120
Views
20
CrossRef citations to date
0
Altmetric
Review

Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems

&
Pages 69-86 | Published online: 09 Jan 2014

References

  • Sharma U, Singh S. Immunobiology of leishmaniasis. Indian J. Exp. Biol.47(6), 412–423 (2009).
  • Desjeux P. Leishmaniasis: current situation and new perspective. Comp. Immunol. Microbiol. Infect. Dis.27, 305–318 (2004).
  • Costa CH, Peters NC, Maruyama SR, de Brito EC, Santos IKF. Vaccines for the leishmaniases: proposals for a research agenda. PLoS Neg. Trop. Dis.5(3), e943 (2011).
  • Desjeux P. Human leishmaniases: epidemiology and public health aspects. World Health Stat.45, 267–275 (1992).
  • Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans. R. Soc. Trop. Med. Hyg.95, 239–243 (2001).
  • Desjeux P. Leishmaniasis. Nat. Rev. Microbiol.2, 692 (2004).
  • Desjeux P, Alvar J. Leishmania/HIV co-infection: epidemiology in Europe. Ann. Trop. Med. Parasitol.97(1), 3–15 (2003).
  • Alvar J. The relationship between leishmaniasis and AIDS: the second 10 years. Clin. Microbiol. Rev.21, 334–359 (2008).
  • Ezra N, Ochoa MT, Craft N. Human immunodeficiency virus and leishmaniasis. J. Glob. Infect. Dis.2(3), 248–257 (2010).
  • Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet366(9496), 1561–1577 (2005).
  • Herwaldt BL. Leishmaniasis. Lancet354(9185), 1191–1199 (1999).
  • Reithinger R, Dujardin JC, Louzir H et al. Cutaneous leishmaniasis. Lancet7, 581–596 (2007).
  • Bravo F, Sanchez MR. New and re-emerging cutaneous infectious diseases in Latin America and other geographic areas. Dermatol. Clin.21(4), 655–668 (2003).
  • James WD, Berger TG et al.Andrews’ Diseases of the Skin: Clinical Dermatology. Saunders Elsevier, ON, Canada (2006).
  • Ganguly S, Das NK, Barbhuiya JN, Chatterjee M. Post-kala-azar dermal leishmaniasis – an overview. Int. J. Dermatol.49(8), 921–931 (2010).
  • Dereure J, El-Safi SH, Bucheton B et al. Visceral leishmaniasis in eastern Sudan: parasite identification in humans and dogs host–parasite relationships. Microbes Infect.5(12), 1103–1108 (2003).
  • Modabber F. Leishmaniasis vaccines: past, present and future. Int. J. Antimicrob. Agents36(1), S58–S61 (2010).
  • Okwor I, Uzonna JE. Immunotherapy as a strategy for treatment of leishmaniasis: a review of the literature. Immunotherapy1(5), 765–776 (2009).
  • Khamesipour A, Dowlati Y, Asilian A et al. Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine23(28), 3642–3648 (2005).
  • Noazin S, Khamesipour A, Moulton LH et al. Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis: a meta-analysis. Vaccine27(35), 4747–4753 (2009).
  • Bertholet S, Goto Y, Carter L et al. Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine27(50), 7036–7045 (2009).
  • Scott P, Pearce E, Natovitz P, Sher A. Vaccination against cutaneous leishmaniasis in a murine model. II. Immunologic properties of protective and nonprotective subfractions of soluble promastigote extract. J. Immunol.139(9), 3118–3125 (1987).
  • Ramos I, Alonso A, Marcen JM et al. Heterologous prime–boost vaccination with a non-replicative vaccinia recombinant vector expressing LACK confers protection against canine visceral leishmaniasis with a predominant Th1-specific immune response. Vaccine26(3), 333–344 (2008).
  • Dunning N. Leishmania vaccines: from leishmanization to the era of DNA technology. Biosci. Horizons2(1), 73–82 (2009).
