690
Views
116
CrossRef citations to date
0
Altmetric
Review

Carbohydrate-based immune adjuvants

&
Pages 523-537 | Published online: 09 Jan 2014

References

  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol. Cell. Biol.82(5), 488–496 (2004).
  • Rivas E, Gomez-Arnaiz M, Ricoy JR et al. Macrophagic myofasciitis in childhood: a controversial entity. Pediatr. Neurol.33(5), 350–356 (2005).
  • Gherardi RK, Coquet M, Cherin P et al. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain124(Pt 9), 1821–1831 (2001).
  • Holt LB. Quantitative studies in diphtheria prophylaxis; the primary response. Brit. J. Exp. Pathol.30(4), 289–297, pl (1949).
  • Freund J. The effect of paraffin oil and mycobacteria on antibody formation and sensitization; a review. Am. J. Clin. Pathol.21(7), 645–656 (1951).
  • Keitel WA, Campbell JD, Treanor JJ et al. Safety and immunogenicity of an inactivated influenza A/H5N1 vaccine given with or without aluminum hydroxide to healthy adults: results of a Phase I–II randomized clinical trial. J. Infect. Dis.198(9), 1309–1316 (2008).
  • Shu Q, Bir SH, Gill HS et al. Antibody response in sheep following immunization with Streptococcus bovis in different adjuvants. Vet. Res. Commun.25(1), 43–54 (2001).
  • Houston WE, Crabbs CL, Kremer RJ, Springer JW. Adjuvant effects of diethylaminoethyl-dextran. Infect. Immun.13(6), 1559–1562 (1976).
  • Kaistha J, Sokhey J, Singh S, Kumar S, John PC, Sharma NC. Adjuvant effect of DEAE-dextran and tetanus toxoid on whole cell heat inactivated phenol preserved typhoid vaccine. Indian J. Pathol. Microbiol.39(4), 287–292 (1996).
  • Bachelder EM, Beaudette TT, Broaders KE et al. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants. Mol. Pharm.7(3), 826–835 (2010).
  • Schorlemmer HU, Bitter-Suermann D, Allison AC. Complement activation by the alternative pathway and macrophage enzyme secretion in the pathogenesis of chronic inflammation. Immunology32(6), 929–940 (1977).
  • Sato M, Sano H, Iwaki D et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol.171(1), 417–425 (2003).
  • Dillon S, Agrawal S, Banerjee K et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest.116(4), 916–928 (2006).
  • Emod J, Joo I. Nonspecific resistance-enhancing activity of zymosan in experimental bacterial infections. Acta. Microbiol. Hung.37(2), 187–192 (1990).
  • Morikawa K, Takeda R, Yamazaki M, Mizuno D. Induction of tumoricidal activity of polymorphonuclear leukocytes by a linear β-1,3-D-glucan and other immunomodulators in murine cells. Cancer Res.45(4), 1496–1501 (1985).
  • Williams DL, Cook JA, Hoffmann EO, Di Luzio NR. Protective effect of glucan in experimentally induced candidiasis. J. Reticuloendothel. Soc.23(6), 479–490 (1978).
  • Ainai A, Ichinohe T, Tamura S et al. Zymosan enhances the mucosal adjuvant activity of poly(I:C) in a nasal influenza vaccine. J. Med. Virol.82(3), 476–484 (2010).
  • Ara Y, Saito T, Takagi T et al. Zymosan enhances the immune response to DNA vaccine for human immunodeficiency virus type-1 through the activation of complement system. Immunology103(1), 98–105 (2001).
  • Lamkanfi M, Malireddi RK, Kanneganti TD. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem.284(31), 20574–20581 (2009).
  • Hida S, Nagi-Miura N, Adachi Y, Ohno N. β-glucan derived from zymosan acts as an adjuvant for collagen-induced arthritis. Microbiol. Immunol.50(6), 453–461 (2006).
  • Irinoda K, Masihi KN, Chihara G, Kaneko Y, Katori T. Stimulation of microbicidal host defence mechanisms against aerosol influenza virus infection by lentinan. Int. J. Immunopharmacol.14(6), 971–977 (1992).
