816
Views
51
CrossRef citations to date
0
Altmetric
Review

Hepatitis B core–based virus–like particles to present heterologous epitopes

, , &
Pages 183-198 | Published online: 09 Jan 2014

References

  • Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol. Rev. 28, 112–125 (2006).
  • Rivers TM. Viruses and Koch’s Postulates. J. Bacteriol. 33(1), 1–12 (1937).
  • Blumberg BS, Alter HJ, Visnich S. A ‘new’ antigen in leukemia sera. JAMA 191, 541–546 (1965).
  • Blumberg BS, Sutnick AI, London WT. Hepatitis and leukemia: their relation to Australia antigen. Bull. N. Y. Acad. Med. 44(12), 1566–1586 (1968).
  • Prince AM. An antigen detected in the blood during the incubation period of serum hepatitis. Proc. Natl Acad. Sci. USA 60(3), 814–821 (1968).
  • Wang GH, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell 71(4), 663–670 (1992).
  • Weber M, Bronsema V, Bartos H, Bosserhoff A, Bartenschlager R, Schaller H. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J. Virol. 68(5), 2994–2999 (1994).
  • Szmuness W, Stevens CE, Harley EJ et al. Hepatitis B vaccine: demonstration of efficacy in a controlled clinical trial in a high-risk population in the United States. N. Engl. J. Med. 303(15), 833–841 (1980).
  • Jilg W, Lorbeer B, Schmidt M, Wilske B, Zoulek G, Deinhardt F. Clinical evaluation of a recombinant hepatitis B vaccine. Lancet 2(8413), 1174–1175 (1984).
  • McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human hepatitis B vaccine from recombinant yeast. Nature 307(5947), 178–180 (1984).
  • Mangold CM, Streeck RE. Mutational analysis of the cysteine residues in the hepatitis B virus small envelope protein. J. Virol. 67(8), 4588–4597 (1993).
  • Heermann KH, Kruse F, Seifer M, Gerlich WH. Immunogenicity of the gene S and Pre-S domains in hepatitis B virions and HBsAg filaments. Intervirology 28(1), 14–25 (1987).
  • Neurath AR, Kent SB, Strick N, Parker K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 46(3), 429–436 (1986).
  • Schulze A, Schieck A, Ni Y, Mier W, Urban S. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J. Virol. 84(4), 1989–2000 (2010).
  • Ferrari C, Penna A, Bertoletti A et al. The preS1 antigen of hepatitis B virus is highly immunogenic at the T cell level in man. J. Clin. Invest. 84(4), 1314–1319 (1989).
  • Milich DR. T- and B-cell recognition of hepatitis B viral antigens. Immunol. Today 9(12), 380–386 (1988).
  • Pillot J, Poynard T, Elias A et al. Weak immunogenicity of the pre-S2 sequence and lack of circumventing effect on the unresponsiveness to the hepatitis B virus vaccine. Vaccine 13(3), 289–294 (1995).
  • Shapira MY, Zeira E, Adler R, Shouval D. Rapid seroprotection against hepatitis B following the first dose of a Pre-S1/Pre-S2/S vaccine. J. Hepatol. 34(1), 123–127 (2001).
  • Zuckerman JN, Zuckerman AJ, Symington I et al.; UK Hepacare Study Group. Evaluation of a new hepatitis B triple-antigen vaccine in inadequate responders to current vaccines. Hepatology 34(4 Pt 1), 798–802 (2001).
  • Rendi-Wagner P, Shouval D, Genton B et al. Comparative immunogenicity of a PreS/S hepatitis B vaccine in non- and low responders to conventional vaccine. Vaccine 24(15), 2781–2789 (2006).
  • Sylvan SP, Madalinski K, Hellström UB. Anti-preS responses influence the anti-HBs response in newborns after vaccination with the third generation Sci-B-Vac vaccine. Vaccine 28(2), 446–451 (2009).
