9,522
Views
454
CrossRef citations to date
0
Altmetric
Review

The fundamental link between pneumococcal carriage and disease

, , , , , & show all
Pages 841-855 | Published online: 09 Jan 2014

References

  • Skinner JM, Indrawati L, Cannon J et al. Pre-clinical evaluation of a 15-valent pneumococcal conjugate vaccine (PCV15-CRM197) in an infant-rhesus monkey immunogenicity model. Vaccine 29(48), 8870–8876 (2011).
  • Moffitt KL, Malley R. Next generation pneumococcal vaccines. Curr. Opin. Immunol. 23(3), 407–413 (2011).
  • Linder TE, Daniels RL, Lim DJ, DeMaria TF. Effect of intranasal inoculation of Streptococcus pneumoniae on the structure of the surface carbohydrates of the chinchilla eustachian tube and middle ear mucosa. Microb. Pathog. 16(6), 435–441 (1994).
  • Peltola VT, Boyd KL, McAuley JL, Rehg JE, McCullers JA. Bacterial sinusitis and otitis media following influenza virus infection in ferrets. Infect. Immun. 74(5), 2562–2567 (2006).
  • van der Ven LT, van den Dobbelsteen GP, Nagarajah B et al. A new rat model of otitis media caused by Streptococcus pneumoniae: conditions and application in immunization protocols. Infect. Immun. 67(11), 6098–6103 (1999).
  • Kadioglu A, Gingles NA, Grattan K, Kerr A, Mitchell TJ, Andrew PW. Host cellular immune response to pneumococcal lung infection in mice. Infect. Immun. 68(2), 492–501 (2000).
  • Ogunniyi AD, LeMessurier KS, Graham RM et al. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect. Immun. 75(4), 1843–1851 (2007).
  • Gray BM, Converse GM 3rd, Dillon HC Jr. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J. Infect. Dis. 142(6), 923–933 (1980).
  • Syrjänen RK, Auranen KJ, Leino TM, Kilpi TM, Mäkelä PH. Pneumococcal acute otitis media in relation to pneumococcal nasopharyngeal carriage. Pediatr. Infect. Dis. J. 24(9), 801–806 (2005).
  • Syrjänen RK, Herva EE, Mäkelä PH et al. The value of nasopharyngeal culture in predicting the etiology of acute otitis media in children less than two years of age. Pediatr. Infect. Dis. J. 25(11), 1032–1036 (2006).
  • Sleeman KL, Daniels L, Gardiner M et al. Acquisition of Streptococcus pneumoniae and nonspecific morbidity in infants and their families: a cohort study. Pediatr. Infect. Dis. J. 24(2), 121–127 (2005).
  • Eldan M, Leibovitz E, Piglansky L et al. Predictive value of pneumococcal nasopharyngeal cultures for the assessment of nonresponsive acute otitis media in children. Pediatr. Infect. Dis. J. 19(4), 298–303 (2000).
  • Faden H, Stanievich J, Brodsky L, Bernstein J, Ogra PL. Changes in nasopharyngeal flora during otitis media of childhood. Pediatr. Infect. Dis. J. 9(9), 623–626 (1990).
  • Kamme C, Lundgren K, Märdh PA. The aetiology of acute otitis media in children. Occurrence of bacteria, L forms of bacteria and mycoplasma in the middle ear exudate. Relationship between bacterial findings in the middle ear exudate, nasopharynx and throat. Scand. J. Infect. Dis. 3(3), 217–223 (1971).
  • Luotonen J. Streptococcus pneumoniae and Haemophilus influenzae in nasal cultures during acute otitis media. Acta Otolaryngol. 93(3–4), 295–299 (1982).
  • Austrian R, Howie VM, Ploussard JH. The bacteriology of pneumococcal otitis media. Johns Hopkins Med. J. 141(3), 104–111 (1977).
  • Mastro TD, Nomani NK, Ishaq Z et al. Use of nasopharyngeal isolates of Streptococcus pneumoniae and Haemophilus influenzae from children in Pakistan for surveillance for antimicrobial resistance. Pediatr. Infect. Dis. J. 12(10), 824–830 (1993).
  • Lloyd-Evans N, O’Dempsey TJ, Baldeh I et al. Nasopharyngeal carriage of pneumococci in Gambian children and in their families. Pediatr. Infect. Dis. J. 15(10), 866–871 (1996).
