638
Views
116
CrossRef citations to date
0
Altmetric
Review

Novel vaccine development strategies for inducing mucosal immunity

, , , , , , & show all
Pages 367-379 | Published online: 09 Jan 2014

References

  • Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25(30), 5467–5484 (2007).
  • Lamm ME. Current concepts in mucosal immunity IV. How epithelial transport of IgA antibodies relates to host defense. Am. J. Physiol. 274(4 Pt 1), G614–G617 (1998).
  • Russell MW, Mestecky J. Humoral immune responses to microbial infections in the genital tract. Microbes Infect. 4(6), 667–677 (2002).
  • Fujihashi K, Boyaka PN, McGhee JR. Host defenses at mucosal surfaces. In: Clinical Immunology. Rich RT et al. (Eds). Mosby Elsevier, PA, USA, 287–304 (2008).
  • Kiyono H, Kunisawa J, McGhee JR, Mestecky J. The mucosal imune system. In: Fundamental Immunology. Paul WE (Ed.). Lippincott Williams & Wilkins, PA, USA, 983–1030 (2008).
  • Hamada H, Hiroi T, Nishiyama Y et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168(1), 57–64 (2002).
  • Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J. Immunol. 170(11), 5475–5482 (2003).
  • Nagatake T, Fukuyama S, Kim DY et al. Id2-, RORγt-, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity. J. Exp. Med. 206(11), 2351–2364 (2009).
  • Seo KY, Han SJ, Cha HR et al. Eye mucosa: an efficient vaccine delivery route for inducing protective immunity. J. Immunol. 185(6), 3610–3619 (2010).
  • Lamm ME, Phillips-Quagliata JM. Origin and homing of intestinal IgA antibody-secreting cells. J. Exp. Med. 195(2), F5–F8 (2002).
  • Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 1(1), 11–22 (2008).
  • Mestecky J, Lue C, Russell MW. Selective transport of IgA. Cellular and molecular aspects. Gastroenterol. Clin. North Am. 20(3), 441–471 (1991).
  • Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195(1), 135–141 (2002).
  • Hamann A, Andrew DP, Jablonski-Westrich D, Holzmann B, Butcher EC. Role of α4-integrins in lymphocyte homing to mucosal tissues in vivo. J. Immunol. 152(7), 3282–3293 (1994).
  • Kantele A, Zivny J, Hakkinen M, Elson CO, Mestecky J. Differential homing commitments of antigen-specific T cells after oral or parenteral immunization in humans. J. Immunol. 162(9), 5173–5177 (1999).
  • Svensson M, Marsal J, Ericsson A et al. CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J. Clin. Invest. 110(8), 1113–1121 (2002).
  • Butcher EC, Williams M, Youngman K, Rott L, Briskin M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).
  • Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21(4), 527–538 (2004).
  • McGhee JR, Kunisawa J, Kiyono H. Gut lymphocyte migration, we are halfway ‘home’. Trends Immunol. 28(4), 150–153 (2007).
  • Mora JR, Iwata M, Eksteen B et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314(5802), 1157–1160 (2006).
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med. 11(Suppl. 4), S45–S53 (2005).
  • Kantele A, Hakkinen M, Moldoveanu Z et al. Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect. Immun. 66(12), 5630–5635 (1998).
  • Wu HY, Russell MW. Nasal lymphoid tissue, intranasal immunization, and compartmentalization of the common mucosal immune system. Immunol. Res. 16(2), 187–201 (1997).
  • Campbell JJ, Brightling CE, Symon FA et al. Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J. Immunol. 166(4), 2842–2848 (2001).
  • Csencsits KL, Walters N, Pascual DW. Cutting edge: dichotomy of homing receptor dependence by mucosal effector B cells: α(E) versus L-selectin. J. Immunol. 167(5), 2441–2445 (2001).
  • Fujihashi K, Kiyono H. Mucosal immunosenescence: new developments and vaccines to control infectious diseases. Trends Immunol. 30(7), 334–343 (2009).
  • Fujihashi K, McGhee JR. Mucosal immunity and tolerance in the elderly. Mech. Ageing Dev. 125(12), 889–898 (2004).
  • Fukuyama,S, Hiroi T, Yokota Y et al. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3- CD4+CD45+ cells. Immunity 17(1), 31–40 (2002).