  • Bruss V, Vieluf K. Functions of the internal pre-S domain of the large surface protein in hepatitis B virus particle morphogenesis. J. Virol. 69(11), 6652–6657 (1995).
  • Zhou S, Standring DN. Hepatitis B virus capsid particles are assembled from core-protein dimer precursors. Proc. Natl Acad. Sci. USA 89(21), 10046–10050 (1992).
  • Crowther RA, Kiselev NA, Böttcher B et al. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77(6), 943–950 (1994).
  • Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell 22(6), 843–850 (2006).
  • Messageot F, Salhi S, Eon P, Rossignol JM. Proteolytic processing of the hepatitis B virus e antigen precursor. J. Biol. Chem. 278(2), 891 (2003).
  • Schödel F, Peterson D, Zheng J, Jones JE, Hughes JL, Milich DR. Structure of hepatitis B virus core and e-antigen. A single precore amino acid prevents nucleocapsid assembly. J. Biol. Chem. 268(2), 1332–1337 (1993).
  • Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc. Natl Acad. Sci. USA 87(17), 6599–6603 (1990).
  • Walsh R, Locarnini S. Hepatitis B precore protein: pathogenic potential and therapeutic promise. Yonsei Med. J. 53(5), 875–885 (2012).
  • Porterfield JZ, Dhason MS, Loeb DD, Nassal M, Stray SJ, Zlotnick A. Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J. Virol. 84(14), 7174–7184 (2010).
  • Watts NR, Conway JF, Cheng N et al. The morphogenic linker peptide of HBV capsid protein forms a mobile array on the interior surface. EMBO J. 21(5), 876–884 (2002).
  • Zlotnick A, Cheng N, Conway JF et al. Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry 35(23), 7412–7421 (1996).
  • Wynne SA, Crowther RA, Leslie AG. The crystal structure of the human hepatitis B virus capsid. Mol. Cell 3(6), 771–780 (1999).
  • Barker LF, Murray R. Relationship of virus dose to incubation time of clinical hepatitis and time of appearance of hepatitis–associated antigen. Am. J. Med. Sci. 263(1), 27–33 (1972).
  • Bartenschlager R, Schaller H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J. 11(9), 3413–3420 (1992).
  • Hirsch RC, Lavine JE, Chang LJ, Varmus HE, Ganem D. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription. Nature 344(6266), 552–555 (1990).
  • Beck J, Nassal M. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J. Biol. Chem. 278(38), 36128–36138 (2003).
  • Hu J, Flores D, Toft D, Wang X, Nguyen D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J. Virol. 78(23), 13122–13131 (2004).
  • Wang X, Grammatikakis N, Hu J. Role of p50/CDC37 in hepadnavirus assembly and replication. J. Biol. Chem. 277(27), 24361–24367 (2002).
  • Daub H, Blencke S, Habenberger P et al. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J. Virol. 76(16), 8124–8137 (2002).
  • Kann M, Gerlich WH. Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. J. Virol. 68(12), 7993–8000 (1994).
  • Kau JH, Ting LP. Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. J. Virol. 72(5), 3796–3803 (1998).
  • Roseman AM, Berriman JA, Wynne SA, Butler PJ, Crowther RA. A structural model for maturation of the hepatitis B virus core. Proc. Natl Acad. Sci. USA 102(44), 15821–15826 (2005).
  • Böttcher B, Wynne SA, Crowther RA. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386(6620), 88–91 (1997).
  • Burrell CJ, Mackay P, Greenaway PJ, Hofschneider PH, Murray K. Expression in Escherichia coli of hepatitis B virus DNA sequences cloned in plasmid pBR322. Nature 279(5708), 43–47 (1979).
  • Hardy K, Stahl S, Küpper H. Production in B. subtilis of hepatitis B core antigen and a major antigen of foot and mouth disease virus. Nature 293(5832), 481–483 (1981).
  • Schödel F, Milich DR, Will H. Hepatitis B virus nucleocapsid/pre-S2 fusion proteins expressed in attenuated Salmonella for oral vaccination. J. Immunol. 145(12), 4317–4321 (1990).
