825
Views
95
CrossRef citations to date
0
Altmetric
Review

Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines

, , , &
Pages 733-744 | Published online: 09 Jan 2014

References

  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 33(4), 492–503 (2010).
  • Agnandji ST, Lell B, Soulanoudjingar SS et al..; RTS,S Clinical Trials Partnership. First results of Phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365(20), 1863–1875 (2011).
  • Asante KP, Abdulla S, Agnandji S et al. Safety and efficacy of the RTS,S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, Phase 2 trial. Lancet Infect. Dis. 11(10), 741–749 (2011).
  • Sullivan M. Moving candidate vaccines into development from research: lessons from HIV. Immunol. Cell Biol. 87(5), 366–370 (2009).
  • Harandi AM, Medaglini D, Shattock RJ; Working Group convened by EUROPRISE. Vaccine adjuvants: a priority for vaccine research. Vaccine 28(12), 2363–2366 (2010).
  • Rappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473(7348), 463–469 (2011).
  • Guy B. The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol. 5(7), 505–517 (2007).
  • Casares S, Brumeanu TD, Richie TL. The RTS,S malaria vaccine. Vaccine 28(31), 4880–4894 (2010).
  • Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S et al.. Combination adjuvants: the next generation of adjuvants? Expert Rev. Vaccines 10(1), 95–107 (2011).
  • Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 10(4), 471–486 (2011).
  • Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28(Suppl. 3), C25–C36 (2010).
  • Dey AK, Srivastava IK. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev. Vaccines 10(2), 227–251 (2011).
  • Harandi AM, Davies G, Olesen OF. Vaccine adjuvants: scientific challenges and strategic initiatives. Expert Rev. Vaccines 8(3), 293–298 (2009).
  • Clark K, Cavicchi J, Jensen K, Fitzgerald R, Bennett A, Kowalski SP. Patent data mining: a tool for accelerating HIV vaccine innovation. Vaccine 29(24), 4086–4093 (2011).
  • Deamer DW. From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J. 24(5), 1308–1310 (2010).
  • Nordly P, Agger EM, Andersen P, Nielsen HM, Foged C. Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm. Res. 28(3), 553–562 (2011).
  • Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J. Drug Deliv. 2011, 591325 (2011).
  • Caroff M, Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 338(23), 2431–2447 (2003).
  • Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3(2), 169–176 (2003).
  • Alving CR, Rao M. Lipid A and liposomes containing lipid A as antigens and adjuvants. Vaccine 26(24), 3036–3045 (2008).
  • Wang X, Quinn PJ. Lipopolysaccharide: biosynthetic pathway and structure modification. Prog. Lipid Res. 49(2), 97–107 (2010).
  • Bryant CE, Spring DR, Gangloff M, Gay NJ. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 8(1), 8–14 (2010).
  • Takayama K, Ribi E, Cantrell JL. Isolation of a nontoxic lipid A fraction containing tumor regression activity. Cancer Res. 41(7), 2654–2657 (1981).
  • Qureshi N, Takayama K, Ribi E. Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium. J. Biol. Chem. 257(19), 11808–11815 (1982).
  • Ribi E, Amano K, Cantrell JL, Schwartzman SM, Parker R, Takayama K. Preparation and antibumor activity of nontoxic lipid A. Cancer Immunol. Immunother. 12, 91–96 (1982).
  • Takayama K, Qureshi N, Raetz CR et al.. Influence of fine structure of lipid A on Limulus amebocyte lysate clotting and toxic activities. Infect. Immun. 45(2), 350–355 (1984).
  • Raetz CR, Garrett TA, Reynolds CM et al.. Kdo2-lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. J. Lipid Res. 47(5), 1097–1111 (2006).
  • Kusumoto S, Fukase K, Shiba T. Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: chemical synthesis and functional studies. Proc. Jpn. Acad. Ser. B, Phys. Biol. Sci. 86(4), 322–337 (2010).
  • Johnson DA, Keegan DS, Sowell CG et al. 3-O-desacyl monophosphoryl lipid A derivatives: synthesis and immunostimulant activities. J. Med. Chem. 42(22), 4640–4649 (1999).
  • Kotani S, Takada H, Tsujimoto M et al. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infect. Immun. 49(1), 225–237 (1985).
  • Takada H, Kotani S. Structural requirements of lipid A for endotoxicity and other biological activities. Crit. Rev. Microbiol. 16(6), 477–523 (1989).
