498
Views
50
CrossRef citations to date
0
Altmetric
Review

Adjuvant properties of meningococcal outer membrane vesicles and the use of adjuvants in Neisseria meningitidis protein vaccines

&
Pages 323-334 | Published online: 09 Jan 2014

References

  • Finne J, Leinonen M, Makela PH. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet2(8346), 355–357 (1983).
  • Devi SJ, Zollinger WD, Snoy PJ et al. Preclinical evaluation of group B Neisseria meningitidis and Escherichia coli K92 capsular polysaccharide–protein conjugate vaccines in juvenile rhesus monkeys. Infect. Immun.65(3), 1045–1052 (1997).
  • Bruge J, Bouveret-Le CN, Danve B, Rougon G, Schulz D. Clinical evaluation of a group B meningococcal N-propionylated polysaccharide conjugate vaccine in adult, male volunteers. Vaccine22(9–10), 1087–1096 (2004).
  • Kahler CM, Martin LE, Shih GC et al. The (α2→8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect. Immun.66(12), 5939–5947 (1998).
  • Jarvis GA, Vedros NA. Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect. Immun.55(1), 174–180 (1987).
  • Zollinger WD, Moran EE, Devi SJ, Frasch CE. Bactericidal antibody responses of juvenile rhesus monkeys immunized with group B Neisseria meningitidis capsular polysaccharide–protein conjugate vaccines. Infect. Immun.65(3), 1053–1060 (1997).
  • Steirer Taylor L, Nakano T, Guo H, Moe GR. Expression of de-N-acetylated sialic acid containing polysialic acid in normal and diseased human peripheral blood and tissues. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Brandtzaeg P, Bryn K, Kierulf P et al. Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J. Clin. Invest.89(3), 816–823 (1992).
  • Namork E, Brandtzaeg P. Fatal meningococcal septicaemia with ‘blebbing’ meningococcus. Lancet360(9347), 1741 (2002).
  • Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in Gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev.27(6), 535–555 (2008).
  • Post DM, Zhang D, Eastvold JS et al. Biochemical and functional characterization of membrane blebs purified from Neisseria meningitidis serogroup B. J. Biol. Chem.280(46), 38383–38394 (2005).
  • Guthrie T, Wong SY, Liang B et al. Local and systemic antibody responses in mice immunized intranasally with native and detergent-extracted outer membrane vesicles from Neisseria meningitidis. Infect. Immun.72(5), 2528–2537 (2004).
  • Hosking J, Rasanathan K, Mow FC et al. Immunogenicity, reactogenicity, and safety of a P1.7b,4 strain-specific serogroup B meningococcal vaccine given to preteens. Clin. Vaccine Immunol.14(11), 1393–1399 (2007).
  • Rodriguez AP, Dickinson F, Baly A, Martinez R. The epidemiological impact of antimeningococcal B vaccination in Cuba. Mem. Inst. Oswaldo Cruz.94(4), 433–440 (1999).
  • Sandbu S, Feiring B, Oster P et al. Immunogenicity and safety of a combination of two serogroup B meningococcal outer membrane vesicle vaccines. Clin. Vaccine Immunol.14(9), 1062–1069 (2007).
  • Bjune G, Hoiby EA, Gronnesby JK et al. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet338(8775), 1093–1096 (1991).
  • Holst J, Martin D, Arnold R et al. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine27, B3–B12 (2009).
  • Sadarangani M, Pollard AJ. Serogroup B meningococcal vaccines – an unfinished story. Lancet Infect. Dis.10(2), 112–124 (2010).
  • Rosenqvist E, Hoiby EA, Wedege E et al. Human-antibody responses to meningococcal outer-membrane antigens after 3 doses of the Norwegian group-B meningococcal vaccine. Infect. Immun.63(12), 4642–4652 (1995).
  • Borrow R, Balmer P, Miller E. Meningococcal surrogates of protection –serum bactericidal antibody activity. Vaccine23(17–18), 2222–2227 (2005).
  • Frasch CE, Borrow R, Donnelly J. Bactericidal antibody is the immunologic surrogate of protection against meningococcal disease. Vaccine27, B112–B116 (2009).