  • Kniskern PJ, Hagopian A, Montgomery DL et al. Unusually high-level expression of a foreign gene (hepatitis B virus core antigen) in Saccharomyces cerevisiae. Gene 46(1), 135–141 (1986).
  • Plüddemann A, Van Zyl WH. Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr. Genet. 43(6), 439–446 (2003).
  • Rolland D, Gauthier M, Dugua JM et al. Purification of recombinant HBc antigen expressed in Escherichia coli and Pichia pastoris: comparison of size-exclusion chromatography and ultracentrifugation. J. Chromatogr. B Biomed. Sci. Appl. 753(1), 51–65 (2001).
  • Hirschman SZ, Price P, Garfinkel E, Christman J, Acs G. Expression of cloned hepatitis B virus DNA in human cell cultures. Proc. Natl Acad. Sci. USA 77(9), 5507–5511 (1980).
  • Standring DN, Ou JH, Masiarz FR, Rutter WJ. A signal peptide encoded within the precore region of hepatitis B virus directs the secretion of a heterogeneous population of e antigens in Xenopus oocytes. Proc. Natl Acad. Sci. USA 85(22), 8405–8409 (1988).
  • Takehara K, Ireland D, Bishop DH. Co-expression of the hepatitis B surface and core antigens using baculovirus multiple expression vectors. J. Gen. Virol. 69 (Pt 11), 2763–2777 (1988).
  • Tsuda S, Yoshioka K, Tanaka T et al. Application of the human hepatitis B virus core antigen from transgenic tobacco plants for serological diagnosis. Vox Sang. 74(3), 148–155 (1998).
  • Bruss V, Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc. Natl Acad. Sci. USA 88(3), 1059–1063 (1991).
  • Ueda K, Tsurimoto T, Matsubara K. Three envelope proteins of hepatitis B virus: large S, middle S, and major S proteins needed for the formation of Dane particles. J. Virol. 65(7), 3521–3529 (1991).
  • Clarke BE, Newton SE, Carroll AR et al. Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature 330(6146), 381–384 (1987).
  • Cohen BJ, Richmond JE. Electron microscopy of hepatitis B core antigen synthesized in E. coli. Nature 296(5858), 677–679 (1982).
  • Cohen BJ, Cossart YE. Application of a screening test for antibody the hepatitis B core antigen. J. Clin. Pathol. 30(8), 709–713 (1977).
  • Winther MD, Allen G, Bomford RH, Brown F. Bacterially expressed antigenic peptide from foot-and-mouth disease virus capsid elicits variable immunologic responses in animals. J. Immunol. 136(5), 1835–1840 (1986).
  • Conway JF, Cheng N, Zlotnick A, Wingfield PT, Stahl SJ, Steven AC. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386(6620), 91–94 (1997).
  • Salfeld J, Pfaff E, Noah M, Schaller H. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus. J. Virol. 63(2), 798–808 (1989).
  • Gallina A, Bonelli F, Zentilin L, Rindi G, Muttini M, Milanesi G. A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J. Virol. 63(11), 4645–4652 (1989).
  • De Filette M, Min Jou W, Birkett A et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology 337(1), 149–161 (2005).
  • Schödel F, Moriarty AM, Peterson DL et al. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J. Virol. 66(1), 106–114 (1992).
  • Nassal M, Skamel C, Vogel M et al. Development of hepatitis B virus capsids into a whole-chain protein antigen display platform: new particulate Lyme disease vaccines. Int. J. Med. Microbiol. 298(1–2), 135–142 (2008).
  • Kratz PA, Böttcher B, Nassal M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc. Natl Acad. Sci. USA 96(5), 1915–1920 (1999).
  • Skamel C, Ploss M, Böttcher B et al. Hepatitis B virus capsid-like particles can display the complete, dimeric outer surface protein C and stimulate production of protective antibody responses against Borrelia burgdorferi infection. J. Biol. Chem. 281(25), 17474–17481 (2006).