  • Jeannin JF, Lagadec P, Pelletier H et al. Regression induced by lentinan, of peritoneal carcinomatoses in a model of colon cancer in rat. Int. J. Immunopharmacol.10(7), 855–861 (1988).
  • Chihara G, Hamuro J, Maeda YY et al. Antitumor and metastasis-inhibitory activities of lentinan as an immunomodulator: an overview. Cancer Detect. Prev. Suppl.1, 423–443 (1987).
  • Drandarska I, Kussovski V, Nikolaeva S, Markova N. Combined immunomodulating effects of BCG and Lentinan after intranasal application in guinea pigs. Int. Immunopharmacol.5(4), 795–803 (2005).
  • Wang J, Zhou ZD, Xia DJ. Study on effect of lentinan in enhancing anti-tumor action of dendritic cytoma vaccine and its mechanism. Zhongguo Zhong Xi Yi Jie He Za Zhi27(1), 60–64 (2007).
  • Abel G, Szollosi J, Chihara G, Fachet J. Effect of lentinan and mannan on phagocytosis of fluorescent latex microbeads by mouse peritoneal macrophages: a flow cytometric study. Int. J. Immunopharmacol.11(6), 615–621 (1989).
  • Guo Z, Hu Y, Wang D et al. Sulfated modification can enhance the adjuvanticity of lentinan and improve the immune effect of ND vaccine. Vaccine27(5), 660–665 (2009).
  • Dong SF, Chen JM, Zhang W et al. Specific immune response to HBsAg is enhanced by β-glucan oligosaccharide containing an α-(1→3)-linked bond and biased towards M2/Th2. Int. Immunopharmacol.7(6), 725–733 (2007).
  • Bruley-Rosset M, Florentin I, Mathe G. In vivo and in vitro macrophage activation by systemic adjuvants. Agents Actions6(1–3), 251–255 (1976).
  • Wang J, Dong S, Liu C et al.β-Glucan oligosaccharide enhances CD8(+) T cells immune response induced by a DNA vaccine encoding hepatitis B virus core antigen. J. Biomed. Biotechnol. DOI: 10.1155/2010/645213 (2010) (Epub ahead of print).
  • Mohagheghpour N, Dawson M, Hobbs P et al. Glucans as immunological adjuvants. Adv. Exp. Med. Biol.383, 13–22 (1995).
  • Huang H, Ostroff GR, Lee CK, Wang JP, Specht CA, Levitz SM. Distinct patterns of dendritic cell cytokine release stimulated by fungal β-glucans and Toll-like receptor agonists. Infect. Immun.77(5), 1774–1781 (2009).
  • Huang H, Ostroff GR, Lee CK, Specht CA, Levitz SM. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded β-glucan particles. MBio1(3), e00164–e00110, pii (2010).
  • Cooper PD, Carter M. Anti-complementary action of polymorphic “solubility forms” of particulate inulin. Mol. Immunol.23(8), 895–901 (1986).
  • Cooper PD, Steele EJ. The adjuvanticity of γ inulin. Immunol. Cell. Biol.66( Pt 5–6), 345–352 (1988).
  • Cooper PD, Carter M. The anti-melanoma activity of inulin in mice. Mol. Immunol.23(8), 903–908 (1986).
  • Korbelik M, Cooper PD. Potentiation of photodynamic therapy of cancer by complement: the effect of γ-inulin. Br. J. Cancer.96(1), 67–72 (2007).
  • Cooper PD, Steele EJ. Algammulin, a new vaccine adjuvant comprising γ inulin particles containing alum: preparation and in vitro properties. Vaccine9(5), 351–357 (1991).
  • Cooper PD. Vaccine adjuvants based on γ inulin. Pharm. Biotechnol.6, 559–580 (1995).
  • Petrovsky N. Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity. Vaccine24(Suppl. 2), 26–29 (2006).
  • Silva DG, Cooper PD, Petrovsky N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immune responses. Immunol. Cell. Biol.82(6), 611–616 (2004).
  • Cooper PD, Turner R, McGovern J. Algammulin (γ inulin/alum hybrid adjuvant) has greater adjuvanticity than alum for hepatitis B surface antigen in mice. Immunol. Lett.27(2), 131–134 (1991).
