129
Views
36
CrossRef citations to date
0
Altmetric
Review

Vibrio cholerae: lessons for mucosal vaccine design

&
Pages 79-94 | Published online: 09 Jan 2014

References

  • Sack DA, Sack RB, Chaignat CL. Getting serious about cholera. N. Engl. J. Med.355(7), 649–651 (2006).
  • WHO. Cholera: global surveillance summary, 2008. Wkly Epidemiol. Rec.84(31), 309–324 (2009).
  • Longini IM, Yunus M, Zaman K, Siddique AK, Sack RB, Nizam A. Epidemic and endemic cholera trends over a 33-year period in Bangladesh. J. Infect. Dis.186(2), 246–251 (2002).
  • Klose KE. The suckling mouse model of cholera. Trends Microbiol.8(4), 189–191 (2000).
  • Ujiiye A, Nakatomi M, Utsunomiya A et al. Experimental cholera in mice. 1. First report on the oral infection. Trop. Med.10, 65–71 (1968).
  • Ujiiye A, Kobari K. Protective effect on infections with Vibrio cholerae in suckling mice caused by the passive immunization with milk of immune mothers. J. Infect. Dis.121, S50–S55 (1970).
  • WHO. Cholera vaccines. Wkly Epidemiol. Rec.76(16), 117–124 (2001).
  • Chaignat CL, Monti V, Soepardi J et al. Cholera in disasters: do vaccines prompt new hopes?. Expert Rev. Vaccines7(4), 431–435 (2008).
  • Ramamurthy T, Garg S, Sharma R et al. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet341(8846), 703–704 (1993).
  • Cholera Working Group ICDDR, Bangladesh. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Lancet342(8868), 387–390 (1993).
  • Waldor MK, Mekalanos JJ. Vibrio cholerae O139 specific gene sequences. Lancet343(8909), 1366 (1994).
  • Cash RA, Music SI, Libonati JP, Snyder MJ, Wenzel RP, Hornick RB. Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J. Infect. Dis.129(1), 45–52 (1974).
  • Levine MM, Black RE, Clements ML, Nalin DR, Cisneros L, Finkelstein RA. Volunteer Studies in Development of Vaccines Against Cholera and Enterotoxigenic Escherichia coli : A Review. Holme T, Holmgren J, Merson MH, Mollby R (Eds). Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands (1981).
  • Frenck RW, Clemens J. Helicobacter in the developing world. Microbes Infect.5(8), 705–713 (2003).
  • Nelson E, Harris J, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat. Rev. Microbiol.7(10), 693–702 (2009).
  • Weil AA, Khan A, Chowdhury F et al. Clinical outcomes in household contacts of patients with cholera in Bangladesh. Clin. Infect. Dis.49(10), 1473–1479 (2009).
  • Lee SH, Butler SM, Camilli A. Selection for in vivo regulators of bacterial virulence. Proc. Natl Acad. Sci. USA98(12), 6889–6894 (2001).
  • Rui H, Ritchie JM, Bronson RT, Mekalanos JJ, Zhang Y, Waldor MK. Reactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins. Proc. Natl Acad. Sci. USA107(9), 4359–4364 (2010).
  • Chowdhury MI, Sheikh A, Qadri F. Development of Peru-15 (CholeraGarde), a live-attenuated oral cholera vaccine: 1991–2009. Expert Rev. Vaccines8(12), 1643–1652 (2009).
  • Butler SM, Camilli A. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol.3(8), 611–620 (2005).
  • Chitnis DS, Sharma KD, Kamat RS. Role of somatic antigen of Vibrio cholerae in adhesion to intestinal mucosa. J. Med. Microbiol.15(1), 53–61 (1982).
  • Kirn T, Jude B, Taylor R. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature438(7069), 863–866 (2005).
  • Kirn TJ, Taylor RK. TcpF is a soluble colonization factor and protective antigen secreted by El Tor and classical O1 and O139 Vibrio cholerae serogroups. Infect. Immun.73(8), 4461–4470 (2005).
  • Sperandio V, Girón JA, Silveira WD, Kaper JB. The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect. Immun.63(11), 4433–4438 (1995).
  • Pierce NF, Kaper JB, Mekalanos JJ, Cray WC. Role of cholera toxin in enteric colonization by Vibrio cholerae O1 in rabbits. Infect. Immun.50(3), 813–816 (1985).
  • Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA84(9), 2833–2837 (1987).
  • Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med.168(4), 1487–1492 (1988).
