612
Views
34
CrossRef citations to date
0
Altmetric
Review

Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends

, , , &
Pages 645-664 | Published online: 09 Jan 2014

References

  • Handbook of Surface Plasmon Resonance. Schasfoort RBM, Tudos AJ (Eds). The Royal Society of Chemistry, London, UK (2008).
  • World Health Organization. AIDS epidemic update: Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization (WHO). WHO, Geneva, Switzerland (2009).
  • Rich RL, Myszka DG. Spying on HIV with SPR. Trends Microbiol.11(3), 124–133 (2003).
  • Sharma VA, Kan E, Sun Y et al. Structural characteristics correlate with immune responses induced by HIV envelope glycoprotein vaccines. Virology352(1), 131–144 (2006).
  • Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol.4(3), 199–210 (2004).
  • McBurney SP, Ross TM. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev. Vaccines7(9), 1405–1417 (2008).
  • Kwong PD, Doyle ML, Casper DJ et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature420(6916), 678–682 (2002).
  • Haynes BF, Montefiori DC. Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev. Vaccines5(4), 579–595 (2006).
  • Overbaugh J, Rudensey LM. Alterations in potential sites for glycosylation predominate during evolution of the simian immunodeficiency virus envelope gene in macaques. J. Virol.66(10), 5937–5948 (1992).
  • Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science280(5371), 1884–1888 (1998).
  • Shan M, Klasse PJ, Banerjee K et al. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog.3(11), e169 (2007).
  • Frey G, Peng H, Rits-Volloch S, Morelli M, Cheng Y, Chen B. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc. Natl Acad. Sci. USA105(10), 3739–3744 (2008).
  • Gorny MK, Conley AJ, Karwowska S et al. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. J. Virol.66(12), 7538–7542 (1992).
  • Conley AJ, Gorny MK, Kessler JA 2nd et al. Neutralization of primary human immunodeficiency virus type 1 isolates by the broadly reactive anti-V3 monoclonal antibody, 447-52D. J. Virol.68(11), 6994–7000 (1994).
  • Gorny MK, Williams C, Volsky B et al. Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. J. Virol.76(18), 9035–9045 (2002).
  • Suphaphiphat P, Thitithanyanont A, Paca-Uccaralertkun S, Essex M, Lee TH. Effect of amino acid substitution of the V3 and bridging sheet residues in human immunodeficiency virus type 1 subtype C gp120 on CCR5 utilization. J. Virol.77(6), 3832–3837 (2003).
  • Haynes BF, Ma B, Montefiori DC et al. Analysis of HIV-1 subtype B third variable region peptide motifs for induction of neutralizing antibodies against HIV-1 primary isolates. Virology345(1), 44–55 (2006).
  • Mor A, Segal E, Mester B et al. Mimicking the structure of the V3 epitope bound to HIV-1 neutralizing antibodies. Biochemistry48(15), 3288–3303 (2009).
  • Mester B, Manor R, Mor A et al. HIV-1 peptide vaccine candidates: selecting constrained V3 peptides with highest affinity to antibody 447-52D. Biochemistry48(33), 7867–7877 (2009).
  • Thali M, Moore JP, Furman C et al. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J. Virol.67(7), 3978–3988 (1993).
  • Barbas CF 3rd, Bjorling E, Chiodi F et al. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. Proc. Natl Acad. Sci. USA89(19), 9339–9343 (1992).
  • Moulard M, Phogat SK, Shu Y et al. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120–CD4–CCR5 complexes. Proc. Natl Acad. Sci. USA99(10), 6913–6918 (2002).
  • Coutsinos Z, Absi Z, Henin Y, Guillet JG, Launay O. [Designing an effective AIDS vaccine: strategies and current status]. Rev. Med. Intern.29(8), 632–641 (2008).
  • Girard MP. HIV/AIDS vaccines: heading for new vaccine approaches? Bull. Soc. Pathol. Exot.101(3), 220–226 (2008).
  • Girard MP, Osmanov SK, Kieny MP. A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine24(19), 4062–4081 (2006).