  • Daneshvar H, Molaei MM, Kamiabi H, Burchmore R, Hagan P, Stephen Phillips R. Gentamicin-attenuated Leishmania infantum: cellular immunity production and protection of dogs against experimental canine leishmaniasis. Parasite Immunol.32(11–12), 722–730 (2010).
  • Nagill R, Kaur S. Vaccine candidates for leishmaniasis: a review. Int. Immunopharmacol.11(10), 1464–1488 (2011).
  • Mizbani A, Taheri T, Zahedifard F et al. Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine28(1), 53–62 (2009).
  • Breton M, Tremblay MJ, Ouellette M et al. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect. Immun.73(10), 6372–6382 (2005).
  • Kwissa M, Kasturi SP, Pulendran B. The science of adjuvants. Expert. Rev. Vaccines6(5), 673–684 (2007).
  • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol.28, 445–489 (2010).
  • Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. Immunity33, 451–463 (2010).
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat. Immunol.12(6), 509–517 (2011).
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol.11, 373–384 (2010).
  • Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol.29(6), 294–306 (2011).
  • Miyaji EN, Carvalho E, Oliveira ML, Raw I, Ho PL. Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants. Braz. J. Med. Biol. Res.4(6), 500–513 (2011).
  • Schenten D, Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv. Immunol.109, 87–124 (2011).
  • Moresco EM, Lavine D, Beutler B. Toll-like receptors. Curr. Biol.21(13), 488–493 (2011).
  • Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol.9, 465–479 (2009).
  • Ting JP, Duncan JA, Lei Y. How the non inflammasome NLRs function in the innate immune system. Science327, 286–290 (2010).
  • Onoguchi K, Yoneyama M, Fujita T. Retinoic acid-inducible gene-I-like receptors. J. Interferon Cytokine Res.31(1), 27–31 (2011).
  • Gallego C, Golenbock D, Gomez MA, Saravia NG. Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infect. Immun.79(7), 2871–2879 (2011).
  • Silva GK, Gutierrez FR, Guedes PM et al. Cutting edge: nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection. J. Immunol.184(3), 1148–1152 (2010).
  • Sharp F, Ruane D, Claas B et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci USA106, 870–875 (2009).
  • Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell124, 849–863 (2006).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity33, 492–503 (2010).
  • Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity29, 319–324 (2008).
  • Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity33, 516–529 (2010).
  • McKee AS, Macleod MK, Kappler JW, Marrack P. Immune mechanisms of protection: can adjuvants rise to the challenge? BMC Biol.8, 37 (2010).
  • Pajtasz-Piasecka E, Indrová M. Dendritic cell-based vaccines for the therapy of experimental tumors. Immunotherapy2(2), 257–268 (2010).
  • Gerlach C, van Heijst JW, Schumacher TN. The descent of memory T cells. Ann. NY Acad. Sci.1217, 139–153 (2011).
  • Bhowmick S, Ali N. Recent developments in leishmaniasis vaccine delivery systems. Expert. Opin. Drug Deliv.5(7), 789–803 (2008).
  • Mutiso M, Macharia JC, Gicheru MM. A review of adjuvants for Leishmania vaccine candidates. J. Biomed. Res.24(1), 16–25 (2010).
  • Afonso LC, Scharton TM, Vieira LQ et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science263(5144), 235–237 (1994).
  • Gicheru MM, Olobo JO, Anjili CO et al. Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infect. Immun.69(1), 245–251 (2001).
  • Skeiky YA, Coler RN, Brannon M et al. Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine20(27–28), 3292–3303 (2002).
  • Badaro R, Lobo I, Nakatani M et al. Successful use of a defined antigen/GM-CSF adjuvant vaccine to treat mucosal Leishmaniasis refractory to antimony: a case report. Braz. J. Infect. Dis.5(4), 223–232 (2001).