  • Nassal M, Skamel C, Kratz PA, Wallich R, Stehle T, Simon MM. A fusion product of the complete Borrelia burgdorferi outer surface protein A (OspA) and the hepatitis B virus capsid protein is highly immunogenic and induces protective immunity similar to that seen with an effective lipidated OspA vaccine formula. Eur. J. Immunol. 35(2), 655–665 (2005).
  • Walker A, Skamel C, Vorreiter J, Nassal M. Internal core protein cleavage leaves the hepatitis B virus capsid intact and enhances its capacity for surface display of heterologous whole chain proteins. J. Biol. Chem. 283(48), 33508–33515 (2008).
  • Jegerlehner A, Tissot A, Lechner F et al. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine 20(25–26), 3104–3112 (2002).
  • Wang XJ, Gu K, Xiong QY et al. A novel virus-like particle based on hepatitis B core antigen and substrate-binding domain of bacterial molecular chaperone DnaK. Vaccine 27(52), 7377–7384 (2009).
  • Schwarz K, Meijerink E, Speiser DE et al. Efficient homologous prime-boost strategies for T cell vaccination based on virus-like particles. Eur. J. Immunol. 35(3), 816–821 (2005).
  • Milich DR, McLachlan A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 234(4782), 1398–1401 (1986).
  • Milich DR, McLachlan A, Moriarty A, Thornton GB. Immune response to hepatitis B virus core antigen (HBcAg): localization of T cell recognition sites within HBcAg/HBeAg. J. Immunol. 139(4), 1223–1231 (1987).
  • Ferrari C, Penna A, Bertoletti A, Fiaccadori F. Cell mediated immune response to hepatitis B virus nucleocapsid antigen. Arch. Virol. Suppl. 8, 91–101 (1993).
  • Milich DR, Peterson DL, Schödel F, Jones JE, Hughes JL. Preferential recognition of hepatitis B nucleocapsid antigens by Th1 or Th2 cells is epitope and major histocompatibility complex dependent. J. Virol. 69(5), 2776–2785 (1995).
  • Milich DR, McLachlan A, Thornton GB, Hughes JL. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature 329(6139), 547–549 (1987).
  • Milich DR, Chen M, Schödel F, Peterson DL, Jones JE, Hughes JL. Role of B cells in antigen presentation of the hepatitis B core. Proc. Natl Acad. Sci. USA 94(26), 14648–14653 (1997).
  • Lee BO, Tucker A, Frelin L et al. Interaction of the hepatitis B core antigen and the innate immune system. J. Immunol. 182(11), 6670–6681 (2009).
  • Zhang Y, Song S, Liu C et al. Generation of chimeric HBc proteins with epitopes in E. coli: formation of virus-like particles and a potent inducer of antigen-specific cytotoxic immune response and anti-tumor effect in vivo. Cell. Immunol. 247(1), 18–27 (2007).
  • Ding FX, Wang F, Lu YM et al. Multiepitope peptide-loaded virus-like particles as a vaccine against hepatitis B virus-related hepatocellular carcinoma. Hepatology 49(5), 1492–1502 (2009).
  • Song S, Zhang K, You H et al. Significant anti-tumour activity of adoptively transferred T cells elicited by intratumoral dendritic cell vaccine injection through enhancing the ratio of CD8+ T cell/regulatory T cells in tumour. Clin. Exp. Immunol. 162(1), 75–83 (2010).
  • Milich DR, McLachlan A, Stahl S et al. Comparative immunogenicity of hepatitis B virus core and E antigens. J. Immunol. 141(10), 3617–3624 (1988).
  • Fehr T, Skrastina D, Pumpens P, Zinkernagel RM. T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc. Natl Acad. Sci. USA 95(16), 9477–9481 (1998).
  • Vanlandschoot P, Van Houtte F, Serruys B, Leroux-Roels G. The arginine-rich carboxy-terminal domain of the hepatitis B virus core protein mediates attachment of nucleocapsids to cell-surface-expressed heparan sulfate. J. Gen. Virol. 86(Pt 1), 75–84 (2005).