  • Sánchez J, Holmgren J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell. Mol. Life Sci.65(9), 1347–1360 (2008).
  • Ryan ET, Dhar U, Khan WA et al. Mortality, morbidity, and microbiology of endemic cholera among hospitalized patients in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg.63(1–2), 12–20 (2000).
  • Nelson EJ, Chowdhury A, Harris J et al. Complexity of rice-water stool from patients with Vibrio cholerae plays a role in the transmission of infectious diarrhea. Proc. Natl Acad. Sci. USA104(48), 19091–19096 (2007).
  • Darrow DC, Pratt EL. Disturbances of water and electrolytes in infantile diarrhea. Pediatrics3(2), 129–156 (1949).
  • Pierce NF, Banwell JG, Rupak DM et al. Effect of intragastric glucose-electrolyte infusion upon water and electrolyte balance in Asiatic cholera. Gastroenterology55(3), 333–343 (1968).
  • Hirschhorn N, Kinzie JL, Sachar DB et al. Decrease in net stool output in cholera during intestinal perfusion with glucose-containing solutions. N. Engl. J. Med.279(4), 176–181 (1968).
  • Nalin DR, Cash RA, Islam R, Molla M, Phillips RA. Oral maintenance therapy for cholera in adults. Lancet2(7564), 370–373 (1968).
  • Mahalanabis D, Choudhuri AB, Bagchi NG, Bhattacharya AK, Simpson TW. Oral fluid therapy of cholera among Bangladesh refugees. Johns Hopkins Med. J.132(4), 197–205 (1973).
  • Lindenbaum J, Greenough WB, Islam MR. Antibiotic therapy of cholera. Bull. World Health Organ.36(6), 871–883 (1967).
  • Spira WM, Khan MU, Saeed YA, Sattar MA. Microbiological surveillance of intra-neighbourhood E1 Tor cholera transmission in rural Bangladesh. Bull. World Health Organ.58(5), 731–740 (1980).
  • Merrell DS, Butler SM, Qadri F et al. Host-induced epidemic spread of the cholera bacterium. Nature417(6889), 642–645 (2002).
  • Butler S, Nelson E, Chowdhury N, Faruque S, Calderwood S, Camilli A. Cholera stool bacteria repress chemotaxis to increase infectivity. Mol.Microbiol.60(2), 417–426 (2006).
  • Hartley DM, Morris JG, Smith DL. Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics?. PLoS Med.3(1), e7 (2006).
  • Cash RA, Music SI, Libonati JP, Craig JP, Pierce NF, Hornick RB. Response of man to infection with Vibrio cholerae. II. Protection from illness afforded by previous disease and vaccine. J. Infect. Dis.130(4), 325–333 (1974).
  • Levine MM, Nalin DR, Craig JP et al. Immunity of cholera in man: relative role of antibacterial versus antitoxic immunity. Trans. R. Soc. Trop. Med. Hyg.73(1), 3–9 (1979).
  • Levine MM, Black RE, Clements ML, Cisneros L, Nalin DR, Young CR. Duration of infection-derived immunity to cholera. J. Infect. Dis.143(6), 818–820 (1981).
  • Gangarosa EF, Beisel WR, Benyajati C, Sprinz H, Piyaratn P. The nature of the gastrointestinal lesion in asiatic cholera and its relation to pathogenesis: a biopsy study. Am. J. Trop. Med. Hyg.9, 125–135 (1960).
  • Qadri F, Bhuiyan TR, Dutta KK et al. Acute dehydrating disease caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut53(1), 62–69 (2004).
  • Flach C, Qadri F, Bhuiyan T et al. Broad up-regulation of innate defense factors during acute cholera. Infect. Immun.75(5), 2343–2350 (2007).
  • Mosley WH, Ahmad S, Benenson AS, Ahmed A. The relationship of vibriocidal antibody titre to susceptibility to cholera in family contacts of cholera patients. Bull. World Health Organ.38(5), 777–785 (1968).
  • Glass RI, Svennerholm AM, Khan MR, Huda S, Huq MI, Holmgren J. Seroepidemiological studies of El Tor cholera in Bangladesh: association of serum antibody levels with protection. J. Infect. Dis.151(2), 236–242 (1985).
  • Finkelstein RA. Vibriocidal antibody inhibition (VAI) analysis: a technique for the identification of the predominant vibriocidal antibodies in serum and for the detection and identification of Vibrio cholerae antigens. J. Immunol.89, 264–271 (1962).