  • Burton DR, Desrosiers RC, Doms RW et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol.5(3), 233–236 (2004).
  • Rits-Volloch S, Frey G, Harrison SC, Chen B. Restraining the conformation of HIV-1 gp120 by removing a flexible loop. EMBO J.25(20), 5026–5035 (2006).
  • Zhang W, Godillot AP, Wyatt R, Sodroski J, Chaiken I. Antibody 17b binding at the coreceptor site weakens the kinetics of the interaction of envelope glycoprotein gp120 with CD4. Biochemistry40(6), 1662–1670 (2001).
  • Zhou T, Xu L, Dey B et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature445(7129), 732–737 (2007).
  • Zwick MB, Parren PW, Saphire EO et al. Molecular features of the broadly neutralizing immunoglobulin G1 b12 required for recognition of human immunodeficiency virus type 1 gp120. J. Virol.77(10), 5863–5876 (2003).
  • Yang X, Tomov V, Kurteva S et al. Characterization of the outer domain of the gp120 glycoprotein from human immunodeficiency virus type 1. J. Virol.78(23), 12975–12986 (2004).
  • Arthos J, Cicala C, Steenbeke TD et al. Biochemical and biological characterization of a dodecameric CD4–Ig fusion protein: implications for therapeutic and vaccine strategies. J. Biol. Chem.277(13), 11456–11464 (2002).
  • Dey B, Svehla K, Xu L et al. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site. PLoS Pathog.5(5), e1000445 (2009).
  • Zwick MB, Labrijn AF, Wang M et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol.75(22), 10892–10905 (2001).
  • Montero M, van Houten NE, Wang X, Scott JK. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. Mol. Biol. Rev.72(1), 54–84 (2008).
  • Bryson S, Julien JP, Hynes RC, Pai EF. Crystallographic definition of the epitope promiscuity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5: vaccine design implications. J. Virol.83(22), 11862–11875 (2009).
  • Menendez A, Chow KC, Pan OC, Scott JK. Human immunodeficiency virus type 1-neutralizing monoclonal antibody 2F5 is multispecific for sequences flanking the DKW core epitope. J. Mol. Biol.338(2), 311–327 (2004).
  • Parker CE, Deterding LJ, Hager-Braun C et al. Fine definition of the epitope on the gp41 glycoprotein of human immunodeficiency virus type 1 for the neutralizing monoclonal antibody 2F5. J. Virol.75(22), 10906–10911 (2001).
  • McGaughey GB, Citron M, Danzeisen RC et al. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 mAb. Biochemistry42(11), 3214–3223 (2003).
  • Joyce JG, Hurni WM, Bogusky MJ et al. Enhancement of α-helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. J. Biol. Chem.277(48), 45811–45820 (2002).
  • Coeffier E, Clement JM, Cussac V et al. Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive sites of the MalE protein. Vaccine19(7–8), 684–693 (2000).
  • Liao M, Lu Y, Xiao Y, Dierich MP, Chen Y. Induction of high level of specific antibody response to the neutralizing epitope ELDKWA on HIV-1 gp41 by peptide-vaccine. Peptides21(4), 463–468 (2000).
  • Xiao Y, Zhao Y, Lu Y, Chen YH. Epitope-vaccine induces high levels of ELDKWA-epitope-specific neutralizing antibody. Immunol. Invest.29(1), 41–50 (2000).
  • Eckhart L, Raffelsberger W, Ferko B et al. Immunogenic presentation of a conserved gp41 epitope of human immunodeficiency virus type 1 on recombinant surface antigen of hepatitis B virus. J. Gen. Virol.77(9), 2001–2008 (1996).
  • Muster T, Guinea R, Trkola A et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J. Virol.68(6), 4031–4034 (1994).
  • Veiga AS, Pattenden LK, Fletcher JM, Castanho MA, Aguilar MI. Interactions of HIV-1 antibodies 2F5 and 4E10 with a gp41 epitope prebound to host and viral membrane model systems. Chembiochem.10(6), 1032–1044 (2009).