  • Badaró R, Nascimento C, Carvalho JS et al. Recombinant human granulocyte–macrophage colony-stimulating factor reverses neutropenia and reduces secondary infections in visceral leishmaniasis. J. Infect. Dis.170(2), 413–418 (1994).
  • Milstien JB, Gibson JJ. Quality control of BCG vaccine by WHO: a review of factors that may influences vaccine effectiveness and safety. WHO Bull. OMS68, 93–108 (1990).
  • Simila S, Liedes E, Kinnunen P. Sternal abscess as a complication of BCG reactivation. Tubercle69, 67–69 (1988).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a Phase I trial. Infect. Immun.73(6), 3587–3597 (2005).
  • Collins WE, Barnwell JW, Sullivan JS et al. Assessment of transmission-blocking activity of candidate Pvs25 vaccine using gametocytes from chimpanzees. Am. J. Trop. Med. Hyg.74(2), 215–221 (2006).
  • Rafati S, Nakhaee A, Taheri T et al. Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine23(28), 3716–3725 (2005).
  • Scheibner V. Adverse effects of adjuvants in vaccines. Exp. Mol. Pathol.8, 1–2 (2000).
  • Gurunathan S, Prussin C, Sacks DL, Seder RA. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat. Med.4(12), 1409–1415 (1998).
  • Kenney RT, Sacks DL, Sypek JP et al. Protective immunity using recombinant human IL-12 and alum as adjuvants in a primate model of cutaneous leishmaniasis. J. Immunol.163(8), 4481–4488 (1999).
  • Misra A, Dube A, Srivastava B et al. Successful vaccination against Leishmania donovani infection in Indian langur using alum-precipitated autoclaved Leishmania major with BCG. Vaccine19(25–26), 3485–3492 (2001).
  • Lindblad EB. Aluminium compounds for use in vaccines. Immunol. Cell Biol.82(5), 497–505 (2004).
  • Reed SG, Coler RN, Campos-Neto A. Development of a leishmaniasis vaccine: the importance of MPL. Expert. Rev. Vaccines2(2), 239–252 (2003).
  • Chakravarty J, Kumar S, Trivedi S et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine29(19), 3531–3537 (2011).
  • Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect. Immun.75(9), 4648–4654 (2007).
  • Verthelyi D, Klinman DM. Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates. Clin. Immunol.109(1), 64–71 (2003).
  • Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv. Drug Deliv. Rev.61(3), 248–255 (2009).
  • Bolhassani A, Safaiyan SH, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol. Cancer10, 3 (2011).
  • Rafati S, Ghaemimanesh F, Zahedifard F. Comparison of potential protection induced by three vaccination strategies (DNA/DNA, protein/protein and DNA/protein) against Leishmania major infection using signal peptidase type I in BALB/c mice. Vaccine24(16), 3290–3297 (2006).
  • Flynn B, Wang V, Sacks DL et al. Prevention and treatment of cutaneous leishmaniasis in primates by using synthetic type D/A oligodeoxynucleotides expressing CpG motifs. Infect. Immun.73(8), 4948–4954 (2005).
  • Rhee EG, Mendez S, Shah JA et al. Vaccination with heat-killed Leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection. J. Exp. Med.195(12), 1565–1573 (2002).
  • Quintilio W, Kubrusly FS, Iourtov D et al.Bordetella pertussis monophosphoryl lipid A as adjuvant for inactivated split virion influenza vaccine in mice. Vaccine27(31), 4219–4224 (2009).
  • Champsi J, McMahon-Pratt D. Membrane glycoprotein M-2 protects against Leishmania amazonensis infection. Infect. Immun.56(12), 3272–3279 (1988).
  • Handman E, Symons FM, Baldwin TM et al. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a Th1 type of immune response. Infect. Immun.63(11), 4261–4267 (1995).
  • Pandey R, Ahmad Z. Nanomedicine and experimental tuberculosis: facts, flaws, and future. Nanomedicine7(3), 259–272 (2011).