  • Neoh SH, Rowley D. The antigens of Vibrio cholerae involved in the vibriocidal action of antibody and complement. J. Infect. Dis.121(5), 505–513 (1970).
  • Burrows W, Mather AN. Studies on immunity to Asiatic cholera; the O and H antigenic structure of the cholera and related vibrios. J. Infect. Dis.79(2), 168–197 (1946).
  • Villeneuve S, Souchon H, Riottot MM et al. Crystal structure of an anti-carbohydrate antibody directed against Vibrio cholerae O1 in complex with antigen: molecular basis for serotype specificity. Proc. Natl Acad. Sci. USA97(15), 8433–8438 (2000).
  • Villeneuve S, Boutonnier A, Mulard LA, Fournier JM. Immunochemical characterization of an Ogawa–Inaba common antigenic determinant of Vibrio cholerae O1. Microbiology145(9), 2477–2484 (1999).
  • McCormack WM, Chakraborty J, Rahman AS, Mosley WH. Vibriocidal antibody in clinical cholera. J. Infect. Dis.120(2), 192–201 (1969).
  • Mosley WH, Aziz KM, Rahman AS, Chowdhury AK, Ahmed A. Field trials of monovalent Ogawa and Inaba cholera vaccines in rural Bangladesh – three years of observation. Bull. World Health Organ.49(4), 381–387 (1973).
  • Bishop AL, Schild S, Patimalla B, Klein B, Camilli A. Mucosal immunization with Vibrio cholerae outer membrane vesicles provides maternal protection mediated by anti-lipopolysaccharide antibodies that inhibit bacterial motility. Infect. Immun.78(10), 4402–4420 (2010).
  • Koelle K, Pascual M, Yunus M. Serotype cycles in cholera dynamics. Proc. Biol. Sci.273(1603), 2879–2886 (2006).
  • Ahmed A, Bhattacharjee AK, Mosley WH. Characteristics of the serum vibriocidal and agglutinating antibodies in cholera cases and in normal residents of the endemic and non-endemic cholera areas. J. Immunol.105, 431–441 (1970).
  • Merritt CB, Sack RB. Sensitivity of agglutinating and vibriocidal antibodies to 2-mercaptoethanol in human cholera. J. Infect. Dis.121(Suppl. 121), S25–S30 (1970).
  • Ahrenstedt O, Knutson L, Nilsson B, Nilsson-Ekdahl K, Odlind B, Hällgren R. Enhanced local production of complement components in the small intestines of patients with Crohn’s disease. N. Engl. J. Med.322(19), 1345–1349 (1990).
  • Ogundele MO. Role and significance of the complement system in mucosal immunity: particular reference to the human breast milk complement. Immunol. Cell. Biol.79(1), 1–10 (2001).
  • McCleery JL, Kraft SC, Rothberg RM. Demonstration of antibody in rabbit feces after active or passive parenteral immunization. Digestion3(4), 213–221 (1970).
  • Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature337(6203), 184–187 (1989).
  • Yoshida M, Claypool SM, Wagner JS et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity20(6), 769–783 (2004).
  • Maaser C, Housley MP, Iimura M et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect. Immun.72(6), 3315–3324 (2004).
  • Yoshida M, Kobayashi K, Kuo TT et al. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J. Clin. Invest.116(8), 2142–2151 (2006).
  • Masuda A, Yoshida M, Shiomi H et al. Fcg receptor regulation of Citrobacter rodentium infection. Infect. Immun.76(4), 1728–1737 (2008).
  • Tomasi TB. Structure and function of mucosal antibodies. Annu. Rev. Med.21, 281–298 (1970).
  • Strugnell RA, Wijburg OLC. The role of secretory antibodies in infection immunity. Nat. Rev. Microbiol.8(9), 656 (2010).
  • Apter FM, Michetti P, Winner LS, Mack JA, Mekalanos JJ, Neutra MR. Analysis of the roles of antilipopolysaccharide and anti-cholera toxin immunoglobulin A (IgA) antibodies in protection against Vibrio cholerae and cholera toxin by use of monoclonal IgA antibodies in vivo. Infect. Immun.61(12), 5279–5285 (1993).
  • Harris JB, LaRocque RC, Chowdhury F et al. Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl. Trop. Dis.2(4), e221 (2008).
  • Harris AM, Bhuiyan MS, Chowdhury F et al. Antigen specific memory B-cell responses to Vibrio cholerae O1 infection in Bangladesh. Infect. Immun.77(9), 3850–3856 (2009).