  • Vanlandschoot P, Van Houtte F, Ulrichts P, Tavernier J, Leroux-Roels G. Immunostimulatory potential of hepatitis B nucleocapsid preparations: lipopolysaccharide contamination should not be overlooked. J. Gen. Virol. 86(Pt 2), 323–331 (2005).
  • Vanlandschoot P, Van Houtte F, Serruys B, Leroux-Roels G. Contamination of a recombinant hepatitis B virus nucleocapsid preparation with a human B-cell activator. J. Virol. 81(5), 2535–2536 (2007).
  • Crompton PD, Pierce SK, Miller LH. Advances and challenges in malaria vaccine development. J. Clin. Invest. 120(12), 4168–4178 (2010).
  • Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216(5111), 160–162 (1967).
  • Clyde DF, McCarthy VC, Miller RM, Hornick RB. Specificity of protection of man immunized against sporozoite-induced falciparum malaria. Am. J. Med. Sci. 266(6), 398–403 (1973).
  • Rieckmann KH, Beaudoin RL, Cassells JS, Sell KW. Use of attenuated sporozoites in the immunization of human volunteers against falciparum malaria. Bull. World Health Organ. 57(Suppl. 1), 261–265 (1979).
  • Nussenzweig V, Nussenzweig RS. Development of a sporozoite malaria vaccine. Am. J. Trop. Med. Hyg. 35(4), 678–688 (1986).
  • Ballou WR, Hoffman SL, Sherwood JA et al. Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet 1(8545), 1277–1281 (1987).
  • Herrington DA, Clyde DF, Losonsky G et al. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. Nature 328(6127), 257–259 (1987).
  • Schödel F, Wirtz R, Peterson D et al. Immunity to malaria elicited by hybrid hepatitis B virus core particles carrying circumsporozoite protein epitopes. J. Exp. Med. 180(3), 1037–1046 (1994).
  • Sällberg M, Hughes J, Jones J, Phillips TR, Milich DR. A malaria vaccine candidate based on a hepatitis B virus core platform. Intervirology 45(4-6), 350–361 (2002).
  • Milich DR, Hughes J, Jones J, Sällberg M, Phillips TR. Conversion of poorly immunogenic malaria repeat sequences into a highly immunogenic vaccine candidate. Vaccine 20(5-6), 771–788 (2001).
  • Birkett A, Lyons K, Schmidt A et al. A modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts. Infect. Immun. 70(12), 6860–6870 (2002).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a phase I trial. Infect. Immun. 73(6), 3587–3597 (2005).
  • Nardin EH, Oliveira GA, Calvo-Calle JM et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect. Immun. 72(11), 6519–6527 (2004).
  • Walther M, Dunachie S, Keating S et al. Safety, immunogenicity and efficacy of a pre-erythrocytic malaria candidate vaccine, ICC-1132 formulated in Seppic ISA 720. Vaccine 23(7), 857–864 (2005).
  • Gregson AL, Oliveira G, Othoro C et al. Phase I trial of an alhydrogel adjuvanted hepatitis B core virus-like particle containing epitopes of Plasmodium falciparum circumsporozoite protein. PLoS One 3(2), e1556 (2008).
  • Good MF, Pombo D, Quakyi IA et al. Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum: immunodominant T-cell domains map to the polymorphic regions of the molecule. Proc. Natl Acad. Sci. USA 85(4), 1199–1203 (1988).
  • Rutgers T, Gordon D, Gathoye AM et al. Hepatitis B surface antigen as carrier matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum. Nature Biotechnology 6(9), 1065–1070 (1988).
  • Gordon DM, McGovern TW, Krzych U et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J. Infect. Dis. 171(6), 1576–1585 (1995).
  • Garçon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines 6(5), 723–739 (2007).
  • Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A. From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum. Vaccin. 6(1), 90–96 (2010).