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv. Drug Deliv Rev.60, 915–928 (2008).
  • Van Rooijen N, Sanders A. The macrophage as target or obstacle in liposome-based targeting strategies. Int. J. Phar.162(1–2), 45–50 (1998).
  • Burke B, Sumner S, Maitland N, Lewis CE. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J. Leuk. Biol.72(3), 417–428 (2002).
  • Espuelas S. Treatment and prevention of leishmaniasis. Gaz. Méd. Bahia.79(3), 134–146 (2009).
  • Kreuter J. Drug targeting with nanoparticles. Eur. J. Drug Metab. Pharmacokinet.19, 253–256 (1994).
  • Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol. Oncol.45(1), 1–16 (2011).
  • O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev. Vaccines2(2), 269–283 (2003).
  • Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J. Biotech.113, 151–170 (2004).
  • Tafaghodi M, Eskandari M, Khamesipour A, Jaafari MR. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis. Exp. Parasitol.129(2), 107–114 (2011).
  • Tafaghodi M, Eskandari M, Kharazizadeh M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Trop. Biomed.27(3), 639–650 (2010).
  • Santos LE, Colhone MC, Daghastanli KR, Stabeli RG, Silva-Jardim I, Ciancaglini P. Lipid microspheres loaded with antigenic membrane proteins of the Leishmania amazonensis as a potential biotechnology application. J. Colloid. Interface Sci.340(1), 112–118 (2009).
  • Doroud D, Zahedifard F, Vatanara A et al. C-terminal domain deletion enhances the protective activity of cpa/cpb loaded solid lipid nanoparticles against Leishmania major in BALB/c mice. PLoS Negl. Trop. Dis.5(7), e1236 (2011).
  • Doroud D, Zahedifard F, Vatanara A et al. Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. J. Control. Release153(2), 154–162 (2011).
  • Doroud D, Zahedifard F, Vatanara A, Najafabadi AR, Rafati S. Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice. Parasite Immunol.33(6), 335–348 (2011).
  • Doroud D, Vatanara A, Zahedifard F et al. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J. Pharm. Pharm. Sci.13(3), 320–335 (2010).
  • Moghimi SM, Hunter AC. Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm. Res.18(1), 1–8 (2001).
  • França A, Aggarwal P, Barsov EV, Kozlov SV, Dobrovolskaia MA, González-Fernández Á. Macrophage scavenger receptor A mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine (Lond.)6(7), 1175–1188 (2011).
  • Kelly C, Jefferies C, Cryan SA. Targeted Liposomal drug delivery to monocytes and macrophages. J. Drug Del. (2011) (In Press).
  • Aderem A, Underhill D. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol.17, 593–623 (1999).
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. PNAS103(13), 4930–4934 (2006).
  • Aderem A. How to eat something bigger than your head. Cell110, 5–8 (2002).
  • Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur. J. Pharm. Biopharm.71, 161–172 (2009).
  • Brewer JM, Tetley L, Richmond J, Liew FY, Alexander J. Cellular immunology and immune regulation: lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J. Immunol.161, 4000–4007 (1998).
  • Lincopan N, Espindolab NM, Vazb AJ, da Costa MH, Faquim-Mauroc E, Carmona-Ribeiro AM. Novel immunoadjuvants based on cationic lipid: preparation, characterization and activity in vivo. Vaccine27(42), 5760–5771 (2009).
  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al. Size-dependent immunogenicity: therapeutic and protective properties of nanovaccines against tumors. J. Immunol.173, 3148–3173 (2004).
  • Brewer JM, Pollock KGJ, Tetley L, Russell DG. Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. J. Immunol.173, 6143–6150 (2004).
  • Chen HC, Sun B, Tran KK, Shen H. Effects of particle size on Toll-like receptor 9-mediated cytokine profiles. Biomaterials32, 1731–1737 (2011).
  • Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R,Fröhlich E. The role of nanoparticle size in hemocompatibility. Toxicology258(2–3), 139–147 (2009).