  • Ofek G, Tang M, Sambor A et al. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol.78(19), 10724–10737 (2004).
  • Grundner C, Mirzabekov T, Sodroski J, Wyatt R. Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins. J. Virol.76(7), 3511–3521 (2002).
  • Maynard JA, Lindquist NC, Sutherland JN et al. Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol. J.4(11), 1542–1558 (2009).
  • Anderluh G, Besenicar M, Kladnik A, Lakey JH, Macek P. Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin. Anal. Biochem.344(1), 43–52 (2005).
  • Kim M, Qiao Z, Yu J, Montefiori D, Reinherz EL. Immunogenicity of recombinant human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a pre-fusion state. Vaccine25(27), 5102–5114 (2007).
  • Alam SM, Morelli M, Dennison SM et al. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc. Natl Acad. Sci. USA106(48), 20234–20239 (2009).
  • Alam SM, McAdams M, Boren D et al. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immunol.178(7), 4424–4435 (2007).
  • Sanchez-Martinez S, Lorizate M, Katinger H, Kunert R, Nieva JL. Membrane association and epitope recognition by HIV-1 neutralizing anti-gp41 2F5 and 4E10 antibodies. AIDS Res. Hum. Retroviruses22(10), 998–1006 (2006).
  • Haynes BF, Fleming J, St Clair EW et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science308(5730), 1906–1908 (2005).
  • Dennison SM, Stewart SM, Stempel KC, Liao HX, Haynes BF, Alam SM. Stable docking of neutralizing human immunodeficiency virus type 1 gp41 membrane-proximal external region monoclonal antibodies 2F5 and 4E10 is dependent on the membrane immersion depth of their epitope regions. J. Virol.83(19), 10211–10223 (2009).
  • Sun ZY, Oh KJ, Kim M et al. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity28(1), 52–63 (2008).
  • Haynes BF, Alam SM. HIV-1 hides an Achilles’ heel in virion lipids. Immunity28(1), 10–12 (2008).
  • Song L, Sun ZY, Coleman KE et al. Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. Proc. Natl Acad. Sci. USA106(22), 9057–9062 (2009).
  • Munoz-Barroso I, Durell S, Sakaguchi K, Appella E, Blumenthal R. Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J. Cell. Biol.140(2), 315–323 (1998).
  • Dimitrov AS, Louis JM, Bewley CA, Clore GM, Blumenthal R. Conformational changes in HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion and inactivation. Biochemistry44(37), 12471–12479 (2005).
  • Steger HK, Root MJ. Kinetic dependence to HIV-1 entry inhibition. J. Biol. Chem.281(35), 25813–25821 (2006).
  • Ofek G, McKee K, Yang Y et al. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J. Virol.84(6), 2955–2962 (2010).
  • Scherer EM, Leaman DP, Zwick MB, McMichael AJ, Burton DR. Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc. Natl Acad. Sci. USA107(4), 1529–1534 (2010).
  • Wyatt R, Kwong PD, Desjardins E et al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature393(6686), 705–711 (1998).
  • Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem.265(18), 10373–10382 (1990).
  • Scanlan CN, Pantophlet R, Wormald MR et al. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of a1→2 mannose residues on the outer face of gp120. J. Virol.76(14), 7306–7321 (2002).
  • Trkola A, Purtscher M, Muster T et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol.70(2), 1100–1108 (1996).
  • Burton DR, Stanfield RL, Wilson IA. Antibody vs. HIV in a clash of evolutionary titans. Proc. Natl Acad. Sci. USA102(42), 14943–14948 (2005).
  • Calarese DA, Scanlan CN, Zwick MB et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science300(5628), 2065–2071 (2003).
  • Kwong PD, Wilson IA. HIV-1 and influenza antibodies: seeing antigens in new ways. Nat. Immunol.10(6), 573–578 (2009).
  • Menendez A, Calarese DA, Stanfield RL et al. A peptide inhibitor of HIV-1 neutralizing antibody 2G12 is not a structural mimic of the natural carbohydrate epitope on gp120. FASEB J.22(5), 1380–1392 (2008).