  • Benenson AS, Joseph PR, Oseasohn RO. Cholera vaccine field trials in east Pakistan. 1. Reaction and antigenicity studies. Bull. World Health Organ.38(3), 347–357 (1968).
  • Svennerholm AM, Hanson LA, Holmgren J, Lindblad BS, Nilsson B, Quereshi F. Different secretory immunoglobulin A antibody responses to cholera vaccination in Swedish and Pakistani women. Infect. Immun.30(2), 427–430 (1980).
  • Elson CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J. Immunol.132(6), 2736–2741 (1984).
  • Black RE, Levine MM, Clements ML, Young CR, Svennerholm AM, Holmgren J. Protective efficacy in humans of killed whole-vibrio oral cholera vaccine with and without the B subunit of cholera toxin. Infect. Immun.55(5), 1116–1120 (1987).
  • Hanne LF, Finkelstein RA. Characterization and distribution of the hemagglutinins produced by Vibrio cholerae. Infect. Immun.36(1), 209–214 (1982).
  • Clemens J. Field trial of oral cholera vaccines in Bangladesh: results from three-year follow-up. Lancet335(8684), 270–273 (1990).
  • van Loon FP, Clemens JD, Chakraborty J et al. Field trial of inactivated oral cholera vaccines in Bangladesh: results from 5 years of follow-up. Vaccine14(2), 162–166 (1996).
  • Berstad AK, Holst J, Frøholm LO et al. A nasal whole-cell pertussis vaccine induces specific systemic and cross-reactive mucosal antibody responses in human volunteers. J. Med. Microbiol.49(2), 157–163 (2000).
  • Berstad AK, Oftung F, Korsvold GE et al. Induction of antigen-specific T cell responses in human volunteers after intranasal immunization with a whole-cell pertussis vaccine. Vaccine18(22), 2323–2330 (2000).
  • Jonson G, Holmgren J, Svennerholm AM. Epitope differences in toxin-coregulated pili produced by classical and El Tor Vibrio cholerae O1. Microb. Pathog.11(3), 179–188 (1991).
  • Albert MJ. Vibrio cholerae O139 Bengal. J. Clin. Microbiol.32(10), 2345–2349 (1994).
  • Glass RI, Becker S, Huq MI et al. Endemic cholera in rural Bangladesh, 1966–1980. Am. J. Epidemiol.116(6), 959–970 (1982).
  • Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J. Clin. Microbiol.40(9), 3296–3299 (2002).
  • Faruque SM, Chowdhury N, Kamruzzaman M et al. Reemergence of epidemic Vibrio cholerae O139, Bangladesh. Emerg. Infect. Dis.9(9), 1116–1122 (2003).
  • Owen RL, Pierce NF, Apple RT, Cray WC. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: a mechanism for antigen sampling and for microbial transepithelial migration. J. Infect. Dis.153(6), 1108–1118 (1986).
  • Pierce NF, Cray WC, Kaper JB, Mekalanos JJ. Determinants of immunogenicity and mechanisms of protection by virulent and mutant Vibrio cholerae O1 in rabbits. Infect. Immun.56(1), 142–148 (1988).
  • Nygren E, Holmgren J, Attridge SR. Murine antibody responses following systemic or mucosal immunization with viable or inactivated Vibrio cholerae. Vaccine26, 6784–6790 (2008).
  • Pierce NF, Kaper JB, Mekalanos JJ, Cray WC, Richardson K. Determinants of the immunogenicity of live virulent and mutant Vibrio cholerae O1 in rabbit intestine. Infect. Immun.55(2), 477–481 (1987).
  • Honda T, Finkelstein RA. Selection and characteristics of a Vibrio cholerae mutant lacking the A (ADP-ribosylating) portion of the cholera enterotoxin. Proc. Natl Acad. Sci. USA76(4), 2052–2056 (1979).
  • Levine MM, Black RE, Clements ML et al. Evaluation in humans of attenuated Vibrio cholerae El Tor Ogawa strain Texas Star-SR as a live oral vaccine. Infect. Immun.43(2), 515–522 (1984).
  • Levine MM, Kaper JB, Herrington D et al. Safety, immunogenicity, and efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet2(8609), 467–470 (1988).
  • Simanjuntak CH, O’Hanley P, Punjabi NH et al. Safety, immunogenicity, and transmissibility of single-dose live oral cholera vaccine strain CVD 103-HgR in 24- to 59-month-old Indonesian children. J. Infect. Dis.168(5), 1169–1176 (1993).