  • Högberg L, Geli P, Ringberg H, Melander E, Lipsitch M, Ekdahl K. Age- and serogroup-related differences in observed durations of nasopharyngeal carriage of penicillin-resistant pneumococci. J. Clin. Microbiol. 45(3), 948–952 (2007).
  • Brueggemann AB, Peto TE, Crook DW, Butler JC, Kristinsson KG, Spratt BG. Temporal and geographic stability of the serogroup-specific invasive disease potential of Streptococcus pneumoniae in children. J. Infect. Dis. 190(7), 1203–1211 (2004).
  • Greenberg D, Givon-Lavi N, Newman N, Bar-Ziv J, Dagan R. Nasopharyngeal carriage of individual Streptococcus pneumoniae serotypes during pediatric pneumonia as a means to estimate serotype disease potential. Pediatr. Infect. Dis. J. 30(3), 227–233 (2011).
  • Gray BM, Turner ME, Dillon HC Jr. Epidemiologic studies of Streptococcus pneumoniae in infants. The effects of season and age on pneumococcal acquisition and carriage in the first 24 months of life. Am. J. Epidemiol. 116(4), 692–703 (1982).
  • Hodges RG, MacLeod CM. Epidemic pneumococcal pneumonia; final consideration of the factors underlying the epidemic. Am. J. Hyg. 44(2), 237–243 (1946).
  • Ritchie ND, Mitchell TJ, Evans TJ. What is different about serotype 1 pneumococci? Future Microbiol. 7(1), 33–46 (2012).
  • Balicer RD, Zarka S, Levine H et al. Control of Streptococcus pneumoniae serotype 5 epidemic of severe pneumonia among young army recruits by mass antibiotic treatment and vaccination. Vaccine 28(34), 5591–5596 (2010).
  • Albrich WC, Madhi SA, Adrian PV et al. Use of a rapid test of pneumococcal colonization density to diagnose pneumococcal pneumonia. Clin. Infect. Dis. 54(5), 601–609 (2012).
  • Auranen K, Ranta J, Takala AK, Arjas E. A statistical model of transmission of Hib bacteria in a family. Stat. Med. 15(20), 2235–2252 (1996).
  • Irving TJ, Blyuss KB, Colijn C, Trotter CL. Modelling meningococcal meningitis in the African meningitis belt. Epidemiol. Infect. 140(5), 897–905 (2012).
  • Ranta J, Mäkelä PH, Arjas E. Predicting meningococcal disease outbreaks in structured populations. Stat. Med. 23(6), 927–945 (2004).
  • Loda FA, Collier AM, Glezen WP, Strangert K, Clyde WA Jr, Denny FW. Occurrence of Diplococcus pneumoniae in the upper respiratory tract of children. J. Pediatr. 87(6 Pt 2), 1087–1093 (1975).
  • Hendley JO, Sande MA, Stewart PM, Gwaltney JM Jr. Spread of Streptococcus pneumoniae in families. I. Carriage rates and distribution of types. J. Infect. Dis. 132(1), 55–61 (1975).
  • Ingvarsson L, Lundgren L, Ursing J. The bacterial flora in the nasopharynx in healthy children. Acta Otolaryngol (Stockh.) 386, 94–96 (1982).
  • Syrjänen RK, Kilpi TM, Kaijalainen TH, Herva EE, Takala AK. Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J. Infect. Dis. 184(4), 451–459 (2001).
  • Roca A, Hill PC, Townend J et al. Effects of community-wide vaccination with PCV-7 on pneumococcal nasopharyngeal carriage in The Gambia: a cluster-randomized trial. PLoS Med. 8(10), e1001107 (2011).
  • Scott JR, Millar EV, Lipsitch M et al. Impact of more than a decade of pneumococcal conjugate vaccine use on carriage and invasive potential in Native American communities. J. Infect. Dis. 205(2), 280–288 (2012).
  • Montgomery JM, Lehmann D, Smith T et al. Bacterial colonization of the upper respiratory tract and its association with acute lower respiratory tract infections in Highland children of Papua New Guinea. Rev. Infect. Dis. 12(Suppl. 8), S1006–S1016 (1990).
  • Faden H, Duffy L, Boeve M. Otitis media: back to basics. Pediatr. Infect. Dis. J. 17(12), 1105–1112; quiz 1112 (1998).
  • Gray BM, Converse GM 3rd, Dillon HC Jr. Serotypes of Streptococcus pneumoniae causing disease. J. Infect. Dis. 140(6), 979–983 (1979).
