118
Views
58
CrossRef citations to date
0
Altmetric
Review

Gene-expression profiling in vaccine therapy and immunotherapy for cancer

, , &
Pages 555-565 | Published online: 09 Jan 2014

References

  • Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol.Ther.64(3), 529–564 (1994).
  • Coley WB. II. Contribution to the knowledge of sarcoma. Ann. Surg.14(3), 199–220 (1891).
  • Coley WB. A report of recent cases of inoperable sarcoma successfully treated with mixed toxins of erysipelas and Bacillus prestigiosus. Surg. Gynecol. Obstet.13, 174–179 (1911).
  • Kirkwood JM, Tarhini AA, Panelli MC et al. Next generation of immunotherapy for melanoma. J. Clin. Oncol.26(20), 3445–3455 (2008).
  • Mazumder A, Rosenberg SA. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J. Exp. Med.159(2), 495–507 (1984).
  • Kirkwood JM, Ernstoff MS, Davis CA, Reiss M, Ferraresi R, Rudnick SA. Comparison of intramuscular and intravenous recombinant α-2 interferon in melanoma and other cancers. Ann. Intern. Med.103(1), 32–36 (1985).
  • Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7), 2105–2116 (1998).
  • van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254, 1643–1647 (1991).
  • Traversari C, Van Der BP, Luescher IF et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med.176(5), 1453–1457 (1992).
  • Marincola FM, Ferrone S. Immunotherapy of melanoma: the good news, the bad news and what to do next. Sem. Cancer Biol.13(6), 387–389 (2003).
  • Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol.20(20), 4169–4180 (2002).
  • Wang E, Panelli M, Marincola FM. Autologous tumor rejection in humans: trimming the myths. Immunol. Invest.35(3–4), 437–458 (2006).
  • Wang E, Selleri S, Sabatino M et al. Spontaneous and tumor-induced cancer rejection in humans. Exp. Opin. Biol. Ther.8(3), 337–349 (2008).
  • Monsurro’ V, Wang E, Panelli MC et al. Active-specific immunization against melanoma: is the problem at the receiving end? Sem. Cancer Biol.13, 473–480 (2003).
  • Marincola FM, Wang E, Herlyn M, Seliger B, Ferrone S. Tumors as elusive targets of T cell-based active immunotherapy. Trends Immunol.24(6), 335–342 (2003).
  • Sarnaik AA, Weber JS. Recent advances using anti-CTLA-4 for the treatment of melanoma. Cancer J.15(3), 169–173 (2009).
  • Baxevanis CN, Perez SA, Papamichail M. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol. Immunother.58(3), 317–324 (2009).
  • Jin P, Wang E. Polymorphism in clinical immunology. From HLA typing to immunogenetic profiling. J. Transl. Med.1(1), 8 (2003).
  • Wang E, Panelli MC, Marincola FM. Gene profiling of immune responses against tumors. Curr. Opin. Immunol.17(4), 423–427 (2005).
  • Marincola FM, Jaffe EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T cell recognition: molecular mechanisms and functional significance. Adv. Immunol.74, 181–273 (2000).
  • Marincola FM. Translational medicine: a two way road. J. Transl. Med.1, 1 (2003).
  • Venkatesh TV, Harlow HB. Integromics: challenges in data integration. Genome Biol.3(8), reports4027.1–reports 4027.3 (2002).
  • Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nat. Genet.21, 33–37 (1999).
  • Kaech SM, Hemby S, Kersh E, Ahmed R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell111, 837–851 (2002).
  • Wherry EJ, Teichgraber V, Becker TC et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol.4(3), 225–234 (2003).
  • Lee K-H, Wang E, Nielsen M-B et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J. Immunol.163, 6292–6300 (1999).
  • Monsurro’ V, Wang E, Yamano Y et al. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood104(7), 1970–1978 (2004).
