Acad. Sci. USA84(19), 6869–6873 (1987).
  • Kilbourne ED, Cerini CP, Khan MW, Mitchell JW Jr, Ogra PL. Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees. J. Immunol.138(9), 3010–3013 (1987).
  • Sever JL. Application of a microtechnique to viral serological investigations. J. Immunol.88, 320–329 (1962).
  • Stephenson I, Nicholson KG, Colegate A et al. Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/Duck/Singapore/97 vaccine in a primed human population. Vaccine21(15), 1687–1693 (2003).
  • Stephenson I, Wood JM, Nicholson KG, Charlett A, Zambon MC. Detection of anti-H5 responses in human sera by HI using horse erythrocytes following MF59-adjuvanted influenza A/Duck/Singapore/97 vaccine. Virus Res.103(1–2), 91–95 (2004)
  • Stephenson I, Wood JM, Nicholson KG, Zambon MC. Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. J. Med. Virol.70(3), 391–398 (2003).
  • Beyer WE, Palache AM, Sprenger MJ et al. Effects of repeated annual influenza vaccination on vaccine sero-response in young and elderly adults. Vaccine14(14), 1331–1339 (1996).
  • Appleyard G, Maber HB. Plaque formation by influenza viruses in the presence of trypsin. J. Gen. Virol.25(3), 351–357 (1974).
  • Zakay-Rones Z, Margalith E, Levy R, Katz E. A sensitive plaque inhibition technique for assay of antibodies to influenza virus: use to detect previous antigenic priming with influenza viruses. J. Virol. Methods1(6), 355–360 (1980).
  • Gross PA, Davis AE. Neutralization test in influenza: use in individuals without hemagglutination inhibition antibody. J. Clin. Microbiol.10(3), 382–384 (1979).
  • Lee MS, Mahmood K, Adhikary L et al. Measuring antibody responses to a live attenuated influenza vaccine in children. Pediatr. Infect. Dis. J.23(9), 852–856 (2004).
  • Frank AL, Puck J, Hughes BJ, Cate TR. Microneutralization test for influenza A and B and parainfluenza 1 and 2 viruses that uses continuous cell lines and fresh serum enhancement. J. Clin. Microbiol.12(3), 426–432 (1980).
  • Rowe T, Abernathy RA, Hu-Primmer J et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol.37(4), 937–943 (1999).
  • Taylor HP, Dimmock NJ. Mechanism of neutralization of influenza virus by secretory IgA is different from that of monomeric IgA or IgG. J. Exp. Med.161(1), 198–209 (1985).
  • Asahi Y, Yoshikawa T, Watanabe I et al. Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J. Immunol.168(6), 2930–2938 (2002).
  • Boyce TG, Hsu HH, Sannella EC et al. Safety and immunogenicity of adjuvanted and unadjuvanted subunit influenza vaccines administered intranasally to healthy adults. Vaccine19(2–3), 217–226 (2000).
  • Kiderman A, Furst A, Stewart B, Greenbaum E, Morag A, Zakay-Rones Z. A double-blind trial of a new inactivated, trivalent, intra-nasal anti-influenza vaccine in general practice: relationship between immunogenicity and respiratory morbidity over the winter of 1997–1998. J. Clin. Virol.20(3), 155–161 (2001).
  • Greenbaum E, Furst A, Kiderman A et al. Serum and mucosal immunologic responses in children following the administration of a new inactivated intranasal anti-influenza vaccine. J. Med. Virol.65(1), 178–184 (2001).
  • Greenbaum E, Engelhard D, Levy R, Schlezinger M, Morag A, Zakay-Rones Z. Mucosal (sIgA) and serum (IgG) immunologic responses in young adults following intranasal administration of one or two doses of inactivated, trivalent anti-influenza vaccine. Vaccine22(20), 2566–2577 (2004).
  • Wright PF, Murphy BR, Kervina M, Lawrence EM, Phelan MA, Karzon DT. Secretory immunological response after intranasal inactivated influenza A virus vaccinations: evidence for immunoglobulin A memory. Infect. Immun.40(3), 1092–1095 (1983).