  • Cryz SJ, Levine MM, Kaper JB, Fürer E, Althaus B. Randomized double-blind placebo controlled trial to evaluate the safety and immunogenicity of the live oral cholera vaccine strain CVD 103-HgR in Swiss adults. Vaccine8(6), 577–580 (1990).
  • Tacket CO, Losonsky G, Nataro JP et al. Onset and duration of protective immunity in challenged volunteers after vaccination with live oral cholera vaccine CVD 103-HgR. J. Infect. Dis.166(4), 837–841 (1992).
  • Suharyono, Simanjuntak C, Witham N et al. Safety and immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR in 5–9-year-old Indonesian children. Lancet340(8821), 689–694 (1992).
  • Richie EE, Punjabi NH, Sidharta YY et al. Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine18(22), 2399–2410 (2000).
  • Calain P, Chaine J-P, Johnson E et al. Can oral cholera vaccination play a role in controlling a cholera outbreak?. Vaccine22(19), 2444–2451 (2004).
  • Michalski J, Galen JE, Fasano A, Kaper JB. CVD110, an attenuated Vibrio cholerae O1 El Tor live oral vaccine strain. Infect. Immun.61(10), 4462–4468 (1993).
  • Tacket CO, Losonsky G, Nataro JP et al. Safety and immunogenicity of live oral cholera vaccine candidate CVD 110, a Δ ctxA Δ zot Δ ace derivative of El Tor Ogawa Vibrio cholerae. J. Infect. Dis.168(6), 1536–1540 (1993).
  • Silva TM, Schleupner MA, Tacket CO et al. New evidence for an inflammatory component in diarrhea caused by selected new, live attenuated cholera vaccines and by El Tor and O139 Vibrio cholerae. Infect. Immun.64(6), 2362–2364 (1996).
  • Tacket CO, Kotloff KL, Losonsky G et al. Volunteer studies investigating the safety and efficacy of live oral El Tor Vibrio cholerae O1 vaccine strain CVD 111. Am. J. Trop. Med. Hyg.56(5), 533–537 (1997).
  • Fullner K. The contribution of accessory toxins of Vibrio cholerae O1 El Tor to the proinflammatory response in a murine pulmonary cholera model. J. Exp. Med.195(11), 1455–1462 (2002).
  • Lin W, Fullner KJ, Clayton R et al. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc. Natl Acad. Sci. USA96(3), 1071–1076 (1999).
  • Levine MM, Kaper JB, Herrington D et al. Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect. Immun.56(1), 161–167 (1988).
  • Ketley JM, Michalski J, Galen J, Levine MM, Kaper JB. Construction of genetically marked Vibrio cholerae O1 vaccine strains. FEMS Microbiol. Lett.111(1), 15–21 (1993).
  • Taylor DN, Tacket CO, Losonsky G et al. Evaluation of a bivalent (CVD 103-HgR/CVD 111) live oral cholera vaccine in adult volunteers from the United States and Peru. Infect. Immun.65(9), 3852–3856 (1997).
  • Tacket CO, Losonsky G, Nataro JP et al. Initial clinical studies of CVD 112 Vibrio cholerae O139 live oral vaccine: safety and efficacy against experimental challenge. J. Infect. Dis.172(3), 883–886 (1995).
  • Kenner JR, Coster TS, Taylor DN et al. Peru-15, an improved live attenuated oral vaccine candidate for Vibrio cholerae O1. J. Infect. Dis.172(4), 1126–1129 (1995).
  • Taylor DN, Killeen KP, Hack DC et al. Development of a live, oral, attenuated vaccine against El Tor cholera. J. Infect. Dis.170(6), 1518–1523 (1994).
  • Cohen MB, Giannella RA, Bean J et al. Randomized, controlled human challenge study of the safety, immunogenicity, and protective efficacy of a single dose of Peru-15, a live attenuated oral cholera vaccine. Infect. Immun.70(4), 1965–1970 (2002).
  • Qadri F, Chowdhury MI, Faruque SM et al. Randomized, controlled study of the safety and immunogenicity of Peru-15, a live attenuated oral vaccine candidate for cholera, in adult volunteers in Bangladesh. J. Infect. Dis.192(4), 573–579 (2005).
  • Qadri F, Chowdhury MI, Faruque SM et al. Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. Vaccine25(2), 231–238 (2007).
  • Coster TS, Killeen KP, Waldor MK et al. Safety, immunogenicity, and efficacy of live attenuated Vibrio cholerae O139 vaccine prototype. Lancet345(8955), 949–952 (1995).