  • Hagiwara Y, McGhee JR, Fujihashi K et al. Protective mucosal immunity in aging is associated with functional CD4+ T cells in nasopharyngeal-associated lymphoreticular tissue. J. Immunol. 170(4), 1754–1762 (2003).
  • Kato H, Fujihashi K, Kato R et al. Lack of oral tolerance in aging is due to sequential loss of Peyer's patch cell interactions. Int. Immunol. 15(2), 145–158 (2003).
  • Koga T, McGhee JR, Kato H, Kato R, Kiyono H, Fujihashi K. Evidence for early aging in the mucosal immune system. J. Immunol. 165, 5352–5359 (2000).
  • Kunisawa J, Nochi T, Kiyono H. Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol. 29(11), 505–513 (2008).
  • Pascual DW, Riccardi C, Csencsits-Smith K. Distal IgA immunity can be sustained by αEβ7+ B cells in L-selectin-/- mice following oral immunization. Mucosal Immunol. 1(1), 68–77 (2008).
  • Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184(5), 1999–2006 (1996).
  • Yoshida H, Honda K, Shinkura R et al. IL-7 receptor α+ CD3(-) cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11(5), 643–655 (1999).
  • Kurebayashi S, Ueda E, Sakaue M et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl Acad. Sci. USA 97(18), 10132–10137 (2000).
  • Sun Z, Unutmaz D, Zou YR et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288(5475), 2369–2373 (2000).
  • Yokota Y, Mansouri A, Mori S et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397(6721), 702–706 (1999).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 392(6673), 245–252 (1998).
  • Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M. Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets. J. Immunol. 166(9), 5448–5455 (2001).
  • Pulendran B, Banchereau J, Maraskovsky E, Maliszewski C. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol. 22(1), 41–47 (2001).
  • Steinman RM. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).
  • Klinman DM, Currie D, Gursel I, Verthelyi D. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol. Rev. 199, 201–216 (2004).
  • Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol. 73, 329–368 (1999).
  • Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc. Natl Acad. Sci. USA 93(7), 2879–2883 (1996).
  • Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522), 546–549 (1995).
  • Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J. Immunol. 148(12), 4072–4076 (1992).
  • Zimmermann S, Egeter O, Hausmann S et al. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160(8), 3627–3630 (1998).
  • Jahrsdorfer B, Weiner GJ. CpG oligodeoxynucleotides for immune stimulation in cancer immunotherapy. Curr. Opin. Investig. Drugs 4(6), 686–690 (2003).
  • Kline JN, Waldschmidt TJ, Businga TR et al. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J. Immunol. 160(6), 2555–2559 (1998).
  • Brazolot Millan CL, Weeratna R, Krieg AM, Siegrist CA, Davis HL. CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc. Natl Acad. Sci. USA 95(26), 15553–15558 (1998).
  • Davis HL, Weeratna R, Waldschmidt TJ, Tygrett L, Schorr J, Krieg AM. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol. 160(2), 870–876 (1998).
  • Eastcott JW, Holmberg CJ, Dewhirst FE, Esch TR, Smith DJ, Taubman MA. Oligonucleotide containing CpG motifs enhances immune response to mucosally or systemically administered tetanus toxoid. Vaccine 19(13–14), 1636–1642 (2001).
  • Klinman DM. Therapeutic applications of CpG-containing oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev. 8(2), 181–184 (1998).
  • Klinman DM, Barnhart KM, Conover J. CpG motifs as immune adjuvants. Vaccine 17(1), 19–25 (1999).
  • Kovarik J, Bozzotti P, Love-Homan L et al. CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J. Immunol. 162(3), 1611–1617 (1999).
  • McCluskie MJ, Davis HL. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J. Immunol. 161(9), 4463–4466 (1998).
  • Moldoveanu Z, Love-Homan L, Huang WQ, Krieg AM. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 16(11–12), 1216–1224 (1998).
  • McCluskie MJ, Weeratna RD, Krieg AM, Davis HL. CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine 19(7–8), 950–957 (2000).
  • Weeratna RD, Brazolot Millan CL, McCluskie MJ, Davis HL. CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice. FEMS Immunol. Med. Microbiol. 32(1), 65–71 (2001).