  • Fuentes P, Cooper PD, Barnadas R, Sabes M, Osterhoff C, Martinez P. Use of γ-inulin/liposomes/Vitamin E adjuvant combination in contraceptive vaccines. Int. J. Pharm.257(1–2), 85–95 (2003).
  • Cooper PD, Petrovsky N. δ inulin: a novel, immunologically-active, stable packing structure comprising β-D-[2→1] poly(fructo-furanosyl) α-D glucose polymers. Glycobiology (2010) (In Press).
  • Lobigs M, Pavy M, Hall RA et al. An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J. Gen. Virol.91(Pt 6), 1407–1417 (2010).
  • Cristillo AD, Ferrari MG, Hudacik L et al. Induction of mucosal and systemic antibody and T-cell responses following prime-boost immunization with novel adjuvanted human immunodeficiency virus-1-vaccine formulations. J. Gen. Virol.92(Pt 1), 128–140 (2011).
  • Petrovsky N. Freeing vaccine adjuvants from dangerous immunological dogma. Expert Rev. Vaccines7(1), 7–10 (2008).
  • Thiel S, Gadjeva M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. Adv. Exp. Med. Biol.653, 58–73 (2009).
  • Takahara K, Yashima Y, Omatsu Y et al. Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Int. Immunol.16(6), 819–829 (2004).
  • Sheng KC, Pouniotis DS, Wright MD et al. Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Immunology118(3), 372–383 (2006).
  • McKenzie IF, Apostolopoulos V, Lees C et al. Oxidised mannan antigen conjugates preferentially stimulate T1 type immune responses. Vet. Immunol. Immunopathol.63(1–2), 185–190 (1998).
  • Stambas J, Pietersz G, McKenzie I, Cheers C. Oxidised mannan as a novel adjuvant inducing mucosal IgA production. Vaccine20(7–8), 1068–1078 (2002).
  • Katsara M, Yuriev E, Ramsland PA et al. Altered peptide ligands of myelin basic protein (MBP87–99) conjugated to reduced mannan modulate immune responses in mice. Immunology128(4), 521–533 (2009).
  • Petrushina I, Ghochikyan A, Mkrtichyan M et al. Mannan-Aβ28 conjugate prevents Aβ-plaque deposition, but increases microhemorrhages in the brains of vaccinated Tg2576 (APPsw) mice. J. Neuroinflammation5, 42 (2008).
  • Gauntt CJ, Wood HJ, McDaniel HR, McAnalley BH. Aloe polymannose enhances anti-coxsackievirus antibody titres in mice. Phytother. Res.14(4), 261–266 (2000).
  • Kawakami S, Sato A, Nishikawa M, Yamashita F, Hashida M. Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther.7(4), 292–299 (2000).
  • Toda S, Ishii N, Okada E et al. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-γ antibody. Immunology92(1), 111–117 (1997).
  • Lu Y, Kawakami S, Yamashita F, Hashida M. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials28(21), 3255–3262 (2007).
  • Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol. Lett.101(1), 41–49 (2005).
  • Jain S, Vyas SP. Mannosylated niosomes as carrier adjuvant system for topical immunization. J. Pharm. Pharmacol.57(9), 1177–1184 (2005).
  • Lee JK, Lee MK, Yun YP et al. Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int. Immunopharmacol.1(7), 1275–1284 (2001).
  • Usinger WR. A comparison of antibody responses to veterinary vaccine antigens potentiated by different adjuvants. Vaccine15(17–18), 1902–1907 (1997).
  • Chinnah AD, Baig MA, Tizard IR, Kemp MC. Antigen dependent adjuvant activity of a polydispersed β-(1,4)-linked acetylated mannan (acemannan). Vaccine10(8), 551–557 (1992).
  • Arca HC, Gunbeyaz M, Senel S. Chitosan-based systems for the delivery of vaccine antigens. Expert Rev. Vaccines8(7), 937–953 (2009).