  • Voller A, Bidwell DE, Bartlett A. Enzyme immunoassays in diagnostic medicine. Theory and practice. Bull. World Health Organ.53(1), 55–65 (1976).
  • Tamura S, Miyata K, Matsuo K et al. Acceleration of influenza virus clearance by Th1 cells in the nasal site of mice immunized intranasally with adjuvant-combined recombinant nucleoprotein. J. Immunol.156(10), 3892–3900 (1996).
  • Thomas PG, Keating R, Hulse-Post DJ, Doherty PC. Cell-mediated protection in influenza infection. Emerg. Infect. Dis.12(1), 48–54 (2006).
  • Rimmelzwaan GF, Fouchier RA, Osterhaus AD. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr. Opin. Biotechnol.18(6), 529–536 (2007).
  • McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med.309(1), 13–17 (1983).
  • Gianfrani C, Oseroff C, Sidney J, Chesnut RW, Sette A. Human memory CTL response specific for influenza A virus is broad and multispecific. Hum. Immunol.61(5), 438–452 (2000).
  • Wraith DC, Vessey AE, Askonas BA. Purified influenza virus nucleoprotein protects mice from lethal infection. J. General Virol.68(Pt 2), 433–440 (1987).
  • Altstein AD, Gitelman AK, Smirnov YA et al. Immunization with influenza A NP-expressing vaccinia virus recombinant protects mice against experimental infection with human and avian influenza viruses. Arch. Virol.151(5), 921–931 (2006).
  • Fleischer B, Becht H, Rott R. Recognition of viral antigens by human influenza A virus-specific T lymphocyte clones. J. Immunol.135(4), 2800–2804 (1985).
  • Shapira-Nahor O, Morag A, Levy R, Zakay-Rones Z. Cellular response in humans following vaccination with Gripax influenza virus. J. Med. Virol.10(1), 75–80 (1982).
  • Shapira-Nahor O, Zakay-Rones Z. Local and peripheral cell-mediated immune response to influenza virus in mice. J. Med. Virol.15(1), 81–91 (1985).
  • He XS, Holmes TH, Zhang C et al. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J. Virol.80(23), 11756–11766 (2006).
  • Moffat JM, Gebhardt T, Doherty PC, Turner SJ, Mintern JD. Granzyme A expression reveals distinct cytolytic CTL subsets following influenza A virus infection. Eur. J. Immunol.39(5), 1203–1210 (2009).
  • Ennis FA, Rook AH, Qi YH et al. HLA restricted virus-specific cytotoxic T-lymphocyte responses to live and inactivated influenza vaccines. Lancet2(8252), 887–891 (1981).
  • Epstein SL, Kong WP, Misplon JA et al. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine23(46–47), 5404–5410 (2005).
  • Mabrouk T, Ellis RW. Influenza vaccine technologies and the use of the cell-culture process (cell-culture influenza vaccine). Dev. Biol.110, 125–134 (2002).
  • Robertson JS, Nicolson C, Major D, Robertson EW, Wood JM. The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses. J. Gen. Virol.74(Pt 10), 2047–2051 (1993).
  • Oxford JS, Corcoran T, Knott R et al. Serological studies with influenza A(H1N1) viruses cultivated in eggs or in a canine kidney cell line (MDCK). Bull. World Health Organ.65(2), 181–187 (1987).
  • Katz JM, Naeve CW, Webster RG. Host cell-mediated variation in H3N2 influenza viruses. Virology156(2), 386–395 (1987).
  • Doroshenko A, Halperin SA. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev. Vaccines8(6), 679–688 (2009).
  • Palache AM, Brands R, van Scharrenburg GJ. Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J. Infect. Dis.176(Suppl. 1), S20–S23 (1997).
  • Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, Dorner F. Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine16(9–10), 960–968 (1998).
  • Koudstaal W, Hartgroves L, Havenga M et al. Suitability of PER.C6 cells to generate epidemic and pandemic influenza vaccine strains by reverse genetics. Vaccine27(19), 2588–2593 (2009).
  • Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F. The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine19(17–19), 2716–2721 (2001).
  • European Directorate for the Quality of Medicines. European Pharmacopeaia (3rd Edition), 0159. Council of Europe, Strasbourg, France (1997).
  • Heiny AT, Miotto O, Srinivasan KN et al. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PloS One2(11), e1190 (2007).
  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med.5(10), 1157–1163 (1999).
  • Fan J, Liang X, Horton MS et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine22(23–24), 2993–3003 (2004).
  • Fiers W, De Filette M, Birkett A, Neirynck S, Min Jou W. A ‘universal’ human influenza A vaccine. Virus Res.103(1–2), 173–176 (2004).
  • Jegerlehner A, Schmitz N, Storni T, Bachmann MF. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol.172(9), 5598–5605 (2004).
  • Treanor JJ, Tierney EL, Zebedee SL, Lamb RA, Murphy BR. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J. Virol.64(3), 1375–1377 (1990).
  • Mozdzanowska K, Maiese K, Furchner M, Gerhard W. Treatment of influenza virus-infected SCID mice with nonneutralizing antibodies specific for the transmembrane proteins matrix 2 and neuraminidase reduces the pulmonary virus titer but fails to clear the infection. Virology254(1), 138–146 (1999).
  • De Filette M, Min Jou W,Birkett A et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology337(1), 149–161 (2005).
  • Hatta M, Kawaoka Y. The NB protein of influenza B virus is not necessary for virus replication in vitro.J. Virol.77(10), 6050–6054 (2003).
  • Kemble G, Greenberg H. Novel generations of influenza vaccines. Vaccine21(16), 1789–1795 (2003).
  • Paterson RG, Takeda M, Ohigashi Y, Pinto LH, Lamb RA. Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. Virology306(1), 7–17 (2003).
  • Okuno Y, Isegawa Y, Sasao F, Ueda S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol.67(5), 2552–2558 (1993).
  • Gschoesser C, Almanzar G, Hainz U et al. CD4+ and CD8+ mediated cellular immune response to recombinant influenza nucleoprotein. Vaccine20(31–32), 3731–3738 (2002).
  • Zhirnov OP, Isaeva EI, Konakova TE et al. Protection against mouse and avian influenza A strains via vaccination with a combination of conserved proteins NP, M1 and NS1. Influenza Other Resp. Viruses1(2), 71–79 (2007).
  • Chen Z, Kadowaki S, Hagiwara Y et al. Protection against influenza B virus infection by immunization with DNA vaccines. Vaccine19(11–12), 1446–1455 (2001).
  • Schotsaert M, De Filette M, Fiers W, Saelens X. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev. Vaccines8(4), 499–508 (2009).
  • Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A. Rescue of influenza A virus from recombinant DNA. J. Virol.73(11), 9679–9682 (1999).
  • Neumann G, Watanabe T, Ito H et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl Acad. Sci. USA96(16), 9345–9350 (1999).
  • Keitel WA, Treanor JJ, El Sahly HM et al. Comparative immunogenicity of recombinant influenza hemagglutinin (rHA) and trivalent inactivated vaccine (TIV) among persons > or =65 years old. Vaccine28(2), 379–385 (2009).
  • Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, Cox NJ. Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine13(15), 1399–1402 (1995).
  • Cox MM, Karl Anderson D. Production of a novel influenza vaccine using insect cells: protection against drifted strains. Influenza Other Resp. Viruses1(1), 35–40 (2007).
  • Ulmer JB, Donnelly JJ, Parker SE et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science (NY)259(5102), 1745–1749 (1993).
  • Ulmer JB. Influenza DNA vaccines. Vaccine20(Suppl. 2), S74–S76 (2002).
  • Kodihalli S, Kobasa DL, Webster RG. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine18(23), 2592–2599 (2000).
  • Epstein SL, Tumpey TM, Misplon JA et al. DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg. Infect. Dis.8(8), 796–801 (2002).