  • Göppert TM, Müller RH. Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J. Drug Target.11(4), 225–231 (2003).
  • Mehnert W, Mader K. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Del. Rev.47, 165–196 (2001).
  • del Pozo-Rodríguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL. Solid lipid nanoparticles: formulation factors affecting cell transfection capacity. Int. J. Pharm.339, 261–268 (2007).
  • Seeballuck F, Lawless E, Ashford MB, O’Driscoll CM. Stimulation of triglyceriderich lipoprotein secretion by polysorbate 80: in vitro and in vivo correlation using caco-2 cells and a cannulated rat intestinal lymphatic model. Pharm. Res.21, 2320–2326 (2004).
  • Singh M, Briones M, Ott G, O’Hagan D. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl Acad. Sci.97(8), 11–16 (2000).
  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release76, 59–71 (2001).
  • Vangasseri DP, Cui Z, Chen W, Hokey DA, Falo LD, Huang L. Immunostimulation of dendritic cells by cationic liposomes. Mol. Membr. Biol.23(5), 385–395 (2006).
  • Yan W, Chen W, Huang L. Mechanism of adjuvant activity of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol. Immunol.44(15), 3672–3681 (2007).
  • Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials31(26), 6867–6875 (2010).
  • Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release116(2), 255–264 (2006).
  • Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci.93(8), 1980–1992 (2004).
  • Shimizu Y, Takagi H, Nakayama T et al. Intraperitoneal immunization with oligomannose-coated liposome-entrapped soluble leishmanial antigen induces antigen-specific T-helper type immune response in BALB/c mice through uptake by peritoneal macrophages. Parasite Immunol.29(5), 229–239 (2007).
  • Shimizu Y, Yamakami K, Gomi T et al. Protection against Leishmania major infection by oligomannose-coated liposomes. Bioorg. Med. Chem.11(7), 1191–1195 (2003).
  • McConville MJ, Bacic A, Mitchell GF, Handman E. Lipophosphoglycan of Leishmania major that vaccinates against cutaneous leishmaniasis contains an alkylglycerophosphoinositol lipid anchor. Proc. Natl Acad. Sci. USA84(24), 8941–8945 (1987).
  • Danesh-Bahreini MA, Shokri J, Samiei A, Kamali-Sarvestani E, Barzegar-Jalali M, Mohammadi-Samani S. Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int. J. Nanomed.6, 835–842 (2011).
  • Henriquez FL, Campbell SA, Roberts CW, Mullen AB, Burchmore R, Carter KC. Vaccination with recombinant Leishmania donovani γ-glutamylcysteine synthetase fusion protein protects against L. donovani infection. J. Parasitol.96(5), 929–936 (2010).
  • Bhowmick S, Mazumdar T, Sinha R, Ali N. Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J. Control. Release141, 199–207 (2010).
  • Ravindran R, Bhowmick S, Das A, Ali N. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis. BMC Microbiol.10, 181 (2010).
  • Badiee A, Jaafari MR, Khamesipour A et al. Enhancement of immune response and protection in BALB/c mice immunized with liposomal recombinant major surface glycoprotein of Leishmania (rgp63): the role of bilayer composition. Colloids Surf. B. Biointerfaces74(1), 37–44 (2009).
  • Badiee A, Jaafari MR, Khamesipour A et al. The role of liposome charge on immune response generated in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63). Experimental Parasitol.121(4), 362–369 (2009).
  • Badiee A, Jaafari MR, Samiei A, Soroush D, Khamesipour A. Coencapsulation of CpG oligodeoxynucleotides with recombinant Leishmania major stress-inducible protein 1 in liposome enhances immune response and protection against leishmaniasis in immunized BALB/c mice. Clin. Vacc. Immunol.15(4), 668–674 (2008).
  • Bhowmick S, Ravindran R, Ali N. gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect. Immun.76(3), 1003–1015 (2008).