  • Yi AK, Yoon JG, Yeo SJ, Hong SC, English BK, Krieg AM. Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th1 response. J. Immunol. 168(9), 4711–4720 (2002).
  • Boyaka PN, Tafaro A, Fischer R, Leppla SH, Fujihashi K, McGhee JR. Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell responses following nasal immunization with protective antigen. J. Immunol. 170(11), 5636–5643 (2003).
  • Brasel K, McKenna HJ, Morrissey PJ et al. Hematologic effects of flt3 ligand in vivo in mice. Blood 88, 2004–2012 (1996).
  • Maraskovsky E, Brasel K, Teepe M et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962 (1996).
  • Lyman SD, James L, Johnson L et al. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 83(10), 2795–2801 (1994).
  • Pulendran B, Banchereau J, Burkeholder S et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol. 165(1), 566–572 (2000).
  • Robinson S, Mosley RL, Parajuli P et al. Comparison of the hematopoietic activity of flt-3 ligand and granulocyte-macrophage colony-stimulating factor acting alone or in combination. J. Hematother. Stem Cell Res. 9(5), 711–720 (2000).
  • Small D, Levenstein M, Kim E et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc. Natl Acad. Sci. USA 91(2), 459–463 (1994).
  • Lyman SD, James L, Vanden Bos T et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75(6), 1157–1167 (1993).
  • Viney JL, Mowat AM, O'Malley JM, Williamson E, Fanger NA. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J. Immunol. 160, 5815–5825 (1998).
  • Williamson E, Westrich GM, Viney JL. Modulating dendritic cells to optimize mucosal immunization protocols. J. Immunol. 163, 3668–3675 (1999).
  • Pisarev VM, Parajuli P, Mosley RL et al. Flt3 ligand enhances the immunogenicity of a gag-based HIV-1 vaccine. Int. J. Immunopharmacol. 22(11), 865–876 (2000).
  • Baca-Estrada ME, Ewen C, Mahony D, Babiuk LA, Wilkie D, Foldvari M. The haemopoietic growth factor, Flt3L, alters the immune response induced by transcutaneous immunization. Immunology 107, 69–76 (2002).
  • Hung CF, Hsu KF, Cheng WF et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 61, 1080–1088 (2001).
  • Moore AC, Kong WP, Chakrabarti BK, Nabel GJ. Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice. J. Virol. 76, 243–250 (2002).
  • Esche C, Subbotin VM, Maliszewski C, Lotze MT, Shurin MR. FLT3 ligand administration inhibits tumor growth in murine melanoma and lymphoma. Cancer Res. 58(3), 380–383 (1998).
  • Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC. Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat. Med. 3(6), 625–631 (1997).
  • Pulendran B, Smith JL, Caspary G et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96(3), 1036–1041 (1999).
  • Vollstedt S, Franchini M, Hefti HP et al. Flt3 ligand-treated neonatal mice have increased innate immunity against intracellular pathogens and efficiently control virus infections. J. Exp. Med. 197(5), 575–584 (2003).
  • Kataoka K, McGhee JR, Kobayashi R, Fujihashi K, Shizukuishi S, Fujihashi K. Nasal Flt3 ligand cDNA elicits CD11c+CD8+ dendritic cells for enhanced mucosal immunity. J. Immunol. 172(6), 3612–3619 (2004).
  • Sekine S, Kataoka K, Fukuyama Y et al. A novel adenovirus expressing flt3 ligand enhances mucosal immunity by inducing mature nasopharyngeal-associated lymphoreticular tissue dendritic cell migration. J. Immunol. 180(12), 8126–8134 (2008).
  • Fukuiwa T, Sekine S, Kobayashi R et al. A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 26(37), 4849–4859 (2008).
  • Fukuyama Y, King JD, Kataoka K et al. A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. J. Immunol. 186(4), 2454–2461 (2011).
  • Bockman DE, Cooper MD. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer's patches. An electron microscopic study. Am. J. Anat. 136(4), 455–477 (1973).
  • Farstad IN, Halstensen TS, Fausa O, Brandtzaeg P. Heterogeneity of M-cell-associated B and T cells in human Peyer's patches. Immunology 83(3), 457–464 (1994).
  • Gebert A, Rothkotter HJ, Pabst R. M cells in Peyer's patches of the intestine. Int. Rev. Cytol. 167, 91–159 (1996).