  • Vipond C, Suker J, Jones C et al. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics6(11), 3400–3413 (2006).
  • van der Ley P, van der Biezen J, Poolman JT. Construction of Neisseria meningitidis strains carrying multiple chromosomal copies of the porA gene for use in the production of a multivalent outer membrane vesicle vaccine. Vaccine13(4), 401–407 (1995).
  • Vermont CL, van Dijken HH, Kuipers AJ et al. Cross-reactivity of antibodies against PorA after vaccination with a meningococcal B outer membrane vesicle vaccine. Infect. Immun.71(4), 1650–1655 (2003).
  • Arigita C, Kersten GF, Hazendonk T et al. Restored functional immunogenicity of purified meningococcal PorA by incorporation into liposomes. Vaccine21(9–10), 950–960 (2003).
  • Glenny AT, Pope CG, Waddington H, Wallace U. Immunological notes. XXIII. The antigenic value of toxoid precipitated by potassium alum. J. Pathol. Bacteriol.2931–2940 (1926).
  • El Sahly H. MF59™ as a vaccine adjuvant: a review of safety and immunogenicity. Expert Rev. Vaccines9(10), 1135–1141 (2010).
  • Leroux-Roels G. Prepandemic H5N1 influenza vaccine adjuvanted with AS03: a review of the pre-clinical and clinical data. Expert Opin. Biol. Ther.9(8), 1057–1071 (2009).
  • Kundi M. New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev. Vaccines6(2), 133–140 (2007).
  • Monie A, Hung CF, Roden R, Wu TC. Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics2(1), 97–105 (2008).
  • Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm.364(2), 272–280 (2008).
  • Lepow ML, Goldschneider I, Gold R, Randolph M, Gotschlich EC. Persistence of antibody following immunization of children with groups A and C meningococcal polysaccharide vaccines. Pediatrics60(5), 673–680 (1977).
  • Richmond P, Borrow R, Findlow J et al. Evaluation of de-O-acetylated meningococcal C polysaccharide-tetanus toxoid conjugate vaccine in infancy: reactogenicity, immunogenicity, immunologic priming, and bactericidal activity against O-acetylated and de-O-acetylated serogroup C strains. Infect. Immun.69(4), 2378–2382 (2001).
  • Richmond P, Borrow R, Goldblatt D et al. Ability of 3 different meningococcal C conjugate vaccines to induce immunologic memory after a single dose in UK toddlers. J. Infect. Dis.183(1), 160–163 (2001).
  • Frasch CE, Zahradnik JM, Wang LY, Mocca LF, Tsai CM. Antibody-response of adults to an aluminum hydroxide-adsorbed Neisseria meningitidis serotype 2B protein-group B polysaccharide vaccine. J. Infect. Dis.158(4), 710–718 (1988).
  • Rosenqvist E, Hoiby EA, Bjune G et al. Effect of aluminium hydroxide and meningococcal serogroup c capsular polysaccharide on the immunogenicity and reactogenicity of a group B Neisseria meningitidis outer membrane vesicle vaccine. In: Developments in Biological Standardisation: Modulation of the Immune Response to Vaccine Antigens 92. Karger, Basel, Switzerland, 323–333 (1998).
  • Schijns VE. Immunological concepts of vaccine adjuvant activity. Curr. Opin. Immunol.12(4), 456–463 (2000).
  • Trotter CL, Maiden MC. Meningococcal vaccines and herd immunity: lessons learned from serogroup C conjugate vaccination programs. Expert. Rev. Vaccines8(7), 851–861 (2009).
  • Mawas F, Feavers IM, Corbel MJ. Serotype of Streptococcus pneumoniae capsular polysaccharide can modify the Th1/Th2 cytokine profile and IgG subclass response to pneumococal-CRM(197) conjugate vaccines in a murine model. Vaccine19(9–10), 1159–1166 (2000).
  • Villacres-Eriksson M, Behboudi S, Morgan AJ, Trinchieri G, Morein B. Immunomodulation by Quillaja saponaria adjuvant formulations: in vivo stimulation of interleukin 12 and its effects on the antibody response. Cytokine9(2), 73–82 (1997).