  • Albert MJ, Alam K, Rahman AS, Huda S, Sack RB. Lack of cross-protection against diarrhea due to Vibrio cholerae O1 after oral immunization of rabbits with V. cholerae O139 Bengal. J. Infect. Dis.169(3), 709–710 (1994).
  • Albert MJ, Alam K, Ansaruzzaman M, Qadri F, Sack RB. Lack of cross-protection against diarrhea due to Vibrio cholerae O139 (Bengal strain) after oral immunization of rabbits with V. cholerae O1 vaccine strain CVD103-HgR. J. Infect. Dis.169(1), 230–231 (1994).
  • Svennerholm AM, Holmgren J. Synergistic protective effect in rabbits of immunization with Vibrio cholerae lipopolysaccharide and toxin/toxoid. Infect. Immun.13(3), 735–740 (1976).
  • Peterson JW. Synergistic protection against experimental cholera by immunization with cholera toxoid and vaccine. Infect. Immun.26(2), 528–533 (1979).
  • Pierce NF, Kaniecki EA, Northrup RS. Protection against experimental cholera by antitoxin. J. Infect. Dis.126(6), 606–616 (1972).
  • Chatterjee SN, Das J. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol.49(1), 1–11 (1967).
  • Eubanks ER, Guentzel MN, Berry LJ. Evaluation of surface components of Vibrio cholerae as protective immunogens. Infect. Immun.15(2), 533–538 (1977).
  • Tan LK, Carlone GM, Borrow R. Advances in the development of vaccines against Neisseria meningitidis. N. Engl. J. Med.362(16), 1511–1520 (2010).
  • Schild S, Nelson EJ, Camilli A. Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect. Immun.76(10), 4554–4563 (2008).
  • Schild S, Nelson EJ, Bishop AL, Camilli A. Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. Infect. Immun.77(1), 472–484 (2009).
  • Acevedo R, Callicó A, Campo JD et al. Intranasal administration of proteoliposome-derived cochleates from Vibrio cholerae O1 induce mucosal and systemic immune responses in mice. Methods49(4), 309–315 (2009).
  • Mann JF, Acevedo R, Campo JD, Perez O, Ferro VA. Delivery systems: a vaccine strategy for overcoming mucosal tolerance?. Expert Rev. Vaccines8(1), 103–112 (2009).
  • Chaicumpa W, Parairo JR, New RC et al. Immunogenicity of liposome-associated oral cholera vaccine prepared from combined Vibrio cholerae antigens. Asian Pac. J. Allergy Immunol.8(2), 87–94 (1990).
  • Kalambaheti T, Chaisri U, Srimanote P, Pongponratn E, Chaicumpa W. Immunogenicity and protective role of three formulations of oral cholera vaccine. Vaccine16(2–3), 201–207 (1998).
  • Chandrasekhar U, Sinha S, Bhagat HR, Sinha VB, Srivastava BS. Comparative efficacy of biodegradable liposomes and microspheres as carriers for delivery of Vibrio cholerae antigens in the intestine. Vaccine12(15), 1384–1388 (1994).
  • Eko FO, Schukovskaya T, Lotzmanova EY et al. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine21(25–26), 3663–3674 (2003).
  • Jalava K, Eko FO, Riedmann E, Lubitz W. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev. Vaccines2(1), 45–51 (2003).
  • Kadurugamuwa JL, Beveridge TJ. Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob. Agents Chemother.42(6), 1476–1483 (1998).
  • Fiocca R, Necchi V, Sommi P et al. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J. Pathol.188(2), 220–226 (1999).
  • Bauman SJ, Kuehn MJ. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol.9, 26 (2009).
  • Ali M, Emch M, Von Seidlein L et al. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet366(9479), 44–49 (2005).
  • Longini IM, Nizam A, Ali M, Yunus M, Shenvi N, Clemens JD. Controlling endemic cholera with oral vaccines. PLoS Med.4(11), e336 (2007).
  • Lopez AL, Clemens JD, Deen J, Jodar L. Cholera vaccines for the developing world. Hum. Vaccin.4(2), 165–169 (2008).
  • Cumberland S. An old enemy returns. Bull. World Health Organ.87(2), 85–86 (2009).
  • Thiem VD, Deen JL, Von Seidlein L et al. Long-term effectiveness against cholera of oral killed whole-cell vaccine produced in Vietnam. Vaccine24(20), 4297–4303 (2006).
  • Trach DD, Clemens JD, Ke NT et al. Field trial of a locally produced, killed, oral cholera vaccine in Vietnam. Lancet349(9047), 231–235 (1997).