  • Neutra MR, Frey A, Kraehenbuhl JP. Epithelial M cells, gateways for mucosal infection and immunization. Cell 86(3), 345–348 (1996).
  • Owen RL, Jones AL. Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66(2), 189–203 (1974).
  • Wolf JL, Bye WA. The membranous epithelial (M) cell and the mucosal immune system. Annu. Rev. Med. 35, 95–112 (1984).
  • Ermak TH, Dougherty EP, Bhagat HR, Kabok Z, Pappo J. Uptake and transport of copolymer biodegradable microspheres by rabbit Peyer's patch M cells. Cell Tissue Res. 279(2), 433–436 (1995).
  • Allan CH, Mendrick DL, Trier JS. Rat intestinal M cells contain acidic endosomal-lysosomal compartments and express class II major histocompatibility complex determinants. Gastroenterology 104(3), 698–708 (1993).
  • Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180(1), 15–23 (1994).
  • Teitelbaum R, Schubert W, Gunther L et al. The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity 10(6), 641–650 (1999).
  • Jang, MH, Kweon MN, Iwatani K et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA 101(16), 6110–6115 (2004).
  • Yamamoto M, Rennert P, McGhee JR et al. Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J. Immunol. 164(10), 5184–5189 (2000).
  • Wolf JL, Rubin DH, Finberg R et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science 212(4493), 471–472 (1981).
  • Nibert ML, Furlong DB, Fields BN. Mechanisms of viral pathogenesis. Distinct forms of reoviruses and their roles during replication in cells and host. J. Clin. Invest. 88(3), 727–734 (1991).
  • Wu Y, Boysun MJ, Csencsits KL, Pascual DW. Gene transfer facilitated by a cellular targeting molecule, reovirus protein σ1. Gene Ther. 7(1), 61–69 (2000).
  • Wu Y, Wang X, Csencsits KL, Haddad A, Walters N, Pascual DW. M cell-targeted DNA vaccination. Proc. Natl Acad. Sci. USA 98(16), 9318–9323 (2001).
  • Nochi T, Yuki Y, Matsumura A et al. A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J. Exp. Med. 204(12), 2789–2796 (2007).
  • Kim SH, Seo KW, Kim J, Lee KY, Jang YS. The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J. Immunol. 185(10), 5787–5795 (2010).
  • Rynda A, Maddaloni M, Mierzejewska D et al. Low-dose tolerance is mediated by the microfold cell ligand, reovirus protein σ1. J. Immunol. 180(8), 5187–5200 (2008).
  • Suzuki H, Sekine S, Kataoka K et al. Ovalbumin-protein σ1 M-cell targeting facilitates oral tolerance with reduction of antigen-specific CD4+ T cells. Gastroenterology 135(3), 917–925 (2008).
  • Arakawa T, Chong DK, Langridge WH. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat. Biotechnol. 16(3), 292–297 (1998).
  • Haq TA, Mason HS, Clements JD, Arntzen CJ. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268, 714–716 (1995).
  • Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl Acad. Sci. USA 93(11), 5335–5340 (1996).
  • Mason HS, Haq TA, Clements JD, Arntzen CJ. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16(13), 1336–1343 (1998).
  • Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 18(11), 1167–1171 (2000).
  • Sandhu JS, Krasnyanski SF, Domier LL, Korban SS, Osadjan MD, Buetow DE. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 9(2), 127–135 (2000).
  • Streatfield SJ, Jilka JM, Hood EE et al. Plant-based vaccines: unique advantages. Vaccine 19(17–19), 2742–2748 (2001).
  • Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4(5), 607–609 (1998).
  • Nochi T, Takagi H, Yuki Y et al. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc. Natl Acad. Sci. USA 104(26), 10986–10991 (2007).
  • Tokuhara D, Yuki Y, Nochi T et al. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine. Proc. Natl Acad. Sci. USA 107(19), 8794–8799 (2010).
  • Nochi T, Yuki Y, Katakai Y et al. A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity. J. Immunol. 183(10), 6538–6544 (2009).
  • Yuki Y, Tokuhara D, Nochi T et al. Oral MucoRice expressing double-mutant cholera toxin A and B subunits induces toxin-specific neutralising immunity. Vaccine 27(43), 5982–5988 (2009).