  • Schwenk RJ, Richie TL. Protective immunity to pre-erythrocytic stage malaria. Trends Parasitol. 27(7), 306–314 (2011).
  • Lamb RA, Choppin PW. Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virology 112(2), 729–737 (1981).
  • Pinto LH, Holsinger LJ, Lamb RA. Influenza virus M2 protein has ion channel activity. Cell 69(3), 517–528 (1992).
  • Takeda M, Pekosz A, Shuck K, Pinto LH, Lamb RA. Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J. Virol. 76(3), 1391–1399 (2002).
  • Iwatsuki-Horimoto K, Horimoto T, Noda T et al. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J. Virol. 80(11), 5233–5240 (2006).
  • Chen BJ, Leser GP, Jackson D, Lamb RA. The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J. Virol. 82(20), 10059–10070 (2008).
  • Gannagé M, Dormann D, Albrecht R et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6(4), 367–380 (2009).
  • Rossman JS, Jing X, Leser GP, Balannik V, Pinto LH, Lamb RA. Influenza virus m2 ion channel protein is necessary for filamentous virion formation. J. Virol. 84(10), 5078–5088 (2010).
  • Rossman JS, Jing X, Leser GP, Lamb RA. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142(6), 902–913 (2010).
  • Guan Z, Liu D, Mi S et al. Interaction of Hsp40 with influenza virus M2 protein: implications for PKR signaling pathway. Protein Cell 1(10), 944–955 (2010).
  • Roose K, Fiers W, Saelens X. Pandemic preparedness: toward a universal influenza vaccine. Drug News Perspect. 22(2), 80–92 (2009).
  • Roose K, Schotsaert M, Bakkouri KE, Schepens B, Fiers W, Saelens X. Cutting edge approaches toward novel and cross-protective influenza vaccines. In: Development of Novel Vaccines. von Gabain A, Klade C (Eds). Springer, NY, USA, 205–232 (2012).
  • Saelens X. The influenza matrix protein 2 as a vaccine target. Future Virology 3(2), 167–178 (2008).
  • Schotsaert M, De Filette M, Fiers W, Saelens X. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev. Vaccines 8(4), 499–508 (2009).
  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 5(10), 1157–1163 (1999).
  • De Filette M, Ramne A, Birkett A et al. The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 24(5), 544–551 (2006).
  • De Filette M, Martens W, Smet A et al. Universal influenza A M2e-HBc vaccine protects against disease even in the presence of pre-existing anti-HBc antibodies. Vaccine 26(51), 6503–6507 (2008).
  • Fiers W, De Filette M, El Bakkouri K et al. M2e-based universal influenza A vaccine. Vaccine 27(45), 6280–6283 (2009).
  • Zhang GG, Li DX, Zhang HH, Zeng YM, Chen L. Enhancement of mucosal immune response against the M2eHBc+ antigen in mice with the fusion expression products of LTB and M2eHBc+ through mucosal immunization route. Vet. Res. Commun. 33(7), 735–747 (2009).
  • Ameiss K, Ashraf S, Kong W et al. Delivery of woodchuck hepatitis virus-like particle presented influenza M2e by recombinant attenuated Salmonella displaying a delayed lysis phenotype. Vaccine 28(41), 6704–6713 (2010).
  • Nemchinov LG, Natilla A. Transient expression of the ectodomain of matrix protein 2 (M2e) of avian influenza A virus in plants. Protein Expr. Purif. 56(2), 153–159 (2007).
  • Denis J, Acosta-Ramirez E, Zhao Y et al. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine 26(27–28), 3395–3403 (2008).
  • Bessa J, Schmitz N, Hinton HJ, Schwarz K, Jegerlehner A, Bachmann MF. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: implications for vaccine design. Eur. J. Immunol. 38(1), 114–126 (2008).
  • Tissot AC, Renhofa R, Schmitz N et al. Versatile virus-like particle carrier for epitope based vaccines. PLoS One 5(3), e9809 (2010).