  • Brade L, Rietschel ET, Kusumoto S, Shiba T, Brade H. Immunogenicity and antigenicity of synthetic Escherichia coli lipid A. Infect. Immun. 51(1), 110–114 (1986).
  • Coler RN, Baldwin SL, Shaverdian N et al. A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PLoS ONE 5(10), e13677 (2010).
  • Lumsden JM, Pichyangkul S, Srichairatanakul U et al. Evaluation of the safety and immunogenicity in rhesus monkeys of a recombinant malaria vaccine for Plasmodium vivax with a synthetic Toll-like receptor 4 agonist formulated in an emulsion. Infect. Immun. 79(9), 3492–3500 (2011).
  • Behzad H, Huckriede AL, Haynes L et al. GLA-SE, a synthetic toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J. Infect. Dis. 205(3), 466–473 (2012).
  • Myers KR, Beining P, Betts M, Snippe H, Inman J, Golding B. Monophosphoryl lipid A behaves as a T-cell-independent type 1 carrier for hapten-specific antibody responses in mice. Infect. Immun. 63(1), 168–174 (1995).
  • Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci. 65(20), 3231–3240 (2008).
  • Storni T, Kündig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv. Drug Deliv. Rev. 57(3), 333–355 (2005).
  • Sharp FA, Ruane D, Claass B et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106(3), 870–875 (2009).
  • De Gregorio E, D’Oro U, Wack A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol. 21(3), 339–345 (2009).
  • Hutchison S, Benson RA, Gibson VB, Pollock AH, Garside P, Brewer JM. Antigen depot is not required for alum adjuvanticity. FASEB J. 26(3), 1272–1279 (2012).
  • Henriksen-Lacey M, Bramwell VW, Christensen D, Agger EM, Andersen P, Perrie Y. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Release 142(2), 180–186 (2010).
  • Kaur R, Bramwell VW, Kirby DJ, Perrie Y. Pegylation of DDA:TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses. J. Control. Release 158(1), 72–77 (2012).
  • Watson DS, Szoka FC Jr. Role of lipid structure in the humoral immune response in mice to covalent lipid-peptides from the membrane proximal region of HIV-1 gp41. Vaccine 27(34), 4672–4683 (2009).
  • Rao M, Peachman KK, Li Q et al. Highly effective generic adjuvant systems for orphan or poverty-related vaccines. Vaccine 29(5), 873–877 (2011).
  • Heppner DG, Gordon DM, Gross M et al. Safety, immunogenicity, and efficacy of Plasmodium falciparum repeatless circumsporozoite protein vaccine encapsulated in liposomes. J. Infect. Dis. 174(2), 361–366 (1996).
  • Fries LF, Gordon DM, Richards RL et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc. Natl Acad. Sci. USA 89(1), 358–362 (1992).
  • Alving CR. Liposomes as carriers of antigens and adjuvants. J. Immunol. Methods 140(1), 1–13 (1991).
  • Shek PN, Lukovich S. The role of macrophages in promoting the antibody response mediated by liposome-associated protein antigens. Immunol. Lett. 5(6), 305–309 (1982).
  • van Rooijen N. Macrophages as accessory cells in the in vivo humoral immune response: from processing of particulate antigens to regulation by suppression. Semin. Immunol. 4(4), 237–245 (1992).
  • van Rooijen N. Immunoadjuvant activities of liposomes: two different macrophage-mediated mechanisms. Vaccine 11(11), 1170 (1993).
  • Kamphorst AO, Guermonprez P, Dudziak D, Nussenzweig MC. Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes. J. Immunol. 185(6), 3426–3435 (2010).
  • Peachman KK, Rao M, Alving CR, Palmer DR, Sun W, Rothwell SW. Human dendritic cells and macrophages exhibit different intracellular processing pathways for soluble and liposome-encapsulated antigens. Immunobiology 210(5), 321–333 (2005).
  • Tanaka Y, Taneichi M, Kasai M, Kakiuchi T, Uchida T. Liposome-coupled antigens are internalized by antigen-presenting cells via pinocytosis and cross-presented to CD8 T cells. PLoS ONE 5(12), e15225 (2010).
  • Peachman KK, Rao M, Palmer DR et al. Functional microtubules are required for antigen processing by macrophages and dendritic cells. Immunol. Lett. 95(1), 13–24 (2004).
  • Rao M, Alving CR. Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells. Adv. Drug Deliv. Rev. 41(2), 171–188 (2000).