  • de Haan A, Geerligs HJ, Huchshorn JP, van Scharrenburg GJ, Palache AM, Wilschut J. Mucosal immunoadjuvant activity of liposomes, induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with an influenza subunit vaccine and coadministered liposomes. Vaccine 13(2), 155–162 (1995).
  • de Haan A, Tomee JF, Huchshorn JP, Wilschut J. Liposomes as an immunoadjuvant system for stimulation of mucosal and systemic antibody responses against inactivated measles virus administered intranasally to mice. Vaccine 13(14), 1320–1324 (1995).
  • Ernst WA, Kim HJ, Tumpey TM et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine 24(24), 5158–5168 (2006).
  • Hasegawa H, Ichinohe T, Strong P et al. Protection against influenza virus infection by intranasal administration of hemagglutinin vaccine with chitin microparticles as an adjuvant. J. Med. Virol. 75(1), 130–136 (2005).
  • Marinaro M, Boyaka PN, Finkelman FD et al. Oral but not parenteral interleukin (IL)-12 redirects T helper 2 (Th2)-type responses to an oral vaccine without altering mucosal IgA responses. J. Exp. Med. 185(3), 415–427 (1997).
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials, developing the next generation of vaccines. Trends Immunol. 27(12), 573–579 (2006).
  • Sharma S, Mukkur TK, Benson HA, Chen Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci. 98(3), 812–843 (2009).
  • Zurbriggen R, Gluck R. Immunogenicity of IRIV- versus alum-adjuvanted diphtheria and tetanus toxoid vaccines in influenza primed mice. Vaccine 17(11–12), 1301–1305 (1999).
  • Alving CR. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim. Biophys. Acta 1113(3–4), 307–322 (1992).
  • Brochu H, Polidori A, Pucci B, Vermette P. Drug delivery systems using immobilized intact liposomes: a comparative and critical review. Curr. Drug Deliv. 1(3), 299–312 (2004).
  • Gregoriadis, G. Immunological adjuvants: a role for liposomes. Immunol. Today 11(3), 89–97 (1990).
  • Amidi M, Romeijn SG, Verhoef JC et al. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 25(1), 144–153 (2007).
  • Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for clinical neuroscience. J. Neuroimmune Pharmacol. 3(2), 83–94 (2008).
  • Kageyama S, Kitano S, Hirayama M et al. Humoral immune responses in patients vaccinated with 1-146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci. 99(3), 601–607 (2008).
  • Nomura Y, Ikeda M, Yamaguchi N, Aoyama Y, Akiyoshi K. Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS Lett. 553(3), 271–276 (2003).
  • Nochi T, Yuki Y, Takahashi H et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater. 9(7), 572–578 (2010).
  • Lehner T. Innate and adaptive mucosal immunity in protection against HIV infection. Vaccine 21 (Suppl. 2), S68–S76 (2003).
  • Lehner T, Wang Y, Whittall T, Seidl T. Innate immunity and HIV-1 infection. Adv. Dent. Res. 23(1), 19–22 (2011).
  • Tengvall S, Lundqvist A, Eisenberg RJ, Cohen GH, Harandi AM. Mucosal administration of CpG oligodeoxynucleotide elicits strong CC and CXC chemokine responses in the vagina and serves as a potent Th1-tilting adjuvant for recombinant gD2 protein vaccination against genital herpes. J. Virol. 80(11), 5283–5291 (2006).
  • Tengvall S, O'Hagan D, Harandi AM. Rectal immunization generates protective immunity in the female genital tract against herpes simplex virus type 2 infection: relative importance of myeloid differentiation factor 88. Antiviral Res. 78(3), 202–214 (2008).
  • Mowat AM, Faria AM, Weiner HL. Oral tolerance: physiological basis and clinical applications. In: Mucosal Immunology. Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer L (Eds.). Elsevier/Academic Press, CA, USA, 487–537 (2004).
  • Frati F, Moingeon P, Marcucci F et al. Mucosal immunization application to allergic disease: sublingual immunotherapy. Allergy Asthma Proc. 28(1), 35–39 (2007).