  • Qiu M, Fang F, Chen Y et al. Protection against avian influenza H9N2 virus challenge by immunization with hemagglutinin- or neuraminidase-expressing DNA in BALB/c mice. Biochem. Biophys. Res. Commun.343(4), 1124–1131 (2006).
  • Laddy DJ, Yan J, Corbitt N, Kobasa D, Kobinger GP, Weiner DB. Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine25(16), 2984–2989 (2007).
  • Choi SY, Suh YS, Cho JH, Jin HT, Chang J, Sung YC. Enhancement of DNA vaccine-induced immune responses by influenza virus NP gene. Immune Network9(5), 169–178 (2009).
  • Drape RJ, Macklin MD, Barr LJ, Jones S, Haynes JR, Dean HJ. Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine24(21), 4475–4481 (2006).
  • Musiychuk K, Stephenson N, Bi H et al. A launch vector for the production of vaccine antigens in plants. Influenza Other Resp. Viruses1(1), 19–25 (2007).
  • Mett V, Musiychuk K, Bi H et al. A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Resp. Viruses2(1), 33–40 (2008).
  • Tosh PK, Poland GA. Emerging vaccines for influenza. Expert Opin. Emerg. Drugs13(1), 21–40 (2008).
  • Mozdzanowska K, Feng J, Eid M et al. Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine21(19–20), 2616–2626 (2003).
  • Mozdzanowska K, Zharikova D, Cudic M, Otvos L, Gerhard W. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol. J.4, 118 (2007).
  • Laddy DJ, Yan J, Kutzler M et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PloS One3(6), e2517 (2008).
  • Arnon A, Levi R. Synthetic recombinant vaccines against viral agents. Int. Arch. Allergy Immunol.108(4), 321–326 (1995).
  • Jeon SH, Ben-Yedidia T, Arnon R. Intranasal immunization with synthetic recombinant vaccine containing multiple epitopes of influenza virus. Vaccine20(21–22), 2772–2780 (2002).
  • Lindblad EB. Aluminium compounds for use in vaccines. Immunol. Cell Biol.82(5), 497–505 (2004).
  • Nicholson KG, Colegate AE, Podda A et al. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet357(9272), 1937–1943 (2001).
  • Banzhoff A, Gasparini R, Laghi-Pasini F et al. MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults. PloS One4(2), e4384 (2009).
  • Banzhoff A, Nacci P, Podda A. A new MF59-adjuvanted influenza vaccine enhances the immune response in the elderly with chronic diseases: results from an immunogenicity meta-analysis. Gerontology49(3), 177–184 (2003).
  • Vesikari T, Pellegrini M, Karvonen A et al. Enhanced immunogenicity of seasonal influenza vaccines in young children using MF59 adjuvant. Pediatr. Infect. Dis. J.28(7), 563–571 (2009).
  • Johansen K, Nicoll A, Ciancio BC, Kramarz P. Pandemic influenza A(H1N1) 2009 vaccines in the European Union. Euro Surveill.14(41), 19361 (2009).
  • Minutello M, Senatore F, Cecchinelli G et al. Safety and immunogenicity of an inactivated subunit influenza virus vaccine combined with MF59 adjuvant emulsion in elderly subjects, immunized for three consecutive influenza seasons. Vaccine17(2), 99–104 (1999).
  • Banzhoff A, Pellegrini M, Del Giudice G, Fragapane E, Groth N, Podda A. MF59-adjuvanted vaccines for seasonal and pandemic influenza prophylaxis. Influenza Other Resp. Viruses2(6), 243–249 (2008).
  • Waddington CS, Walker WT, Oeser C et al. Safety and immunogenicity of AS03B adjuvanted split virion versus non-adjuvanted whole virion H1N1 influenza vaccine in UK children aged 6 months-12 years: open label, randomised, parallel group, multicentre study. Br. Med. J.340, c2649 (2010).
  • Malherbe L, Mark L, Fazilleau N, McHeyzer-Williams LJ, McHeyzer-Williams MG. Vaccine adjuvants alter TCR-based selection thresholds. Immunity28(5), 698–709 (2008).