  • Ruijne N, Lea RA, O’Hallahan J, Oster P, Martin D. Understanding the immune responses to the meningococcal strain-specific vaccine MeNZB measured in studies of infants. Clin. Vaccine Immunol.13(7), 797–801 (2006).
  • Vidarsson G, van der Pol WL, van Den Elsen JM et al. Activity of human IgG and IgA subclasses in immune defense against Neisseria meningitidis serogroup B. J. Immunol.166(10), 6250–6256 (2001).
  • Madico G, Welsch JA, Lewis LA et al. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J. Immunol.177(1), 501–510 (2006).
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J. Immunol.172(5), 2731–2738 (2004).
  • Zinkernagel RM, Ehl S, Aichele P et al. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev.156, 199–209 (1997).
  • Lascelles AK, Eagleson G, Beh KJ, Watson DL. Significance of Freund’s adjuvant/antigen injection granuloma in the maintenance of serum antibody response. Vet. Immunol. Immunopathol.22(1), 15–27 (1989).
  • Glenny AT, Buttle GAH, Stevens MF. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea – pigs: toxoid precipitated with alum. J. Pathol. Bacteriol.34(2), 267–275 (1931).
  • Rimaniol AC, Gras G, Verdier F et al. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type. Vaccine22(23–24), 3127–3135 (2004).
  • Rimaniol AC, Gras G, Clayette P. In vitro interactions between macrophages and aluminum-containing adjuvants. Vaccine25(37–38), 6784–6792 (2007).
  • Verdier F, Burnett R, Michelet-Habchi C et al. Aluminium assay and evaluation of the local reaction at several time points after intramuscular administration of aluminium containing vaccines in the Cynomolgus monkey. Vaccine23(11), 1359–1367 (2005).
  • Dupuis M, Denis-Mize K, LaBarbara A et al. Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur. J. Immunol.31(10), 2910–2918 (2001).
  • Janeway CA Jr, Goodnow CC, Medzhitov R. Danger – pathogen on the premises! Immunological tolerance. Curr. Biol.6(5), 519–522 (1996).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • O’Neill LA. How Toll-like receptors signal: what we know and what we don’t know. Curr. Opin. Immunol.18(1), 3–9 (2006).
  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol.7(5), 353–364 (2007).
  • Chen DJ, Osterrieder N, Metzger SM et al. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc. Natl Acad. Sci. USA107(7), 3099–3104 (2010).
  • Steeghs L, Kuipers B, Hamstra HJ et al. Immunogenicity of outer membrane proteins in a lipopolysaccharide-deficient mutant of Neisseria meningitidis: influence of adjuvants on the immune response. Infect. Immun.67(10), 4988–4993 (1999).
  • Fransen F, Boog CJ, van Putten JP, van der Ley P. Agonists of Toll-like receptors 3, 4, 7, and 9 are candidates for use as adjuvants in an outer membrane vaccine against Neisseria meningitidis serogroup B. Infect. Immun.75(12), 5939–5946 (2007).
  • Martin M, Michalek SM, Katz J. Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A. Infect. Immun.71(5), 2498–2507 (2003).
  • Evans JT, Cluff CW, Johnson DA et al. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert. Rev. Vaccines2(2), 219–229 (2003).
  • Thompson BS, Chilton PM, Ward JR, Evans JT, Mitchell TC. The low-toxicity versions of LPS, MPL adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J. Leukoc. Biol.78(6), 1273–1280 (2005).
  • Schneerson R, Fattom A, Szu SC et al. Evaluation of monophosphoryl lipid A (MPL) as an adjuvant. Enhancement of the serum antibody response in mice to polysaccharide–protein conjugates by concurrent injection with MPL. J. Immunol.147, 2136–2140 (1991).
  • Andersen SR, Bjune G, Hoiby EA et al. Outer membrane vesicle vaccines made from short-chain lipopolysaccharide mutants of serogroup B Neisseria meningitidis: effect of the carbohydrate chain length on the immune response. Vaccine15(11), 1225–1234 (1997).
  • Arigita C, Luijkx T, Jiskoot W et al. Well-defined and potent liposomal meningococcal B vaccines adjuvated with LPS derivatives. Vaccine23(43), 5091–5098 (2005).