  • Kloetzel PM. The proteasome and MHC class I antigen processing. Biochim. Biophys. Acta 1695(1–3), 225–233 (2004).
  • Kuehn L, Dahlmann B. Structural and functional properties of proteasome activator PA28. Mol. Biol. Rep. 24(1–2), 89–93 (1997).
  • Sijts A, Sun Y, Janek K et al. The role of the proteasome activator PA28 in MHC class I antigen processing. Mol. Immunol. 39(3–4), 165–169 (2002).
  • Steers NJ, Alving CR, Rao M. The adjuvant effect of liposomal lipid A on the induction of immunoproteasome subunits. Vaccine 26(23), 2849–2859 (2008).
  • Steers NJ, Peachman KK, McClain S, Alving CR, Rao M. Liposome-encapsulated HIV-1 Gag p24 containing lipid A induces effector CD4+ T-cells, memory CD8+ T-cells, and pro-inflammatory cytokines. Vaccine 27(49), 6939–6949 (2009).
  • Loureiro J, Ploegh HL. Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv. Immunol. 92, 225–305 (2006).
  • Ossendorp F, Fu N, Camps M et al. Differential expression regulation of the alpha and β subunits of the PA28 proteasome activator in mature dendritic cells. J. Immunol. 174(12), 7815–7822 (2005).
  • Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat. Rev. Immunol. 6(11), 859–868 (2006).
  • Li F, Ma J, Ma Y et al. Mapping HIV-1 vaccine induced T-cell responses: bias towards less-conserved regions and potential impact on vaccine efficacy in the STEP study. PLoS ONE 6(12), e20479 (2011).
  • Aboud S, Nilsson C, Karlén K et al. Strong HIV-specific CD4+ and CD8+ T-lymphocyte proliferative responses in healthy individuals immunized with an HIV-1 DNA vaccine and boosted with recombinant modified vaccinia virus ankara expressing HIV-1 genes. Clin. Vaccine Immunol. 17(7), 1124–1131 (2010).
  • Churchyard GJ, Morgan C, Adams E et al..; NIAID HIV Vaccine Trials Network. A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204). PLoS ONE 6(8), e21225 (2011).
  • Steers NJ, Peachman KK, McClain SR, Alving CR, Rao M. Human immunodeficiency virus type 1 Gag p24 alters the composition of immunoproteasomes and affects antigen presentation. J. Virol. 83(14), 7049–7061 (2009).
  • Steers NJ, Currier JR, Kijak GH et al. Cell type-specific proteasomal processing of HIV-1 Gag-p24 results in an altered epitope repertoire. J. Virol. 85(4), 1541–1553 (2011).
  • Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev. Vaccines 9(2), 157–173 (2010).
  • Gavin AL, Hoebe K, Duong B et al. Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science 314(5807), 1936–1938 (2006).
  • Brandenburg K, Howe J, Gutsman T, Garidel P. The expression of endotoxic activity in the Limulus test as compared to cytokine production in immune cells. Curr. Med. Chem. 16(21), 2653–2660 (2009).
  • Vosika GJ, Barr C, Gilbertson D. Phase-I study of intravenous modified lipid A. Cancer Immunol. Immunother. 18(2), 107–112 (1984).
  • Richards RL, Swartz GM Jr, Schultz C et al. Immunogenicity of liposomal malaria sporozoite antigen in monkeys: adjuvant effects of aluminium hydroxide and non-pyrogenic liposomal lipid A. Vaccine 7(6), 506–512 (1989).
  • Anderson RC, Fox CB, Dutill TS et al. Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids Surf. B. Biointerfaces 75(1), 123–132 (2010).
  • Vandepapelière P, Horsmans Y, Moris P et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine 26(10), 1375–1386 (2008).
  • Matyas GR, Alving CR. Antigen-specific enhancement of natural human IgG antibodies to phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol-4-phosphate, cholesterol, and lipid A by a liposomal vaccine containing lipid A. Vaccine 29(32), 5137–5144 (2011).
  • Matyas GR, Wieczorek L, Bansal D et al. Inhibition of HIV-1 infection of peripheral blood mononuclear cells by a monoclonal antibody that binds to phosphoinositides and induces secretion of β-chemokines. Biochem. Biophys. Res. Commun. 402(4), 808–812 (2010).