  • Trach DD, Cam PD, Ke NT et al. Investigations into the safety and immunogenicity of a killed oral cholera vaccine developed in Vietnam. Bull. World Health Organ.80(1), 2–8 (2002).
  • Anh DD, Canh doG, Lopez A et al. Safety and immunogenicity of a reformulated Vietnamese bivalent killed, whole-cell, oral cholera vaccine in adults. Vaccine25(6), 1149–1155 (2007).
  • WHO. Guidelines for the Production and Control of Inactivated Oral Cholera Vaccines. WHO Expert Committee on Biological Standardization: Fifty-second report. Annex 3. WHO, Geneva, Switzerland, 129–149 (2004).
  • Mahalanabis D, Lopez AL, Sur D et al. A randomized, placebo-controlled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India. PLoS ONE3(6), e2323 (2008).
  • Kanungo S, Paisley A, Lopez AL et al. Immune responses following one and two doses of the reformulated, bivalent, killed, whole-cell, oral cholera vaccine among adults and children in Kolkata, India: a randomized, placebo-controlled trial. Vaccine27(49), 6887–6893 (2009).
  • Sur D, Lopez AL, Kanungo S et al. Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. Lancet374(9702), 1694–1702 (2009).
  • Deb BC, Sircar BK, Sengupta PG et al. Studies on interventions to prevent eltor cholera transmission in urban slums. Bull. World Health Organ.64(1), 127–131 (1986).
  • Colwell RR, Huq A, Islam MS et al. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl Acad. Sci. USA100(3), 1051–1055 (2003).
  • Chen D, Kristensen D. Opportunities and challenges of developing thermostable vaccines. Expert Rev. Vaccines8(5), 547–557 (2009).
  • Lucas MES, Deen JL, Von Seidlein L et al. Effectiveness of mass oral cholera vaccination in Beira, Mozambique. N. Engl. J. Med.352(8), 757–767 (2005).
  • Perry RT, Plowe CV, Koumaré B et al. A single dose of live oral cholera vaccine CVD 103-HgR is safe and immunogenic in HIV-infected and HIV-noninfected adults in Mali. Bull World Health Organ.76(1), 63–71 (1998).
  • Chen DJ, Osterrieder N, Metzger SM et al. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc. Natl Acad. Sci. USA107(7), 3099–3104 (2010).
  • Eko F, Lubitz W, McMillan L et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine21(15), 1694–1703 (2003).
  • Ryan E, Calderwood SB, Qadri F. Live attenuated oral cholera vaccines. Expert Rev. Vaccines5(4), 483–494 (2006).
  • Jelinek T, Kollaritsch H. Vaccination with Dukoral against travelers’ diarrhea (ETEC) and cholera. Expert Rev. Vaccines7(5), 561–567 (2008).
  • Deen JL, Von Seidlein L, Sur D et al. The high burden of cholera in children: comparison of incidence from endemic areas in Asia and Africa. PLoS Negl. Trop. Dis.2(2), e173 (2008).
  • Humphrey JH. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet374(9694), 1032–1035 (2009).
  • Albert MJ, Qadri F, Wahed MA et al. Supplementation with zinc, but not vitamin A, improves seroconversion to vibriocidal antibody in children given an oral cholera vaccine. J. Infect. Dis.187(6), 909–913 (2003).
  • Ahmed T, Svennerholm AM, Al Tarique A, Sultana GN, Qadri F. Enhanced immunogenicity of an oral inactivated cholera vaccine in infants in Bangladesh obtained by zinc supplementation and by temporary withholding breast-feeding. Vaccine27(9), 1433–1439 (2009).
  • Gunn RA, Kimball AM, Pollard RA et al. Bottle feeding as a risk factor for cholera in infants. Lancet2(8145), 730–732 (1979).
  • Clemens JD, Sack DA, Harris JR et al. Breast feeding and the risk of severe cholera in rural Bangladeshi children. Am. J. Epidemol.131(3), 400–411 (1990).
  • Newburg D, Ruiz-Palacios G, Morrow A. Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr.25, 37–58 (2005).
  • Holmgren J, Svennerholm AM, Lindblad M. Receptor-like glycocompounds in human milk that inhibit classical and El Tor Vibrio cholerae cell adherence (hemagglutination). Infect. Immun.39(1), 147–154 (1983).
  • Clemens JD, Sack DA, Chakraborty J et al. Field trial of oral cholera vaccines in Bangladesh: evaluation of anti-bacterial and anti-toxic breast-milk immunity in response to ingestion of the vaccines. Vaccine8(5), 469–472 (1990).