  • Nishiyama A, Tsuji S, Yamashita M, Henriksen RA, Myrvik QN, Shibata Y. Phagocytosis of N-acetyl-D-glucosamine particles, a Th1 adjuvant, by RAW 264.7 cells results in MAPK activation and TNF-α, but not IL-10, production. Cell. Immunol.239(2), 103–112 (2006).
  • Ghendon Y, Markushin S, Vasiliev Y et al. Evaluation of properties of chitosan as an adjuvant for inactivated influenza vaccines administered parenterally. J. Med. Virol.81(3), 494–506 (2009).
  • Chang H, Li X, Teng Y et al. Comparison of adjuvant efficacy of chitosan and aluminum hydroxide for intraperitoneally administered inactivated influenza H5N1 vaccine. DNA Cell. Biol.29(9), 563–568 (2010).
  • Prego C, Paolicelli P, Diaz B et al. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine28(14), 2607–2614 (2010).
  • Kotze AF, Luessen HL, de Leeuw BJ, de Boer BG, Verhoef JC, Junginger HE. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm. Res.14(9), 1197–1202 (1997).
  • Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Giudice GD. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine21(25–26), 3837–3844 (2003).
  • Borges O, Cordeiro-da-Silva A, Tavares J et al. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm.69(2), 405–416 (2008).
  • Gogev S, de Fays K, Versali MF, Gautier S, Thiry E. Glycol chitosan improves the efficacy of intranasally administrated replication defective human adenovirus type 5 expressing glycoprotein D of bovine herpesvirus 1. Vaccine22(15–16), 1946–1953 (2004).
  • Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int. J. Pharm.354(1–2), 235–241 (2008).
  • Sayin B, Somavarapu S, Li XW, Sesardic D, Senel S, Alpar OH. TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur. J. Pharm. Sci.38(4), 362–369 (2009).
  • Gong YF, Xie Y, Zhou NJ et al. Cellular immunity induced by H. pylori vaccine with chitosan as adjuvant. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi23(7), 595–599 (2007).
  • Shibata Y, Honda I, Justice JP, Van Scott MR, Nakamura RM, Myrvik QN. Th1 adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infect. Immun.69(10), 6123–6130 (2001).
  • Shibata Y, Foster LA, Bradfield JF, Myrvik QN. Oral administration of chitin down-regulates serum IgE levels and lung eosinophilia in the allergic mouse. J. Immunol.164(3), 1314–1321 (2000).
  • Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol.10(10), 1081–1088 (2009).
  • Doz E, Rose S, Nigou J et al. Acylation determines the Toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J. Biol. Chem.282(36), 26014–26025 (2007).
  • Doz E, Rose S, Nigou J et al. Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J. Biol. Chem.282(36), 26014–26025 (2007).
  • Hamasur B, Haile M, Pawlowski A et al.Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine21(25–26), 4081–4093 (2003).
  • Yamamura Y, Azuma I, Sugimura K, Yamawaki M, Uemiya M. Adjuvant activity of 6-O-mycoloyl-N-acetylmuramuyl-L-alanyl-D-isoglutamine. Gann67(6), 867–877 (1976).
  • Uehara A, Yang S, Fujimoto Y et al. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell. Microbiol.7(1), 53–61 (2005).
  • Takada H, Uehara A. Enhancement of TLR-mediated innate immune responses by peptidoglycans through NOD signaling. Curr. Pharm. Des.12(32), 4163–4172 (2006).
  • Azuma I, Okumura H, Saiki I et al. Adjuvant activity of carbohydrate analogs of N-acetylmuramyl-L-alanyl-D-isoglutamine on the induction of delayed-type hypersensitivity to azobenzenearsonate-N-acetyl-L-tyrosine in guinea pigs. Infect. Immun.33(3), 834–839 (1981).
  • Valensi JP, Carlson JR, Van Nest GA. Systemic cytokine profiles in BALB/c mice immunized with trivalent influenza vaccine containing MF59 oil emulsion and other advanced adjuvants. J. Immunol.153(9), 4029–4039 (1994).
  • Ott G, Barchfeld GL, Van Nest G. Enhancement of humoral response against human influenza vaccine with the simple submicron oil/water emulsion adjuvant MF59. Vaccine13(16), 1557–1562 (1995).