  • Eskola J, Takala AK, Kela E, Pekkanen E, Kalliokoski R, Leinonen M. Epidemiology of invasive pneumococcal infections in children in Finland. JAMA 268(23), 3323–3327 (1992).
  • Sniadack DH, Schwartz B, Lipman H et al. Potential interventions for the prevention of childhood pneumonia: geographic and temporal differences in serotype and serogroup distribution of sterile site pneumococcal isolates from children – implications for vaccine strategies. Pediatr. Infect. Dis. J. 14(6), 503–510 (1995).
  • Kilpi T, Herva E, Kaijalainen T, Syrjänen R, Takala AK. Bacteriology of acute otitis media in a cohort of Finnish children followed for the first two years of life. Pediatr. Infect. Dis. J. 20(7), 654–662 (2001).
  • Hanage WP, Auranen K, Syrjänen R et al. Ability of pneumococcal serotypes and clones to cause acute otitis media: implications for the prevention of otitis media by conjugate vaccines. Infect. Immun. 72(1), 76–81 (2004).
  • Shouval DS, Greenberg D, Givon-Lavi N, Porat N, Dagan R. Site-specific disease potential of individual Streptococcus pneumoniae serotypes in pediatric invasive disease, acute otitis media and acute conjunctivitis. Pediatr. Infect. Dis. J. 25(7), 602–607 (2006).
  • Rodgers GL, Arguedas A, Cohen R, Dagan R. Global serotype distribution among Streptococcus pneumoniae isolates causing otitis media in children: potential implications for pneumococcal conjugate vaccines. Vaccine 27(29), 3802–3810 (2009).
  • Johnson HL, Deloria-Knoll M, Levine OS et al. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med. 7(10), pii: e1000348 (2010).
  • Turner P, Hinds J, Turner C et al. Improved detection of nasopharyngeal cocolonization by multiple pneumococcal serotypes by use of latex agglutination or molecular serotyping by microarray. J. Clin. Microbiol. 49(5), 1784–1789 (2011).
  • Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J. Infect. Dis. 187(9), 1424–1432 (2003).
  • Hanage WP, Kaijalainen TH, Syrjänen RK et al. Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland. Infect. Immun. 73(1), 431–435 (2005).
  • Butler JC. Epidemiology of pneumococcal disease. In: The Pneumococcus. Tuomanen EI, Mitchell TJ, Morrison D Spratt BG (Eds.). American Society for Microbiology, Washington DC, USA 148–168 (2004).
  • Burke JP, Klein JO, Gezon HM, Finland M. Pneumococcal bacteremia. Review of 111 cases, 1957–1969, with special reference to cases with undetermined focus. Am. J. Dis. Child. 121(4), 353–359 (1971).
  • Gray BM, Dillon HC Jr. Clinical and epidemiologic studies of pneumococcal infection in children. Pediatr. Infect. Dis. 5(2), 201–207 (1986).
  • Hansman D. Serotypes of pneumococci in pneumonia, meningitis and other pneumococcal infections. Aust. N. Z. J. Med. 7(3), 267–270 (1977).
  • Riley ID, Lehmann D, Alpers MP. Pneumococcal vaccine trials in Papua New Guinea: relationships between epidemiology of pneumococcal infection and efficacy of vaccine. Rev. Infect. Dis. 13(Suppl. 6), S535–S541 (1991).
  • Millar EV, O’Brien KL, Zell ER, Bronsdon MA, Reid R, Santosham M. Nasopharyngeal carriage of Streptococcus pneumoniae in Navajo and White Mountain Apache children before the introduction of pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 28(8), 711–716 (2009).
  • O’Brien KL, Shaw J, Weatherholtz R et al. Epidemiology of invasive Streptococcus pneumoniae among Navajo children in the era before use of conjugate pneumococcal vaccines, 1989–1996. Am. J. Epidemiol. 160(3), 270–278 (2004).
  • Vernet G, Saha S, Satzke C et al. Laboratory-based diagnosis of pneumococcal pneumonia: state of the art and unmet needs. Clin. Microbiol. Infect. 17(Suppl. 3), 1–13 (2011).
  • O’Brien KL, Wolfson LJ, Watt JP et al.; Hib and Pneumococcal Global Burden of Disease Study Team. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374(9693), 893–902 (2009).