  • Jertborn M, Svennerholm AM, Holmgren J. Saliva, breast milk, and serum antibody responses as indirect measures of intestinal immunity after oral cholera vaccination or natural disease. J. Clin. Microbiol.24(2), 203–209 (1986).
  • Saroso JS, Bahrawi W, Witjaksono H et al. A controlled field trial of plain and aluminium hydroxide-adsorbed cholera vaccines in Surabaya, Indonesia, during 1973–75. Bull. World Health Organ.56(4), 619–627 (1978).
  • Gupta RK, Szu SC, Finkelstein RA, Robbins JB. Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect. Immun.60(8), 3201–3208 (1992).
  • Kossaczka Z, Shiloach J, Johnson V et al.Vibrio cholerae O139 conjugate vaccines: synthesis and immunogenicity of V. cholerae O139 capsular polysaccharide conjugates with recombinant diphtheria toxin mutant in mice. Infect. Immun.68(9), 5037–5043 (2000).
  • Boutonnier A, Villeneuve S, Nato F, Dassy B, Fournier JM. Preparation, immunogenicity, and protective efficacy, in a murine model, of a conjugate vaccine composed of the polysaccharide moiety of the lipopolysaccharide of Vibrio cholerae O139 bound to tetanus toxoid. Infect. Immun.69(5), 3488–3493 (2001).
  • Chernyak A, Kondo S, Wade TK et al. Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. J. Infect. Dis.185(7), 950–962 (2002).
  • Czerkinsky C, Holmgren J. Topical immunization strategies. Mucosal Immunol.3, 545–555 (2010).
  • Rollenhagen JE, Kalsy A, Saksena R et al. Transcutaneous immunization with a synthetic hexasaccharide-protein conjugate induces anti-Vibrio cholerae lipopolysaccharide responses in mice. Vaccine27(36), 4917–4922 (2009).
  • Katial RK, Brandt BL, Moran EE, Marks S, Agnello V, Zollinger WD. Immunogenicity and safety testing of a group B intranasal meningococcal native outer membrane vesicle vaccine. Infect. Immun.70(2), 702–707 (2002).
  • Haneberg B, Holst J. Can nonliving nasal vaccines be made to work?. Expert Rev. Vaccines1(2), 227–232 (2002).
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol.165(9), 4778–4782 (2000).
  • Mutsch M, Zhou W, Rhodes P et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med.350(9), 896–903 (2004).
  • Rudin A, Johansson EL, Bergquist C, Holmgren J. Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect. Immun.66(7), 3390–3396 (1998).
  • Sengupta DK, Sengupta TK, Ghose AC. Antibodies to outer membrane proteins of Vibrio cholerae induce protection by inhibition of intestinal colonization of vibrios. FEMS Microbiol. Immunol.4(5), 261–266 (1992).
  • Weil AA, Arifuzzaman M, Bhuiyan TR et al. Memory T cell responses to Vibrio cholerae O1 infection. Infect. Immun.5090–5096 (2009).
  • Hang L, John M, Asaduzzaman M et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl Acad. Sci. USA100(14), 8508–8513 (2003).
  • Larocque R, Krastins B, Harris J et al. Proteomic analysis of Vibrio cholerae in human stool. Infect. Immun.76(9), 4145–4151 (2008).
  • Sun DX, Mekalanos JJ, Taylor RK. Antibodies directed against the toxin-coregulated pilus isolated from Vibrio cholerae provide protection in the infant mouse experimental cholera model. J. Infect. Dis.161(6), 1231–1236 (1990).
  • Sun DX, Seyer JM, Kovari I, Sumrada RA, Taylor RK. Localization of protective epitopes within the pilin subunit of the Vibrio cholerae toxin-coregulated pilus. Infect. Immun.59(1), 114–118 (1991).
  • Asaduzzaman M, Ryan E, John M et al. The major subunit of the toxin-coregulated pilus TcpA induces mucosal and systemic immunoglobulin A immune responses in patients with cholera caused by Vibrio cholerae O1 and O139. Infect. Immun.72(8), 4448–4454 (2004).
  • Wu JY, Wade WF, Taylor RK. Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice. Infect. Immun.69(12), 7695–7702 (2001).
  • Meeks MD, Wade TK, Taylor RK, Wade WF. Immune response genes modulate serologic responses to Vibrio cholerae TcpA pilin peptides. Infect. Immun.69(12), 7687–7694 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.