  • Vosika GJ, Cornelius DA, Gilbert CW et al. Phase I trial of ImmTher, a new liposome-incorporated lipophilic disaccharide tripeptide. J. Immunother.10(4), 256–266 (1991).
  • Vosika GJ, Cornelius DA, Bennek JA, Sadlik JR, Gilbert CW. Immunologic and toxicologic study of disaccharide tripeptide glycerol dipalmitoyl: a new lipophilic immunomodulator. Mol. Biother.2(1), 50–56 (1990).
  • Audibert F, Leclerc C, Chedid L. Muramyl peptides as immunopharmacological response modifiers. In: Biological Response Modifiers. Torrence PF (Ed.). Academic Press, Inc., Orlando, FL, USA, 307–337 (1985).
  • Schwarzkopf C, Thiele B. Effectivity of alternative adjuvants in comparison to freund’s complete adjuvant. ALTEX13(5), 22–25 (1996).
  • Sueoka E, Nishiwaki S, Okabe S et al. Activation of protein kinase C by mycobacterial cord factor, trehalose 6-monomycolate, resulting in tumor necrosis factor-α release in mouse lung tissues. Jpn J. Cancer Res.86(8), 749–755 (1995).
  • Masihi KN, Brehmer W, Lange W, Ribi E. Effects of mycobacterial fractions and muramyl dipeptide on the resistance of mice to aerogenic influenza virus infection. Int. J. Immunopharmacol.5(5), 403–410 (1983).
  • Fujita Y, Okamoto Y, Uenishi Y, Sunagawa M, Uchiyama T, Yano I. Molecular and supra-molecular structure related differences in toxicity and granulomatogenic activity of mycobacterial cord factor in mice. Microb. Pathog.43(1), 10–21 (2007).
  • Koike Y, Yoo YC, Mitobe M et al. Enhancing activity of mycobacterial cell-derived adjuvants on immunogenicity of recombinant human hepatitis B virus vaccine. Vaccine16(20), 1982–1989 (1998).
  • Ribi E, Meyer TJ, Azuma I, Parker R, Brehmer W. Biologically active components from mycobacterial cell walls. IV. Protection of mice against aerosol infection with virulent Mycobacterium tuberculosis. Cell. Immunol.16(1), 1–10 (1975).
  • Ribi E, Granger DL, Milner KC et al. Induction of resistance to tuberculosis in mice with defined components of Mycobacteria and with some unrelated materials. Zentralbl. Bakteriol. Mikrobiol. Hyg. A251(3), 345–356 (1982).
  • Masihi KN, Lange W, Brehmer W, Ribi E. Immunobiological activities of nontoxic lipid A: enhancement of nonspecific resistance in combination with trehalose dimycolate against viral infection and adjuvant effects. Int. J. Immunopharmacol.8(3), 339–345 (1986).
  • Cekic C, Casella CR, Eaves CA, Matsuzawa A, Ichijo H, Mitchell TC. Selective activation of the p38 MAPK pathway by synthetic monophosphoryl lipid A. J. Biol. Chem.284(46), 31982–31991 (2009).
  • Schiller JT, Castellsague X, Villa LL, Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine26(Suppl. 10), K53–K61 (2008).
  • Tong NK, Beran J, Kee SA et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int.68(5), 2298–2303 (2005).
  • Lacaille-Dubois MA. Bioactive saponins with cancer related and immunomodulatory activity: recent developments. In: Studies in Natural Products Chemistry. Atta ur R (Ed.). Elsevier, Amsterdam, The Netherlands, 209–246 (2005).
  • Dai JH, Iwatani Y, Ishida T et al. Glycyrrhizin enhances interleukin-12 production in peritoneal macrophages. Immunology103(2), 235–243 (2001).
  • Raphael TJ, Kuttan G. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine10(6–7), 483–489 (2003).
  • Kensil CR, Wu JY, Soltysik S. Structural and immunological characterization of the vaccine adjuvant QS-21. Pharm. Biotechnol.6, 525–541 (1995).