  • Monsurro’ V, Nagorsen D, Wang E et al. Functional heterogeneity of vaccine-induced CD8+ T cells. J. Immunol.168(11), 5933–5942 (2002).
  • Kammula US, Lee K-H, Riker A et al. Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J. Immunol.163, 6867–6879 (1999).
  • Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin. Immunol.8(5), 271–280 (1996).
  • Slingluff CL Jr, Speiser DE. Progress and controversies in developing cancer vaccines. J. Transl. Med.3, 18 (2005).
  • Rosenberg SA, Yang JC, Schwartzentruber D et al. Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med.4(3), 321–327 (1998).
  • Sosman JA, Carrillo C, Urba WJ et al. Three Phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J. Clin. Oncol.26(14), 2292–2298 (2008).
  • Schwartzentruber DJ, Lawson D, Richards J et al. A Phase III multi-insitutional randomized study of immunization with the gp100:209–217(210M) peptide followed by high dose IL-2 vs high dose IL-2 alone in patients with metastatic melanoma. N. Engl. J. Med.27(Suppl. 18), CRA9011 (2010).
  • Wang E, Monaco A, Monsurró V et al. Antitumor vaccines, immunotherapy and the immunological constant of rejection. IDrugs12(5), 297–301 (2009).
  • Mantovani A, Romero P, Palucka AK, Marincola FM. Tumor immunity: effector response to tumor and the influence of the microenvironment. Lancet371(9614), 771–783 (2008).
  • Tahara H, Sato M, Thurin M et al. Emerging concepts in biomarker discovery; The US–Japan workshop on immunological molecular markers in oncology. J. Transl. Med.7(1), 45 (2009).
  • Wang E, Panelli MC, Monsurró V, Marincola FM. Gene expression profiling of anti-cancer immune responses. Curr. Opin. Mol. Ther.6(3), 288–295 (2004).
  • Wang E, Miller L, Ohnmacht GA, Liu E, Marincola FM. High fidelity mRNA amplification for gene profiling using cDNA microarrays. Nat. Biotech.17(4), 457–459 (2000).
  • Wang E. RNA amplification for successful gene profiling analysis. J. Transl. Med.3, 28 (2005).
  • Panelli MC, Wang E, Phan G et al. Gene-expression profiling of the response of peripheral blood mononuclear cells and melanoma metastases to systemic IL-2 administration. Genome Biol.3(7), RESEARCH0035 (2002).
  • Wang E, Miller LD, Ohnmacht GA et al. Prospective molecular profiling of subcutaneous melanoma metastases suggests classifiers of immune responsiveness. Cancer Res.62, 3581–3586 (2002).
  • Panelli MC, Stashower M, Slade HB et al. Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol.8(1), R8 (2006).
  • Deonarine K, Panelli MC, Stashower ME et al. Gene expression profiling of cutaneous wound healing. J. Transl. Med.5, 11 (2007).
  • Ohnmacht GA, Wang E, Mocellin S et al. Short term kinetics of tumor antigen expression in response to vaccination. J. Immunol.167, 1809–1820 (2001).
  • Wang E, Marincola FM. A natural history of melanoma: serial gene expression analysis. Immunol. Today21(12), 619–623 (2000).
  • Cormier JN, Hijazi YM, Abati A et al. Heterogeneous expression of melanoma-associated antigens (MAA) and HLA-A2 in metastatic melanoma in vivo. Int. J. Cancer75, 517–524 (1998).
  • Panelli MC, Martin B, Nagorsen D et al. A genomic and proteomic-based hypothesis on the eclectic effects of systemic interleukin-2 administration in the context of melanoma-specific immunization. Cells Tissues Organs177(3), 124–131 (2003).
  • Panelli MC, White RL Jr, Foster M et al. Forecasting the cytokine storm following systemic interleukin-2 administration. J. Transl. Med.2, 17 (2004).
  • Sarwal M, Chua MS, Kambham N et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med.349(2), 125–138 (2003).