  • Steeghs L, Keestra AM, van MA et al. Differential activation of human and mouse Toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Infect. Immun.76(8), 3801–3807 (2008).
  • van der Ley P, Steeghs L, Hamstra HJ et al. Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect. Immun.69(10), 5981–5990 (2001).
  • Ishizaka ST, Hawkins LD. E6020: a synthetic Toll-like receptor 4 agonist as a vaccine adjuvant. Expert. Rev. Vaccines6(5), 773–784 (2007).
  • Zhu DZ, Barniak V, Zhang Y, Green B, Zlotnick G. Intranasal immunization of mice with recombinant lipidated P2086 protein reduces nasal colonization of group B Neisseria meningitidis. Vaccine24(26), 5420–5425 (2006).
  • Bowe F, Lavelle EC, McNeela EA et al. Mucosal vaccination against serogroup B meningococci: induction of bactericidal antibodies and cellular immunity following intranasal immunization with NadA of Neisseria meningitidis and mutants of Escherichia coli heat-labile enterotoxin. Infect. Immun.72(7), 4052–4060 (2004).
  • Mehta O, Norheim G, Hoe JC et al. Evaluation of the adjuvant effect of novel meningococcal detoxified lipopolysaccharide structures formulated in native outer membrane vesicles. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Jones HE, Hamstra HJ, Brown J et al. Using lipo-oligosaccharide modification to generate a novel vaccine candidate to protect against serogroup B meningococcal disease. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Koeberling O, Seubert A, Granoff DM. Bactericidal antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed factor H-binding protein and genetically attenuated endotoxin. J. Infect. Dis.198(2), 262–270 (2008).
  • Albiger B, Johansson L, Jonsson AB. Lipooligosaccharide-deficient Neisseria meningitidis shows altered pilus-associated characteristics. Infect. Immun.71(1), 155–162 (2003).
  • Welsch JA, Moe GR, Rossi R et al. Antibody to genome-derived neisserial antigen 2132, a Neisseria meningitidis candidate vaccine, confers protection against bacteremia in the absence of complement-mediated bactericidal activity. J. Infect. Dis.188(11), 1730–1740 (2003).
  • Klinman DM. Use of CpG oligodeoxynucleotides as immunoprotective agents. Expert. Opin. Biol. Ther.4(6), 937–946 (2004).
  • Giuliani MM, du-Bobie J, Comanducci M et al. A universal vaccine for serogroup B meningococcus. Proc. Natl Acad. Sci. USA103(29), 10834–10839 (2006).
  • Liu X, Wetzler LM, Massari P. The PorB porin from commensal Neisseria lactamica induces Th1 and Th2 immune responses to ovalbumin in mice and is a potential immune adjuvant. Vaccine26(6), 786–796 (2008).
  • Massari P, Visintin A, Gunawardana J et al. Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J. Immunol.176(4), 2373–2380 (2006).
  • Singleton TE, Massari P, Wetzler LM. Neisserial porin-induced dendritic cell activation is MyD88 and TLR2 dependent. J. Immunol.174(6), 3545–3550 (2005).
  • Massari P, Henneke P, Ho Y et al. Cutting edge: immune stimulation by neisserial porins is Toll-like receptor 2 and MyD88 dependent. J. Immunol.168(4), 1533–1537 (2002).
  • Wetzler LM. Innate immune function of the neisserial porins and the relationship to vaccine adjuvant activity. Future Microbiol.5(5), 749–758 (2010).
  • Al-Bader T, Jolley KA, Humphries HE et al. Activation of human dendritic cells by the PorA protein of Neisseria meningitidis. Cell Microbiol.6(7), 651–662 (2004).
  • Tavano R, Franzoso S, Cecchini P et al. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J. Leukoc. Biol.86(1), 143–153 (2009).
  • Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5(11), 1249–1255 (1999).
  • Yang YW, Wei AC, Shen SS. The immunogenicity-enhancing effect of emulsion vaccine adjuvants is independent of the dispersion type and antigen release rate – a revisit of the role of the hydrophile –lipophile balance (HLB) value. Vaccine23(20), 2665–2675 (2005).
  • Yang YW, Shen SS. Enhanced antigen delivery via cell death induced by the vaccine adjuvants. Vaccine25(45), 7763–7772 (2007).
