4,862
Views
101
CrossRef citations to date
0
Altmetric
Special Report

Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

, , , , , , , & show all
Pages 1405-1413 | Published online: 09 Jan 2014

References

  • Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS‑CoV – a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7(3), 226–236 (2009).
  • Roper RL, Rehm KE. SARS vaccines: where are we? Expert Rev. Vaccines 8(7), 887–898 (2009).
  • Jaume M, Yip MS, Kam YW et al. SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement. Hong Kong Med. J. 18(Suppl. 2), 31–36 (2012).
  • Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279(5), 3197–3201 (2004).
  • Du L, Zhao G, Li L et al. Antigenicity and immunogenicity of SARS-CoV S protein receptor-binding domain stably expressed in CHO cells. Biochem. Biophys. Res. Commun. 384(4), 486–490 (2009).
  • Du L, Zhao G, Chan CC et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity. Virology 393(1), 144–150 (2009).
  • Li W, Moore MJ, Vasilieva N et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965), 450–454 (2003).
  • He Y, Lu H, Siddiqui P, Zhou Y, Jiang S. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J. Immunol. 174(8), 4908–4915 (2005).
  • He Y, Zhu Q, Liu S et al. Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines. Virology 334(1), 74–82 (2005).
  • He Y, Li J, Li W, Lustigman S, Farzan M, Jiang S. Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein. J. Immunol. 176(10), 6085–6092 (2006).
  • Du L, Zhao G, He Y et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 25(15), 2832–2838 (2007).
  • Cao Z, Liu L, Du L et al. Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients. Virol. J. 7, 299 (2010).
  • Chen Z, Zhang L, Qin C et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 79(5), 2678–2688 (2005).
  • Du L, Zhao G, Chan CC et al. A 219-mer CHO-expressing receptor-binding domain of SARS-CoV S protein induces potent immune responses and protective immunity. Viral Immunol. 23(2), 211–219 (2010).
  • Fox CB, Friede M, Reed SG, Ireton GC. Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants. Subcell. Biochem. 53, 303–321 (2010).
  • Baldwin SL, Shaverdian N, Goto Y et al. Enhanced humoral and Type 1 cellular immune responses with Fluzone adjuvanted with a synthetic TLR4 agonist formulated in an emulsion. Vaccine 27(43), 5956–5963 (2009).
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 30(1), 23–32 (2009).
  • Behzad H, Huckriede AL, Haynes L et al. GLA-SE, a synthetic Toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J. Infect. Dis. 205(3), 466–473 (2012).
  • Olsen CW. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet. Microbiol. 36(1–2), 1–37 (1993).
  • Weiss RC, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis. 4(2), 175–189 (1981).
  • Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5(12), 917–927 (2005).
  • Castilow EM, Olson MR, Varga SM. Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease. Immunol. Res. 39(1-3), 225–239 (2007).
  • Collins PL, Graham BS. Viral and host factors in human respiratory syncytial virus pathogenesis. J. Virol. 82(5), 2040–2055 (2008).
  • Bolles M, Deming D, Long K et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85(23), 12201–12215 (2011).
  • Deming D, Sheahan T, Heise M et al. Vaccine efficacy in senescent mice challenged with recombinant severe acute respiratory syndrome-coronavirus bearing epidemic and zoonotic spike variants. PLoS Med. 3(12), e525 (2006).
  • Yasui F, Kai C, Kitabatake M et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J. Immunol. 181(9), 6337–6348 (2008).
  • Delgado MF, Coviello S, Monsalvo AC et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 15(1), 34–41 (2009).
  • Tseng CT, Sbrana E, Iwata-Yoshikawa N et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE 7(4), e35421 (2012).
  • Jaume M, Yip MS, Kam YW et al. SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement. Hong Kong Med. J. 18(Suppl. 2), 31–36 (2012).
  • Hotez P. A handful of ‘antipoverty’ vaccines exist for neglected diseases, but the world’s poorest billion people need more. Health Aff. (Millwood) 30(6), 1080–1087 (2011).
  • Maddux NR, Joshi SB, Volkin DB, Ralston JP, Middaugh CR. Multidimensional methods for the formulation of biopharmaceuticals and vaccines. J. Pharm. Sci. doi:10.1002/jps.22618 (2011) (Epub ahead of print).
  • Plieskatt JL, Rezende WC, Olsen CM et al. Advances in vaccines against neglected tropical diseases: enhancing physical stability of a recombinant hookworm vaccine through biophysical and formulation studies. Hum. Vaccin. Immunother. 8(6), 765–776 (2012).
  • Tseng CT, Huang C, Newman P et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J. Virol. 81(3), 1162–1173 (2007).
  • McCray PB Jr, Pewe L, Wohlford-Lenane C et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
  • Goud GN, Bottazzi ME, Zhan B et al. Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Vaccine 23(39), 4754–4764 (2005).
  • Asojo OA, Goud G, Dhar K et al. X-ray structure of Na-ASP-2, a pathogenesis-related-1 protein from the nematode parasite, Necator americanus, and a vaccine antigen for human hookworm infection. J. Mol. Biol. 346(3), 801–814 (2005).
  • Asojo OA, Homma K, Sedlacek M et al. X-ray structures of Na-GST-1 and Na-GST-2 two glutathione S-transferase from the human hookworm Necator americanus. BMC Struct. Biol. 7, 42 (2007).
  • Goud GN, Deumic V, Gupta R et al. Expression, purification, and molecular analysis of the Necator americanus glutathione S-transferase 1 (Na-GST-1): a production process developed for a lead candidate recombinant hookworm vaccine antigen. Protein Expr. Purif. 83(2), 145–151 (2012).
  • Bethony JM, Simon G, Diemert DJ et al. Randomized, placebo-controlled, double-blind trial of the Na-ASP-2 hookworm vaccine in unexposed adults. Vaccine 26(19), 2408–2417 (2008).
  • Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A. Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat. Rev. Microbiol. 8(11), 814–826 (2010).
  • Burns DL. Licensure of vaccines using the Animal Rule. Curr. Opin. Virol. 2(3), 353–356 (2012).
  • Roberts A, Deming D, Paddock CD et al. A mouse-adapted SARS-coronavirus causes disease and mortality in Balb/c mice. PLoS Pathogens 3, e5 (2007).
  • Hearty S, Conroy PJ, Ayyar BV, Byrne B, O’Kennedy R. Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev. Vaccines 9(6), 645–664 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.