  • Kensil CR, Soltysik S, Wheeler DA, Wu JY. Structure/function studies on QS-21, a unique immunological adjuvant from Quillaja saponaria. Adv. Exp. Med. Biol.404, 165–172 (1996).
  • Meraldi V, Romero JF, Kensil C, Corradin G. A strong CD8+ T cell response is elicited using the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei together with the adjuvant QS-21: quantitative and phenotypic comparison with the vaccine model of irradiated sporozoites. Vaccine23(21), 2801–2812 (2005).
  • Pham HL, Ross BP, McGeary RP, Shaw PN, Hewavitharana AK, Davies NM. Saponins from Quillaja saponaria Molina: isolation, characterization and ability to form immuno stimulatory complexes (ISCOMs). Curr. Drug Deliv.3(4), 389–397 (2006).
  • Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine27(12), 1787–1796 (2009).
  • Marciani DJ, Press JB, Reynolds RC et al. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Vaccine18(27), 3141–3151 (2000).
  • Marciani DJ, Reynolds RC, Pathak AK, Finley-Woodman K, May RD. Fractionation, structural studies, and immunological characterization of the semi-synthetic Quillaja saponins derivative GPI-0100. Vaccine21(25–26), 3961–3971 (2003).
  • Quenelle DC, Collins DJ, Marciani DJ, Kern ER. Effect of immunization with herpes simplex virus type-1 (HSV-1) glycoprotein D (gD) plus the immune enhancer GPI-0100 on infection with HSV-1 or HSV-2. Vaccine24(10), 1515–1522 (2006).
  • Quenelle DC, Collins DJ, Rice TL, Prichard MN, Marciani DJ, Kern ER. Effect of an immune enhancer, GPI-0100, on vaccination with live attenuated herpes simplex virus (HSV) type 2 or glycoprotein D on genital HSV-2 infections of guinea pigs. Antiviral Res.80(2), 223–224 (2008).
  • Ragupathi G, Coltart DM, Williams LJ et al. On the power of chemical synthesis: immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines. Proc. Natl Acad. Sci. USA99(21), 13699–13704 (2002).
  • Rawal N, Rajagopalan R, Salvi VP. Stringent regulation of complement lectin pathway C3/C5 convertase by C4b-binding protein (C4BP). Mol. Immunol.46(15), 2902–2910 (2009).
  • Ray TL, Hanson A, Ray LF, Wuepper KD. Purification of a mannan from Candida albicans which activates serum complement. J. Invest. Dermatol.73(4), 269–274 (1979).
  • Kawasaki A, Takada H, Kotani S et al. Activation of the human complement cascade by bacterial cell walls, peptidoglycans, water-soluble peptidoglycan components, and synthetic muramylpeptides–studies on active components and structural requirements. Microbiol. Immunol.31(6), 551–569 (1987).
  • Bohana-Kashtan O, Ziporen L, Donin N, Kraus S, Fishelson Z. Cell signals transduced by complement. Mol. Immunol.41(6–7), 583–597 (2004).
  • Weston SA, Parish CR. Modification of lymphocyte migration by mannans and phosphomannans. Different carbohydrate structures control entry of lymphocytes into spleen and lymph nodes. J. Immunol.146(12), 4180–4186 (1991).
  • Hawn TR, Ozinsky A, Underhill DM, Buckner FS, Akira S, Aderem A. Leishmania major activates IL-1 α expression in macrophages through a MyD88-dependent pathway. Microbes Infect.4(8), 763–771 (2002).
  • Liu G, Anderson C, Scaltreto H, Barbon J, Kensil CR. QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine20(21–22), 2808–2815 (2002).
  • Deng K, Adams MM, Damani P, Livingston PO, Ragupathi G, Gin DY. Synthesis of QS-21-xylose: establishment of the immunopotentiating activity of synthetic QS-21 adjuvant with a melanoma vaccine. Angew. Chem. Int. Ed. Engl.47(34), 6395–6398 (2008).
  • Cluff CW, Baldridge JR, Stover AG et al. Synthetic Toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect. Immun.73(5), 3044–3052 (2005).
  • Stover AG, Da Silva Correia J, Evans JT et al. Structure-activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem.279(6), 4440–4449 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.