  • Wang LX, Ni J, Singh S, Li H. Binding of high-mannose-type oligosaccharides and synthetic oligomannose clusters to human antibody 2G12: implications for HIV-1 vaccine design. Chem. Biol.11(1), 127–134 (2004).
  • Brewer CF, Bhattacharyya L. Specificity of concanavalin A binding to asparagine-linked glycopeptides. A nuclear magnetic relaxation dispersion study. J. Biol. Chem.261(16), 7306–7310 (1986).
  • Dacheux L, Moreau A, Ataman-Onal Y, Biron F, Verrier B, Barin F. Evolutionary dynamics of the glycan shield of the human immunodeficiency virus envelope during natural infection and implications for exposure of the 2G12 epitope. J. Virol.78(22), 12625–12637 (2004).
  • Pashov A, MacLeod S, Saha R, Perry M, VanCott TC, Kieber-Emmons T. Concanavalin A binding to HIV envelope protein is less sensitive to mutations in glycosylation sites than monoclonal antibody 2G12. Glycobiology15(10), 994–1001 (2005).
  • Pashov A, Canziani G, Monzavi-Karbassi B et al. Antigenic properties of peptide mimotopes of HIV-1-associated carbohydrate antigens. J. Biol. Chem.280(32), 28959–28965 (2005).
  • Pashov A, Canziani G, Macleod S, Plaxco J, Monzavi-Karbassi B, Kieber-Emmons T. Targeting carbohydrate antigens in HIV vaccine development. Vaccine23(17–18), 2168–2175 (2005).
  • Pashov AD, Plaxco J, Kaveri SV, Monzavi-Karbassi B, Harn D, Kieber-Emmons T. Multiple antigenic mimotopes of HIV carbohydrate antigens: relating structure and antigenicity. J. Biol. Chem.281(40), 29675–29683 (2006).
  • Dudkin VY, Orlova M, Geng X, Mandal M, Olson WC, Danishefsky SJ. Toward fully synthetic carbohydrate-based HIV antigen design: on the critical role of bivalency. J. Am. Chem. Soc.126(31), 9560–9562 (2004).
  • Krauss IJ, Joyce JG, Finnefrock AC et al. Fully synthetic carbohydrate HIV antigens designed on the logic of the 2G12 antibody. J. Am. Chem. Soc.129(36), 11042–11044 (2007).
  • Remarque EJ, Faber BW, Kocken CH, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol.24(2), 74–84 (2008).
  • Richie TL, Parekh FK, Alan DTB, Lawrence RS. Malaria. In: Vaccines for Biodefense and Emerging and Neglected Diseases. Academic Press, London, UK, 1309–1364 (2009).
  • Richards JS, Beeson JG. The future for blood-stage vaccines against malaria. Immunol. Cell. Biol.87(5), 377–390 (2009).
  • Good MF. Vaccine-induced immunity to malaria parasites and the need for novel strategies. Trends Parasitol.21(1), 29–34 (2005).
  • Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine25(9), 1567–1580 (2007).
  • Plassmeyer ML, Reiter K, Shimp RL Jr et al. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J. Biol. Chem.284(39), 26951–26963 (2009).
  • Uthaipibull C, Aufiero B, Syed SE et al. Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. J. Mol. Biol.307(5), 1381–1394 (2001).
  • Harris KS, Casey JL, Coley AM et al. Rapid optimization of a peptide inhibitor of malaria parasite invasion by comprehensive N-methyl scanning. J. Biol. Chem.284(14), 9361–9371 (2009).
  • Igonet S, Vulliez-Le Normand B, Faure G et al. Cross-reactivity studies of an anti-Plasmodium vivax apical membrane antigen 1 monoclonal antibody: binding and structural characterisation. J. Mol. Biol.366(5), 1523–1537 (2007).
  • Henderson KA, Streltsov VA, Coley AM et al. Structure of an IgNAR–AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure15(11), 1452–1466 (2007).