  • Ryan KA, Smith MF Jr, Sanders MK, Ernst PB. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-κB and interleukin-8 expression. Infect. Immun.72(4), 2123–2130 (2004).
  • Kim JJ, Ayyavoo V, Bagarazzi ML et al.In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J. Immunol.158(2), 816–826 (1997).
  • Kim JJ, Bagarazzi ML, Trivedi N et al. Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat. Biotechnol.15(7), 641–646 (1997).
  • Peeters CC, Claassen IJ, Schuller M et al. Immunogenicity of various presentation forms of PorA outer membrane protein of Neisseria meningitidis in mice. Vaccine17, 2702–2712 (1999).
  • Moore A, McCarthy L, Mills KH. The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a soluble recombinant HIV protein from Th2 to Th1. Vaccine17(20–21), 2517–2527 (1999).
  • Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: the second decade. Immunol. Cell Biol.83(2), 119–128 (2005).
  • Jansen C, Kuipers B, van der Biezen J et al. Immunogenicity of in vitro folded outer membrane protein PorA of Neisseria meningitidis. FEMS Immunol. Med. Microbiol.27(3), 227–233 (2000).
  • Christodoulides M, Brooks JL, Rattue E, Heckels JE. Immunization with recombinant class 1 outer-membrane protein from Neisseria meningitidis: influence of liposomes and adjuvants on antibody avidity, recognition of native protein and the induction of a bactericidal immune response against meningococci. Microbiology144(Pt 11), 3027–3037 (1998).
  • Wright JC, Williams JN, Christodoulides M, Heckels JE. Immunization with the recombinant PorB outer membrane protein induces a bactericidal immune response against Neisseria meningitidis. Infect. Immun.70, 4028–4034 (2002).
  • Aase A, Naess LM, Sandin RH et al. Comparison of functional immune responses in humans after intranasal and intramuscular immunisations with outer membrane vesicle vaccines against group B meningococcal disease. Vaccine21(17–18), 2042–2051 (2003).
  • Haneberg B, Dalseg R, Wedege E et al. Intranasal administration of a meningococcal outer membrane vesicle vaccine induces persistent local mucosal antibodies and serum antibodies with strong bactericidal activity in humans. Infect. Immun.66(4), 1334–1341 (1998).
  • Sardinas G, Reddin K, Pajon R, Gorringe A. Outer membrane vesicles of Neisseria lactamica as a potential mucosal adjuvant. Vaccine24(2), 206–214 (2006).
  • Weynants VE, Feron CM, Goraj KK et al. Additive and synergistic bactericidal activity of antibodies directed against minor outer membrane proteins of Neisseria meningitidis. Infect. Immun.75(11), 5434–5442 (2007).
  • Brewer JM, Conacher M, Gaffney M et al. Neither interleukin-6 nor signalling via tumour necrosis factor receptor-1 contribute to the adjuvant activity of Alum and Freund’s adjuvant. Immunology93(1), 41–48 (1998).
  • Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Modulating the adjuvanticity of alum by co-administration of muramyl di-peptide (MDP) or Quil-A. Vaccine24(8), 1081–1086 (2006).
  • Mascioni A, Bentley BE, Camarda R et al. Structural basis for the immunogenic properties of the meningococcal vaccine candidate LP2086. J. Biol. Chem.284(13), 8729–8737 (2009).
  • Bracho G, Zayas C, Wang L et al. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5. Malaria J.8, 35 (2009).
  • Del Campo J, Lindqvist M, Cuello M et al. Intranasal immunization with a proteoliposome-derived cochleate containing recombinant gD protein confers protective immunity against genital herpes in mice. Vaccine28(5), 1193–1200 (2010).
  • van den Dobbelsteen GPJM, van Dijken HH, Pillai S, van Alphen L. Immunogenicity of a combination vaccine containing pneumococcal conjugates and meningococcal PorA OMVs. Vaccine25(13), 2491–2496 (2007).
  • de Kleijn ED, de Groot R, Labadie J et al. Immunogenicity and safety of a hexavalent meningococcal outer-membrane-vesicle vaccine in children of 2–3 and 7–8 years of age. Vaccine18(15), 1456–1466 (2000).