  • Bungener L, Geeraedts F, Ter Veer W, Medema J, Wilschut J, Huckriede A. Alum boosts TH2-type antibody responses to whole-inactivated virus influenza vaccine in mice but does not confer superior protection. Vaccine26(19), 2350–2359 (2008).
  • Wack A, Baudner BC, Hilbert AK et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine26(4), 552–561 (2008).
  • Babai I, Samira S, Barenholz Y, Zakay-Rones Z, Kedar E. A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. II. Induction of TH1 and TH2 responses in mice. Vaccine17(9–10), 1239–1250 (1999).
  • Babai I, Samira S, Barenholz Y, Zakay-Rones Z, Kedar E. A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. I. Vaccine characterization and efficacy studies in mice. Vaccine17(9–10), 1223–1238 (1999).
  • Ben-Yehuda A, Joseph A, Zeira E et al. Immunogenicity and safety of a novel liposomal influenza subunit vaccine (INFLUSOME-VAC) in young adults. J. Med. Virol.69(4), 560–567 (2003).
  • Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol.13(12), 527–537 (1995).
  • Gluck R, Mischler R, Finkel B, Que JU, Scarpa B, Cryz SJ Jr. Immunogenicity of new virosome influenza vaccine in elderly people. Lancet344(8916), 160–163 (1994).
  • Gluck R. Adjuvant activity of immunopotentiating reconstituted influenza virosomes (IRIVs). Vaccine17(13–14), 1782–1787 (1999).
  • Zurbriggen R. Immunostimulating reconstituted influenza virosomes. Vaccine21(9–10), 921–924 (2003).
  • Plante M, Jones T, Allard F et al. Nasal immunization with subunit proteosome influenza vaccines induces serum HAI, mucosal IgA and protection against influenza challenge. Vaccine20(1–2), 218–225 (2001).
  • Treanor J, Nolan C, O’Brien D et al. Intranasal administration of a proteosome-influenza vaccine is well-tolerated and induces serum and nasal secretion influenza antibodies in healthy human subjects. Vaccine24(3), 254–262 (2006).
  • Rimmelzwaan GF, Baars M, van Beek R et al. Influenza virus subtype cross-reactivities of haemagglutination inhibiting and virus neutralising serum antibodies induced by infection or vaccination with an ISCOM-based vaccine. Vaccine17(20–21), 2512–2516 (1999).
  • Quan FS, Kim YC, Yoo DG, Compans RW, Prausnitz MR, Kang SM. Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin. PloS One4(9), e7152 (2009).
  • Garg S, Hoelscher M, Belser JA et al. Needle-free skin patch delivery of a vaccine for a potentially pandemic influenza virus provides protection against lethal challenge in mice. Clin. Vaccine Immunol.14(7), 926–928 (2007).
  • Huang J, Garmise RJ, Crowder TM et al. A novel dry powder influenza vaccine and intranasal delivery technology: induction of systemic and mucosal immune responses in rats. Vaccine23(6), 794–801 (2004).
  • Mann JF, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine27(27), 3643–3649 (2009).
  • Quan FS, Kim YC, Vunnava A et al. Intradermal vaccination with influenza virus-like particles by using microneedles induces protection superior to that with intramuscular immunization. J. Virol.84(15), 7760–7769 (2010).
  • Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine26(26), 3197–3208 (2008).
  • Glezen WP, Taber LH, Frank AL, Gruber WC, Piedra PA. Influenza virus infections in infants. Pediatr. Infect. Dis. J.16(11), 1065–1068 (1997).
  • Loeb M, Russell ML, Moss L et al. Effect of influenza vaccination of children on infection rates in Hutterite communities: a randomized trial. JAMA303(10), 943–950 (2010).
  • Rhorer J, Ambrose CS, Dickinson S et al. Efficacy of live attenuated influenza vaccine in children: a meta-analysis of nine randomized clinical trials. Vaccine27(7), 1101–1110 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.