  • Kim SH, Hwang SY, Lee YS, Choi IH, Park SG, Kho WG. Single-chain antibody fragment specific for Plasmodium vivax Duffy binding protein. Clin. Vaccine Immunol.14(6), 726–731 (2007).
  • Bright RA, Carter DM, Crevar CJ et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One3(1), e1501 (2008).
  • Ulmer JB, Valley U, Rappuoli R. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol.24(11), 1377–1383 (2006).
  • Nilsson CE, Abbas S, Bennemo M, Larsson A, Hamalainen MD, Frostell-Karlsson A. A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine28(3), 759–766 (2010).
  • Mahmood K, Bright RA, Mytle N et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine26(42), 5393–5399 (2008).
  • Ng AK, Zhang H, Tan K et al. Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. FASEB J.22(10), 3638–3647 (2008).
  • Wang R, Song A, Levin J et al. Therapeutic potential of a fully human monoclonal antibody against influenza A virus M2 protein. Antiviral Res.80(2), 168–177 (2008).
  • Sui J, Hwang WC, Perez S et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol.16(3), 265–273 (2009).
  • Throsby M, van den Brink E, Jongeneelen M et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One3(12), e3942 (2008).
  • Deroo S, Fischer A, Beaupain N et al. Non-immunized natural human heavy chain CDR3 repertoires allow the isolation of high affinity peptides mimicking a human influenza hemagglutinin epitope. Mol. Immunol.45(5), 1366–1373 (2008).
  • Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods77(2), 305–319 (1985).
  • Tripet B, Kao DJ, Jeffers SA, Holmes KV, Hodges RS. Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus. J. Struct. Biol.155(2), 176–194 (2006).
  • ter Meulen J, van den Brink EN, Poon LL et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med.3(7), e237 (2006).
  • Prabakaran P, Gan J, Feng Y et al. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem.281(23), 15829–15836 (2006).
  • Lee JW, Kim K, Jung SH et al. Identification of a domain containing B-cell epitopes in hepatitis C virus E2 glycoprotein by using mouse monoclonal antibodies. J. Virol.73(1), 11–18 (1999).
  • Tzitzilonis C, Prince SM, Collins RF et al. Structural variation and immune recognition of the P1.2 subtype meningococcal antigen. Proteins62(4), 947–955 (2006).
  • Park IH, Youn JH, Choi IH, Nahm MH, Kim SJ, Shin JS. Anti-idiotypic antibody as a potential candidate vaccine for Neisseria meningitidis serogroup B. Infect Immun.73(10), 6399–6406 (2005).
  • Cho WC. A future of cancer prevention and cures: highlights of the Centennial Meeting of the American Association for Cancer Research. Ann. Oncol.19(2), 205–211 (2008).
  • Barr E, Sings HL. Prophylactic HPV vaccines: new interventions for cancer control. Vaccine26(49), 6244–6257 (2008).
  • Deschuyteneer M, Elouahabi A, Plainchamp D et al. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum. Vaccines6(5) (2010).
  • Heimburg-Molinaro J, Almogren A, Morey S et al. Development, characterization, and immunotherapeutic use of peptide mimics of the Thomsen-Friedenreich carbohydrate antigen. Neoplasia11(8), 780–792 (2009).
  • Coelho M, Gauthier P, Pugniere M, Roquet F, Pelegrin A, Navarro-Teulon I. Isolation and characterisation of a human anti-idiotypic scFv used as a surrogate tumour antigen to elicit an anti-HER-2/neu humoral response in mice. Br. J. Cancer90(10), 2032–2041 (2004).
  • Alvarez-Rueda N, Ladjemi MZ, Behar G et al. A llama single domain anti-idiotypic antibody mimicking HER2 as a vaccine: Immunogenicity and efficacy. Vaccine27(35), 4826–4833 (2009).
  • Cachia PJ, Kao DJ, Hodges RS. Synthetic peptide vaccine development: measurement of polyclonal antibody affinity and cross-reactivity using a new peptide capture and release system for surface plasmon resonance spectroscopy. J. Mol. Recognit.17(6), 540–557 (2004).