  • Matyas GR, Wieczorek L, Beck Z et al. Neutralizing antibodies induced by liposomal HIV-1 glycoprotein 41 peptide simultaneously bind to both the 2F5 or 4E10 epitope and lipid epitopes. AIDS 23(16), 2069–2077 (2009).
  • Batenjany MM, Boni LT, Guo Y et al. The effect of cholesterol in a liposomal Muc1 vaccine. Biochim. Biophys. Acta 1514(2), 280–290 (2001).
  • Nicolau C, Greferath R, Balaban TS, Lazarte JE, Hopkins RJ. A liposome-based therapeutic vaccine against β-amyloid plaques on the pancreas of transgenic NORBA mice. Proc. Natl Acad. Sci. USA 99(4), 2332–2337 (2002).
  • Frisch B, Hassane FS, Schuber F. Conjugation of ligands to the surface of preformed liposomes by click chemistry. Methods Mol. Biol. 605, 267–277 (2010).
  • Alving CR, Koulchin V, Glenn GM, Rao M. Liposomes as carriers of peptide antigens: induction of antibodies and cytotoxic T lymphocytes to conjugated and unconjugated peptides. Immunol. Rev. 145, 5–31 (1995).
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).
  • Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81(11), 678–699 (2003).
  • Lemere CA. Developing novel immunogens for a safe and effective Alzheimer’s disease vaccine. Prog. Brain Res. 175, 83–93 (2009).
  • Orgogozo JM, Gilman S, Dartigues JF et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1), 46–54 (2003).
  • Muhs A, Hickman DT, Pihlgren M et al. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc. Natl Acad. Sci. USA 104(23), 9810–9815 (2007).
  • Hickman DT, López-Deber MP, Ndao DM et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J. Biol. Chem. 286(16), 13966–13976 (2011).
  • Kester KE, Cummings JF, Ofori-Anyinam O et al..; RTS,S Vaccine Evaluation Group. Randomized, double-blind, Phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 200(3), 337–346 (2009).
  • Sun ZY, Oh KJ, Kim M et al. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity 28(1), 52–63 (2008).
  • McElrath MJ. Selection of potent immunological adjuvants for vaccine construction. Semin. Cancer Biol. 6(6), 375–385 (1995).
  • Zollinger WD, Babcock JG, Moran EE et al. Phase I study of a Neisseria meningitidis liposomal vaccine containing purified outer membrane proteins and detoxified lipooligosaccharide. Vaccine 30(4), 712–721 (2012).
  • Alving CR. Design and selection of vaccine adjuvants: animal models and human trials. Vaccine 20(Suppl. 3), S56–S64 (2002).
  • Harris DT, Matyas GR, Gomella LG et al. Immunologic approaches to the treatment of prostate cancer. Semin. Oncol. 26(4), 439–447 (1999).
  • Neidhart J, Allen KO, Barlow DL et al. Immunization of colorectal cancer patients with recombinant baculovirus-derived KSA (Ep-CAM) formulated with monophosphoryl lipid A in liposomal emulsion, with and without granulocyte-macrophage colony-stimulating factor. Vaccine 22(5–6), 773–780 (2004).
  • North SA, Graham K, Bodnar D, Venner P. A pilot study of the liposomal MUC1 vaccine BLP25 in prostate specific antigen failures after radical prostatectomy. J. Urol. 176(1), 91–95 (2006).

Patents

  • Vandepapeliere P. Vaccine compositions comprising a saponin adjuvant. US patent application No. 13/020,045, Publication No. US20/0206758 (2011).
  • Rahman YE. Liposome encapsulation of chelating agents. US3932657 (1976).
  • Allison AC, Gregoriadis, G. Immunological preparations. US4117113 (1978).
  • Galanos C, Luderitz O, Westphal O. Lipid A preparation. US4029762 (1977).
  • Ribi EE. Refined detoxified endotoxin product. US4436727 (1984).
  • Ribi EE, Cantrell JL. Refined detoxified endotoxin product. US4435386 (1984).
  • Myers KR, Truchot AT. Modified lipopolysaccharides and process of preparation. US4912094 (1990).
  • Myers KR, Truchot AT. Modified lipopolysaccharides and process of preparation. USB1 4912094 reexamination certificate (1994).
  • Garcon NM, Friede M. Vaccines containing a saponin and a sterol. EP-0822831(B1) (1999).
  • Reed SG, Carter D. Vaccine composition containing synthetic adjuvant. US patent application No. 13,277,919, Publication No. US2012/039994 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.