  • Gomez CS. In-vivo delivery of DNA vaccines using metallo-lipid nanoparticles. ETD Collection for University of Texas, El Paso, TX, USA (2008).
  • Jaafari MR, Ghafarian A, Farrokh-Gisour A et al. Immune response and protection assay of recombinant major surface glycoprotein of Leishmania (rgp63) reconstituted with liposomes in BALB/c mice. Vaccine24(29–30), 5708–5717 (2006).
  • Mazumder S, Ravindran R, Banerjee A, Ali N. Non-coding pDNA bearing immunostimulatory sequences co-entrapped with leishmanial antigens in cationic liposomes elicits almost complete protection against experimental visceral leishmaniasis in BALB/c mice. Vaccine25(52), 8771–8781 (2007).
  • Badiee A, Jaafari MR, Khamesipour A. Leishmania major: immune response in BALB/c mice immunized with stress-inducible protein 1 encapsulated in liposomes. Exp. Parasitol.115(2), 127–134 (2007).
  • Sharma SK, Dube A, Nadeem A et al. Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine24(11), 1800–1810 (2006).
  • Santos FR, Ferraz DB, Daghastanli KR, Ramalho-Pinto FJ, Ciancaglini P. Mimetic membrane system to carry multiple antigenic proteins from Leishmania amazonensis. J. Membr. Biol.210(3), 173–181 (2006).
  • Mazumdar T, Anam K, Ali N. A mixed Th1/Th2 response elicited by a liposomal formulation of Leishmania vaccine instructs Th1 responses and resistance to Leishmania donovani in susceptible BALB/c mice. Vaccine22(9–10), 1162–1171 (2004).
  • Afrin F, Rajesh R, Anam K, Gopinath M, Pal S, Ali N. Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infect. Immun.70(12), 6697–6706 (2002).
  • Afrin F, Anam K, Ali N. Induction of partial protection against Leishmania donovani by promastigote antigens in negatively charged liposomes. J. Parasitol.86(4), 730–735 (2000).
  • Afrin F, Ali N. Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes. Infect. Immun.65(6), 2371–2377 (1997).
  • Lezama-Dávila CM. Vaccination of different strains of mice against cutaneous leishmaniosis: usefulness of membrane antigens encapsulated into liposomes by intraperitoneal and subcutaneous administration. Arch. Med. Res.28(1), 47–53 (1997).
  • Yang DM, Rogers MV, Liew FY. Identification and characterization of host-protective T-cell epitopes of a major surface glycoprotein (gp63) from Leishmania major. Immunology72(1), 3–9 (1991).
  • Kahl LP, Scott CA, Lelchuk R, Gregoriadis G, Liew FY. Vaccination against murine cutaneous leishmaniasis by using Leishmania major antigen/liposomes. Optimization and assessment of the requirement for intravenous immunization. J. Immunol.142(12), 4441–4449 (1989).
  • Russell DG, Alexander J. Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. J. Immunol.140(4), 1274–1279 (1988).
  • Pal I, Ramsey JD. The role of the lymphatic system in vaccine trafficking and immune response. Adv. Drug Deliv. Rev.63(10-11), 909–922 (2011).
  • Christensen D, Korsholm KS, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines10(4), 513–521 (2011).
  • Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Expert. Opin. Drug. Del.8, 505–519 (2011).
  • Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Ann. Rev. Anal. Chem.1, 801–832 (2008).
  • Bhowmick S, Mazumdar T, Ali N. Vaccination route that induces transforming growth factor β production fails to elicit protective immunity against Leishmania donovani infection. Infect. Immun.77, 1514–1523 (2004).
  • Rafati S, Zahedifard F, Nazgouee F. Prime–boost vaccination using cysteine proteinases types I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine24, 2169–2175 (2006).
  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol.38, 1404–1413 (2008).
  • Rafati S, Salmanian AH, Taheri T, Vafa M, Fasel N. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine19, 3369–3375 (2001).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.