  • Khurana S, Chearwae W, Castellino F et al. Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian h5n1 influenza virus. Sci. Transl. Med.2(15), 15ra15 (2010).
  • Khurana S, Suguitan AL Jr, Rivera Y et al. Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Med.6(4), e1000049 (2009).
  • Mire-Sluis AR, Barrett YC, Devanarayan V et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunol. Methods289(1–2), 1–16 (2004).
  • Nechansky A. HAHA – nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. J. Pharm. Biomed. Anal.51(1), 252–254 (2010).
  • Torres M, Fernandez-Fuentes N, Fiser A, Casadevall A. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS One2(12), e1310 (2007).
  • Lofgren JA, Dhandapani S, Pennucci JJ et al. Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab. J. Immunol.178(11), 7467–7472 (2007).
  • Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J. Mol. Recognit.20(5), 300–366 (2007).
  • Rich RL, Myszka DG. Survey of the year 2005 commercial optical biosensor literature. J. Mol. Recognit.19(6), 478–534 (2006).
  • Rich RL, Myszka DG. Survey of the year 2003 commercial optical biosensor literature. J. Mol. Recognit.18(1), 1–39 (2005).
  • Rich RL, Myszka DG. Survey of the year 2004 commercial optical biosensor literature. J. Mol. Recognit.18(6), 431–478 (2005).
  • Rich RL, Myszka DG. Grading the commercial optical biosensor literature – class of 2008: ‘the mighty binders’. J. Mol. Recognit.23(1), 1–64 (2009).
  • Metz B, Jiskoot W, Hennink WE, Crommelin DJ, Kersten GF. Physicochemical and immunochemical techniques predict the quality of diphtheria toxoid vaccines. Vaccine22(2), 156–167 (2003).
  • Metz B, Jiskoot W, Mekkes D et al. Quality control of routine, experimental and real-time aged diphtheria toxoids by in vitro analytical techniques. Vaccine25(39–40), 6863–6871 (2007).
  • Leenaars PP, Kersten GF, de Bruijn ML, Hendriksen CF. An in vitro approach in quality control of toxoid vaccines. Vaccine19(17–19), 2729–2733 (2001).
  • Mandenius CF, Wang R, Alden A et al. Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance. Anal. Chim. Acta623(1), 66–75 (2008).
  • Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin. Cell. Dev. Biol.20(1), 10–26 (2009).
  • Bravman T, Bronner V, Lavie K, Notcovich A, Papalia GA, Myszka DG. Exploring ‘one-shot’ kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal. Biochem.358(2), 281–288 (2006).
  • Hosse RJ, Tay L, Hattarki MK et al. Kinetic screening of antibody–Im7 conjugates by capture on a colicin E7 DNase domain using optical biosensors. Anal. Biochem.385(2), 346–357 (2009).
  • Safsten P, Klakamp SL, Drake AW, Karlsson R, Myszka DG. Screening antibody-antigen interactions in parallel using Biacore A100. Anal. Biochem.353(2), 181–190 (2006).
  • Luong JH, Male KB, Glennon JD. Biosensor technology: technology push versus market pull. Biotechnol. Adv.26(5), 492–500 (2008).
  • Havard J, Gillock N, Martin A, Quinn J. An automated surface plasmon resonance-based system. Am. Biotechnol. Lab.27(11), 24–25 (2009).
  • Boozer C, Kim G, Cong S, Guan H, Londergan T. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol.17(4), 400–405 (2006).
  • Abdiche Y, Malashock D, Pinkerton A, Pons J. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet. Anal. Biochem.377(2), 209–217 (2008).
  • Abdiche YN, Malashock DS, Pinkerton A, Pons J. Exploring blocking assays using Octet, ProteOn, and Biacore biosensors. Anal. Biochem.386(2), 172–180 (2009).
  • Rich RL, Papalia GA, Flynn PJ et al. A global benchmark study using affinity-based biosensors. Anal. Biochem.386(2), 194–216 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.