  • Moingeon P, Batard T, Fadel R, Frati F, Sieber J, Van Overtvelt L. Immune mechanisms of allergen-specific sublingual immunotherapy. Allergy 61(2), 151–165 (2006).
  • Sun JB, Czerkinsky C, Holmgren J. Sublingual ‘oral tolerance’ induction with antigen conjugated to cholera toxin B subunit generates regulatory T cells that induce apoptosis and depletion of effector T cells. Scand. J. Immunol. 66(2–3), 278–286 (2007).
  • Sun JB, Raghavan S, Sjoling A, Lundin S, Holmgren J. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25- CD4+ regulatory T cells. J. Immunol. 177(11), 7634–7644 (2006).
  • Hagiwara Y, Kawamura YI, Kataoka K et al. A second generation of double mutant cholera toxin adjuvants: enhanced immunity without intracellular trafficking. J. Immunol. 177(5), 3045–3054 (2006).
  • van Ginkel FW, Jackson RJ, Yoshino N et al. Enterotoxin-based mucosal adjuvants alter antigen trafficking and induce inflammatory responses in the nasal tract. Infect. Immun. 73(10), 6892–6902 (2005).
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165(9), 4778–4782 (2000).
  • van Ginkel FW, McGhee JR, Watt JM, Campos-Torres A, Parish LA, Briles DE. Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc. Natl Acad. Sci. USA 100(24), 14363–14367 (2003).
  • Yoshino N, Lu FX, Fujihashi K et al. A novel adjuvant for mucosal immunity to HIV-1 gp120 in nonhuman primates. J. Immunol. 173(11), 6850–6857 (2004).
  • BenMohamed L, Belkaid Y, Loing E, Brahimi K, Gras-Masse H, Druilhe P. Systemic immune responses induced by mucosal administration of lipopeptides without adjuvant. Eur. J. Immunol. 32(8), 2274–2281 (2002).
  • McCluskie MJ, Brazolot Millan CL, Gramzinski RA et al. Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol. Med. 5(5), 287–300 (1999).
  • Montgomery PC, Rafferty DE. Induction of secretory and serum antibody responses following oral administration of antigen with bioadhesive degradable starch microparticles. Oral Microbiol. Immunol. 13(3), 139–149 (1998).
  • Song, JH, Kim JI, Kwon HJ et al. CCR7-CCL19/CCL21-regulated dendritic cells are responsible for effectiveness of sublingual vaccination. J. Immunol. 182(11), 6851–6860 (2009).
  • Song JH, Nguyen HH, Cuburu N et al. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc. Natl Acad. Sci. USA 105(5), 1644–1649 (2008).
  • Zhang T, Hashizume T, Kurita-Ochiai T, Yamamoto M. Sublingual vaccination with outer membrane protein of Porphyromonas gingivalis and Flt3 ligand elicits protective immunity in the oral cavity. Biochem. Biophys. Res. Commun. 390(3), 937–941 (2009).
  • Knop E, Knop N. Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system. Invest. Ophthalmol. Vis. Sci. 42(3), 566–574 (2001).
  • Knop N, Knop E. Conjunctiva-associated lymphoid tissue in the human eye. Invest. Ophthalmol. Vis. Sci. 41(6), 1270–1209 (2000).
  • Cain C, Phillips TE. Developmental changes in conjunctiva-associated lymphoid tissue of the rabbit. Invest. Ophthalmol. Vis. Sci. 49(2), 644–649 (2008).
  • Chodosh J, Nordquist RE, Kennedy RC. Comparative anatomy of mammalian conjunctival lymphoid tissue: a putative mucosal immune site. Dev. Comp. Immunol. 22(5–6), 621–630 (1998).
  • Giuliano EA, Moore CP, Phillips TE. Morphological evidence of M cells in healthy canine conjunctiva-associated lymphoid tissue. Graefes Arch. Clin. Exp. Ophthalmol. 240(3), 220–226 (2002).
  • Gomes JA, Jindal VK, Gormley PD, Dua HS. Phenotypic analysis of resident lymphoid cells in the conjunctiva and adnexal tissues of rat. Exp. Eye Res. 64(6), 991–997 (1997).
  • Knop N, Knop E. Ultrastructural anatomy of CALT follicles in the rabbit reveals characteristics of M-cells, germinal centres and high endothelial venules. J. Anat. 207(4), 409–426 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.