  • Michel ML, Tiollais P. Hepatitis B vaccines: protective efficacy and therapeutic potential. Pathol. Biol. 58(4), 288–295 (2010).
  • Neurath AR, Seto B, Strick N. Antibodies to synthetic peptides from the preS1 region of the hepatitis B virus (HBV) envelope (env) protein are virus-neutralizing and protective. Vaccine 7(3), 234–236 (1989).
  • Milich DR, McLachlan A, Chisari FV, Kent SB, Thorton GB. Immune response to the pre-S (1) region of the hepatitis B surface antigen (HBsAg): a pre-S (1)-specific T cell response can bypass nonresponsiveness to the pre-S (2) and S regions of HBsAg. J. Immunol. 137(1), 315 (1986).
  • Chen X, Li M, Le X, Ma W, Zhou B. Recombinant hepatitis B core antigen carrying preS1 epitopes induce immune response against chronic HBV infection. Vaccine 22(3–4), 439–446 (2004).
  • Yue Q, Hu X, Yin W et al. Immune responses to recombinant Mycobacterium smegmatis expressing fused core protein and preS1 peptide of hepatitis B virus in mice. J. Virol. Methods 141(1), 41–48 (2007).
  • Yang HJ, Chen M, Cheng T et al. Expression and immunoactivity of chimeric particulate antigens of receptor binding site-core antigen of hepatitis B virus. World J. Gastroenterol. 11(4), 492–497 (2005).
  • Skrastina D, Bulavaite A, Sominskaya I et al. High immunogenicity of a hydrophilic component of the hepatitis B virus preS1 sequence exposed on the surface of three virus-like particle carriers. Vaccine 26(16), 1972–1981 (2008).
  • Bremer CM, Sominskaya I, Skrastina D et al. N-terminal myristoylation-dependent masking of neutralizing epitopes in the preS1 attachment site of hepatitis B virus. J. Hepatol. 55(1), 29–37 (2011).
  • Engelke M, Mills K, Seitz S et al. Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 43(4), 750–760 (2006).
  • Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 213(2), 292–299 (1995).
  • Tan YJ. Hepatitis B virus infection and the risk of hepatocellular carcinoma. World J. Gastroenterol. 17(44), 4853–4857 (2011).
  • Kwon H, Lok AS. Does antiviral therapy prevent hepatocellular carcinoma? Antivir. Ther. (Lond.) 16(6), 787–795 (2011).
  • Shen YC, Hsu C, Cheng CC, Hu FC, Cheng AL. A critical evaluation of the preventive effect of antiviral therapy on the development of hepatocellular carcinoma in patients with chronic hepatitis C or B: a novel approach by using meta-regression. Oncology 82(5), 275–289 (2012).
  • Ng SA, Lee C. Hepatitis B virus X gene and hepatocarcinogenesis. J. Gastroenterol. 46(8), 974–990 (2011).
  • Herzenberg LA, Tokuhisa T, Parks DR, Herzenberg LA. Epitope-specific regulation. II. A bistable, Igh-restricted regulatory mechanism central to immunologic memory. J. Exp. Med. 155(6), 1741–1753 (1982).
  • Geldmacher A, Skrastina D, Borisova G et al. A hantavirus nucleocapsid protein segment exposed on hepatitis B virus core particles is highly immunogenic in mice when applied without adjuvants or in the presence of pre-existing anti-core antibodies. Vaccine 23(30), 3973–3983 (2005).
  • Belnap DM, Watts NR, Conway JF et al. Diversity of core antigen epitopes of hepatitis B virus. Proc. Natl Acad. Sci. USA 100(19), 10884–10889 (2003).
  • De Filette M, Fiers W, Martens W et al. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine 24(44–46), 6597–6601 (2006).
  • Baumert TF, Thimme R, von Weizsäcker F. Pathogenesis of hepatitis B virus infection. World J. Gastroenterol. 13(1), 82–90 (2007).
  • Ferrari C, Penna A, Bertoletti A et al. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J. Immunol. 145(10), 3442–3449 (1990).