  • Weiser JN. The pneumococcus: why a commensal misbehaves. J. Mol. Med. 88(2), 97–102 (2010).
  • Henrichsen J. Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33(10), 2759–2762 (1995).
  • Kamerling JP. Pneumococcal polysaccharides: a chemical view. In: Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Tomasz A (Ed.). Mary Ann Liebert, Inc. NY, USA, 81–114 (2000).
  • Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ, Weiser JN. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect. Immun. 75(1), 83–90 (2007).
  • Gorter AD, Hiemstra PS, de Bentzmann S, van Wetering S, Dankert J, van Alphen L. Stimulation of bacterial adherence by neutrophil defensins varies among bacterial species but not among host cell types. FEMS Immunol. Med. Microbiol. 28(2), 105–111 (2000).
  • Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl Acad. Sci. USA 100(7), 4215–4220 (2003).
  • Bruyn GA, Zegers BJ, van Furth R. Mechanisms of host defense against infection with Streptococcus pneumoniae. Clin. Infect. Dis. 14(1), 251–262 (1992).
  • Watson DA, Musher DM, Verhoef J. Pneumococcal virulence factors and host immune responses to them. Eur. J. Clin. Microbiol. Infect. Dis. 14(6), 479–490 (1995).
  • Brown EJ, Hosea SW, Hammer CH, Burch CG, Frank MM. A quantitative analysis of the interactions of antipneumococcal antibody and complement in experimental pneumococcal bacteremia. J. Clin. Invest. 69(1), 85–98 (1982).
  • Winkelstein JA. Complement and the host’s defense against the pneumococcus. Crit. Rev. Microbiol. 11(3), 187–208 (1984).
  • Andersson B, Dahmén J, Frejd T et al. Identification of an active disaccharide unit of a glycoconjugate receptor for pneumococci attaching to human pharyngeal epithelial cells. J. Exp. Med. 158(2), 559–570 (1983).
  • Andersson B, Beachey EH, Tomasz A, Tuomanen E, Svanborg-Edén C. A sandwich adhesion on Streptococcus pneumoniae attaching to human oropharyngeal epithelial cells in vitro. Microb. Pathog. 4(4), 267–278 (1988).
  • Krivan HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc. Natl Acad. Sci. USA 85(16), 6157–6161 (1988).
  • Andersson B, Eriksson B, Falsen E et al. Adhesion of Streptococcus pneumoniae to human pharyngeal epithelial cells in vitro: differences in adhesive capacity among strains isolated from subjects with otitis media, septicemia, or meningitis or from healthy carriers. Infect. Immun. 32(1), 311–317 (1981).
  • Idänpään-Heikkilä I, Simon PM, Zopf D et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J. Infect. Dis. 176(3), 704–712 (1997).
  • King SJ. Pneumococcal modification of host sugars: a major contributor to colonization of the human airway? Mol. Oral Microbiol. 25(1), 15–24 (2010).
  • King SJ, Hippe KR, Weiser JN. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol. Microbiol. 59(3), 961–974 (2006).
  • Marion C, Limoli DH, Bobulsky GS, Abraham JL, Burnaugh AM, King SJ. Identification of a pneumococcal glycosidase that modifies O-linked glycans. Infect. Immun. 77(4), 1389–1396 (2009).
  • Rosenow C, Ryan P, Weiser JN et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25(5), 819–829 (1997).
  • Brooks-Walter A, Briles DE, Hollingshead SK. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 67(12), 6533–6542 (1999).
  • Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25(6), 1113–1124 (1997).
  • Hostetter MK, Cheng Q, Finkel DA. C3-binding protein (pbcA) in Streptococcus pneumoniae. Presented at: 97th General Meeting of the American Society for Microbiology. Miami, FL, USA, 4–8 May 1997.
  • Janulczyk R, Iannelli F, Sjoholm AG, Pozzi G, Bjorck L. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J. Biol. Chem. 275(47), 37257–37263 (2000).
  • Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377(6548), 435–438 (1995).
  • Fischer W, Behr T, Hartmann R, Peter-Katalinic J, Egge H. Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur. J. Biochem. 215(3), 851–857 (1993).
  • Bagnoli F, Moschioni M, Donati C et al. A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J. Bacteriol. 190(15), 5480–5492 (2008).
  • Barocchi MA, Ries J, Zogaj X et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl Acad. Sci. USA 103(8), 2857–2862 (2006).