  • Saint-Mezard P, Berthier CC, Zhang H et al. Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection. Transpl. Int.22(3), 293–302 (2009).
  • Reeve J, Einecke G, Mengel M et al. Diagnosing rejection in renal transplants: a comparison of molecular- and histopathology-based approaches. Am. J. Transplant.9(8), 1802–1810 (2009).
  • Wang E, Worschech A, Marincola FM. The immunologic constant of rejection. Trends Immunol.29(6), 256–262 (2008).
  • Bittner M, Meltzer P, Chen Y et al. Molecular classification of cutaneous malignant melanoma by gene expression: shifting from a countinuous spectrum to distinct biologic entities. Nature406, 536–840 (2000).
  • Taniguchi T. Transcription factors IRF-1 and IRF-2: linking the immune responses and tumor suppression. J. Cell. Physiol.173(2), 128–130 (1997).
  • Ogasawara K, Hida S, Azimi N et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature391(6668), 700–703 (1998).
  • Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. Irf family of transcription factors as regulators of host defense. Annu. Rev. Immunol.19, 623–655 (2001).
  • Paun A, Pitha PM. The IRF family, revisited. Biochimie89(6–7), 744–753 (2007).
  • Aptsiauri N, Carretero R, Garcia-Lora A, Real LM, Cabrera T, Garrido F. Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunol. Immunother.57(11), 1727–1733 (2008).
  • Carretero R, Romero JM, Ruiz-Cabello F et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics60(8), 439–447 (2008).
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet357(9255), 539–545 (2001).
  • Coussens LM, Werb Z. Inflammation and cancer. Nature420(6917), 860–867 (2002).
  • Hanahan D, Lanzavecchia A, Mihich E. Fourteenth Annual Pezcoller Symposium: the novel dichotomy of immune interactions with tumors. Cancer Res.63(11), 3005–3008 (2003).
  • Craft N, Bruhn KW, Nguyen BD et al. The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine. J. Immunol.175(3), 1983–1990 (2005).
  • Urosevic M, Maier T, Benninghoff B, Slade H, Burg G, Dummer R. Mechanisms unerlying imiquimod-induced regression of basal cell carcinoma in vivo. Arch. Dermatol.139(10), 1325–1332 (2003).
  • Sabatino M, Kim-Schulze S, Panelli MC et al. Serum vascular endothelial growth factor (VEGF) and fibronectin predict clinical response to high-dose interleukin-2 (IL-2) therapy. J. Clin. Oncol.27(16), 2645–2652 (2008).
  • Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med.2(10), 1096–1103 (1996). Erratum in: Nat. Med.2(11), 1267 (1996).
  • Ohm JE, Gabrilovich DI, Sempowski GD et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood101(12), 4878–4886 (2003).
  • Critchley-Thorne RJ, Yan N, Nacu S, Weber J, Holmes SP, Lee PP. Down-regulation of the interferon signaling pathway in T lymphocytes from patients with metastatic melanoma. PLoS Med.4(5), e176 (2007).
  • Critchley-Thorne RJ, Simons D, Yan N et al. Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl Acad. Sci. USA106(22), 9010–9015 (2009).
  • Wang W, Edington HD, Rao UN et al. Modulation of signal transducers and activators of transcription 1 and 3 signaling in melanoma by high-dose IFNα2b. Clin. Cancer Res.13(5), 1523–1531 (2007).
  • Yurkovetsky ZR, Kirkwood JM, Edington HD et al. Multiplex analysis of serum cytokines in melanoma patients treated with interferon-α2b. Clin. Cancer Res.13(8), 2422–2428 (2007).
  • Harlin H, Meng Y, Peterson AC et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res.69(7), 3077–3085 (2009).
  • Ugurel S, Schrama D, Keller G et al. Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol. Immunother.57(5), 685–691 (2007).
  • Worschech A, Chen N, Yu YA et al. Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facets of oncolytic therapy. BMC Genomics10, 301 (2009).
  • Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA. The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol. Immunother.58(9), 1355–1362 (2009).
  • Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat. Rev. Cancer5(12), 965–976 (2005).
  • Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett.254(2), 178–216 (2007).
  • Zhang Q, Yu YA, Wang E et al. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res.67(20), 10038–10046 (2007).
  • Rees J. Complex disease and the new clinical sciences. Science296(5568), 698–700 (2002).
  • Salk J. Immunological paradoxes: theoretical considerations in the rejection or retention of grafts, tumors, and normal tissue. Ann. NY Acad. Sci.164(2), 365–380 (1969).
  • Benencia F, Courreges MC, Conejo-Garcia JR et al. HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Mol. Ther.12(5), 789–802 (2005).
  • Pages F, Berger A, Camus M et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med.353(25), 2654–2666 (2005).
  • Dieu-Nosjean MC, Antoine M, Danel C et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol.26(27), 4410–4417 (2008).
  • Camus M, Tosolini M, Mlecnik B et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res.69(6), 2685–2693 (2009).
  • Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313(5795), 1960–1964 (2006).
  • Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res.67(5), 1883–1886 (2007).
  • Shanker A, Verdeil G, Buferne M et al. CD8 T cell help for innate antitumor immunity. J. Immunol.179(10), 6651–6662 (2007).
  • Hardstedt M, Finnegan CP, Kirchhof N et al. Post-transplant upregulation of chemokine messenger RNA in non-human primate recipients of intraportal pig islet xenografts. Xenotransplantation12(4), 293–302 (2005).
  • Karason K, Jernas M, Hagg DA, Svensson PA. Evaluation of CXCL9 and CXCL10 as circulating biomarkers of human cardiac allograft rejection. BMC Cardiovasc. Disord.6, 29 (2006).
  • Hama N, Yanagisawa Y, Dono K et al. Gene expression profiling of acute cellular rejection in rat liver transplantation using DNA microarrays. Liver Transpl.15(5), 509–521 (2009).
  • Imanguli MM, Swaim WD, League SC, Gress RE, Pavletic SZ, Hakim FT. Increased T-bet+ cytotoxic effectors and type I interferon-mediated processes in chronic graft-versus-host disease of the oral mucosa. Blood113(15), 3620–3630 (2009).
  • Bigger CB, Brasky KM, Lanford RE. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol.75(15), 7059–7066 (2001).
  • He XS, Ji X, Hale MB et al. Global transcriptional response to interferon is a determinant of HCV treatment outcome and is modified by race. Hepatology44(2), 352–359 (2006).
  • Feld JJ, Nanda S, Huang Y et al. Hepatic gene expression during treatment with peginterferon and ribavirin: identifying molecular pathways for treatment response. Hepatology46(5), 1548–1563 (2007).
  • Nanda S, Havert MB, Calderon GM et al. Hepatic transcriptome analysis of hepatitis C virus infection in chimpanzees defines unique gene expression patterns associated with viral clearance. PLoS ONE3(10), e3442 (2008).
  • Asselah T, Bieche I, Narguet S et al. Liver gene expression signature to predict response to pegylated interferon plus ribavirin combination therapy in patients with chronic hepatitis C. Gut57(4), 516–524 (2008).
  • Zhao DX, Hu Y, Miller GG, Luster AD, Mitchell RN, Libby P. Differential expression of the IFN-γ-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell α chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J. Immunol.169(3), 1556–1560 (2002).
  • Okamoto Y, Folco EJ, Minami M et al. Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ. Res.102(2), 218–225 (2008).
  • Costa C, Rufino R, Traves SL et al. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest133(1), 26–33 (2008).
  • Kim MJ, Romero R, Kim CJ et al. Villitis of unknown etiology is associated with a distinct pattern of chemokine up-regulation in the feto–maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. J. Immunol.182(6), 3919–3927 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.