  • Jacobsson S, Hedberg ST, Molling P et al. Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease. Vaccine27(10), 1579–1584 (2009).
  • Halperin SA, Gupta A, Jeanfreau R et al. Clinical immunogenicity and safety profile of two quadrivalent meningococcal conjugate vaccines in 2907 2-to-10-year-old children. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Biolchi A, Kleinschmidt A, Boccadifuoco G et al. Evaluation and contribution of protein antigen NHBA to bactericidal antibody responses in sera from human vaccinees enrolled in clinical trials. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Richmond P, Marshall H, Sheldon E et al. Safety and immunogenicity of a serogroup B Neisseria meningitidis (MnB) rLP2096 vaccine in adults and adolescent subjects: overview of 3 clinical trials. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Christensen H, Trotter C, Hickman M, Edmunds WJ. Modelling the cost–effectiveness of new meningococcal vaccines in England. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Aguilar JC, Rodriguez EG. Vaccine adjuvants revisited. Vaccine25(19), 3752–3762 (2007).
  • Johswitch KO, McCaw SE, Chan CHF et al. CEACAM-humanized mice as a model for N. meningitidis nasopharyngeal colonization. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Vu DM, Shaughnessy J, Ram S, Rice PA, Granoff D. Enhanced bacteremia and decreased antibody passive protective activity in human factor H transgenic rats challenged with encapsulated strains of Neisseria meningitidis. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Pettersson A, Kortekaas J, Weynants VE et al. Vaccine potential of the Neisseria meningitidis lactoferrin-binding proteins LbpA and LbpB. Vaccine24(17), 3545–3557 (2006).
  • Kortekaas J, Muller SA, Ringler P et al. Immunogenicity and structural characterisation of an in vitro folded meningococcal siderophore receptor (FrpB, FetA). Microbes Infect.8(8), 2145–2153 (2006).
  • Keiser PB, Gibbs BT, Coster TS et al. A phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and sTLR- expression of OpcA. Vaccine28(43), 6970–6976 (2010).
  • Arenas J, van Dijken H, Kuipers B et al. Coincorporation of LpxL1 and PagL mutant lipopolysaccharides into liposomes with Neisseria meningitidis opacity protein: influence on endotoxic and adjuvant activity. Clin. Vaccine Immunol.17(4), 487–495 (2010).
  • Halperin SA, Langley JM, Smith B et al. Phase 1 first-in-human studies of the reactogenicity and immunogenicity of a recombinant meningococcal NspA vaccine in healthy adults. Vaccine25(3), 450–457 (2007).
  • Turner DPJ, Marietou AG, Johnston L et al. Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect. Immun.74(5), 2957–2964 (2006).
  • Frye SA, Balasingham S, Vahdani-Benum A et al. On the immunoreactive/immunoprotective portential of the PilQ complex. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Hung MC, Salim O, Williams JN, Heckels JE, Christodoulides M. Neisseria meningitidis macrophage infectivity potentiator is a potential serogroup B vaccine candidate. Presented at: 17th International Pathogenic Neisseria Conference. Banff, Alberta, Canada, 11–16 September 2010.
  • Koeberling O, Giuntini S, Seubert A, Granoff DM. Meningococcal outer membrane vesicle vaccines derived from mutant strains engineered to express factor H binding proteins from antigenic variant groups 1 and 2. Clin. Vaccine Immunol.16(2), 156–162 (2009).
  • Sardinas G, Climent Y, Rodriguez Y et al. Assessment of vaccine potential of the Neisseria-specific protein NMB0938. Vaccine27(49), 6910–6917 (2009).
  • Giuliani MM, Biolchi A, Serruto D et al. Measuring antigen-specific bactericidal responses to a multicomponent vaccine against serogroup B meningococcus. Vaccine28(31), 5023–5030 (2010).
  • Findlow J, Borrow R, Snape M et al. Multicenter, open-label, randomized Phase II controlled trial of an investigational recombinant meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy. Clin. Infect. Dis.51(10), 1127–1137 (2010).
  • Gorringe AR, Taylor S, Brookes C et al. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clin. Vaccine Immunol.16(8), 1113–1120 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.