  • Billaud JN, Peterson D, Schödel F et al. Comparative antigenicity and immunogenicity of hepadnavirus core proteins. J. Virol. 79(21), 13641–13655 (2005).
  • Billaud JN, Peterson D, Lee BO et al. Advantages to the use of rodent hepadnavirus core proteins as vaccine platforms. Vaccine 25(9), 1593–1606 (2007).
  • Riedl P, Stober D, Oehninger C, Melber K, Reimann J, Schirmbeck R. Priming Th1 immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J. Immunol. 168(10), 4951–4959 (2002).
  • Arora U, Tyagi P, Swaminathan S, Khanna N. Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J. Nanobiotechnology 10, 30 (2012).
  • Sun C, Ding FX, Wang F et al. Screen of multifunctional monoclonal antibodies against hepatitis B core virus-like particles. Microbiol. Immunol. 53(6), 340–348 (2009).
  • Malik IR, Chen A, Brass A et al. A bi-functional hepatitis B virus core antigen (HBcAg) chimera activates HBcAg-specific T cells and preS1-specific antibodies. Scand. J. Infect. Dis. 44(1), 55–59 (2012).
  • Huang Y, Liang W, Wang Y et al. Immunogenicity of the epitope of the foot-and-mouth disease virus fused with a hepatitis B core protein as expressed in transgenic tobacco. Viral Immunol. 18(4), 668–677 (2005).
  • Zhang YL, Guo YJ, Wang KY et al. Enhanced immunogenicity of modified hepatitis B virus core particle fused with multiepitopes of foot-and-mouth disease virus. Scand. J. Immunol. 65(4), 320–328 (2007).
  • Boulter NR, Glass EJ, Knight PA, Bell-Sakyi L, Brown CG, Hall R. Theileria annulata sporozoite antigen fused to hepatitis B core antigen used in a vaccination trial. Vaccine 13(13), 1152–1160 (1995).
  • Ulrich R, Borisova GP, Gren E et al. Immunogenicity of recombinant core particles of hepatitis B virus containing epitopes of human immunodeficiency virus 1 core antigen. Arch. Virol. 126(1–4), 321–328 (1992).
  • Stahl SJ, Murray K. Immunogenicity of peptide fusions to hepatitis B virus core antigen. Proc. Natl Acad. Sci. USA 86(16), 6283–6287 (1989).
  • von Brunn A, Brand M, Reichhuber C, Morys-Wortmann C, Deinhardt F, Schödel F. Principal neutralizing domain of HIV-1 is highly immunogenic when expressed on the surface of hepatitis B core particles. Vaccine 11(8), 817–824 (1993).
  • Takeda S, Shiosaki K, Kaneda Y et al. Hemagglutinating virus of Japan protein is efficient for induction of CD4+ T-cell response by a hepatitis B core particle-based HIV vaccine. Clin. Immunol. 112(1), 92–105 (2004).
  • Oldenburg DJ, Kumar RA, Bendich AJ. The amount and integrity of mtDNA in maize decline with development. Planta doi:10.1007/s00425-012-1802-z (2012) (Epub ahead of print).
  • Geldmacher A, Skrastina D, Petrovskis I et al. An amino-terminal segment of hantavirus nucleocapsid protein presented on hepatitis B virus core particles induces a strong and highly cross-reactive antibody response in mice. Virology 323(1), 108–119 (2004).
  • Pumpens P, Razanskas R, Pushko P et al. Evaluation of HBs, HBc, and frCP virus-like particles for expression of human papillomavirus 16 E7 oncoprotein epitopes. Intervirology 45(1), 24–32 (2002).
  • Chen JY, Li F. Development of hepatitis C virus vaccine using hepatitis B core antigen as immuno-carrier. World J. Gastroenterol. 12(48), 7774–7778 (2006).
  • Sominskaya I, Skrastina D, Dislers A et al. Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes. Clin. Vaccine Immunol. 17(6), 1027–1033 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.