  • Hava DL, Camilli A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45(5), 1389–1406 (2002).
  • Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S. Alpha-enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40(6), 1273–1287 (2001).
  • Holmes AR, McNab R, Millsap KW et al. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol. Microbiol. 41(6), 1395–1408 (2001).
  • van der Flier M, Chhun N, Wizemann TM, Min J, McCarthy JB, Tuomanen EI. Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect. Immun. 63(11), 4317–4322 (1995).
  • Kostyukova NN, Volkova MO, Ivanova VV, Kvetnaya AS. A study of pathogenic factors of Streptococcus pneumoniae strains causing meningitis. FEMS Immunol. Med. Microbiol. 10(2), 133–137 (1995).
  • Weiser JN, Austrian R, Sreenivasan PK, Masure HR. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62(6), 2582–2589 (1994).
  • Tuomanen EI. The biology of pneumococcal infection. Pediatr. Res. 42(3), 253–258 (1997).
  • Kim JO, Weiser JN. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177(2), 368–377 (1998).
  • Hoa M, Syamal M, Sachdeva L, Berk R, Coticchia J. Demonstration of nasopharyngeal and middle ear mucosal biofilms in an animal model of acute otitis media. Ann. Otol. Rhinol. Laryngol. 118(4), 292–298 (2009).
  • Sanderson AR, Leid JG, Hunsaker D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope 116(7), 1121–1126 (2006).
  • Sanchez CJ, Kumar N, Lizcano A et al. Streptococcus pneumoniae in biofilms are unable to cause invasive disease due to altered virulence determinant production. PLoS ONE 6(12), e28738 (2011).
  • Dawid S, Roche AM, Weiser JN. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect. Immun. 75(1), 443–451 (2007).
  • Cope EK, Goldstein-Daruech N, Kofonow JM et al. Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease. PLoS ONE 6(12), e28523 (2011).
  • Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4(3), 144–154 (2004).
  • Regev-Yochay G, Raz M, Dagan R et al. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin. Infect. Dis. 38(5), 632–639 (2004).
  • Ofek I, Goldhar J, Keisari Y, Sharon N. Nonopsonic phagocytosis of microorganisms. Annu. Rev. Microbiol. 49, 239–276 (1995).
  • Tino MJ, Wright JR. Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am. J. Physiol. 270(4 Pt 1), L677–L688 (1996).
  • Goldblatt D, Hussain M, Andrews N et al. Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: a longitudinal household study. J. Infect. Dis. 192(3), 387–393 (2005).
  • Malley R. Antibody and cell-mediated immunity to Streptococcus pneumoniae: implications for vaccine development. J. Mol. Med. 88(2), 135–142 (2010).
  • McCool TL, Weiser JN. Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infect. Immun. 72(10), 5807–5813 (2004).
  • Trzcinski K, Thompson C, Malley R, Lipsitch M. Antibodies to conserved pneumococcal antigens correlate with, but are not required for, protection against pneumococcal colonization induced by prior exposure in a mouse model. Infect. Immun. 73(10), 7043–7046 (2005).
  • Malley R, Lipsitch M, Stack A et al. Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect. Immun. 69(8), 4870–4873 (2001).
  • Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc. Natl Acad. Sci. USA 102(13), 4848–4853 (2005).
  • Klugman KP, Smith SH, Koornhof H. Evidence that prevention of carriage by pneumococcal capsular vaccines may be the mechanism of protection from pneumococcal pneumonia. South Afr. J. Epidemiol. Infect. 26, 221–224 (2011).
  • Dagan R, Melamed R, Muallem M et al. Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J. Infect. Dis. 174(6), 1271–1278 (1996).
  • Douglas RM, Hansman D, Miles HB, Paton JC. Pneumococcal carriage and type-specific antibody. Failure of a 14-valent vaccine to reduce carriage in healthy children. Am. J. Dis. Child. 140(11), 1183–1185 (1986).
  • Herva E, Luotonen J, Timonen M, Sibakov M, Karma P, Mäkelä PH. The effect of polyvalent pneumococcal polysaccharide vaccine on nasopharyngeal and nasal carriage of Streptococcus pneumoniae. Scand. J. Infect. Dis. 12(2), 97–100 (1980).
  • Givon-Lavi N, Fraser D, Dagan R. Vaccination of day-care center attendees reduces carriage of Streptococcus pneumoniae among their younger siblings. Pediatr. Infect. Dis. J. 22(6), 524–532 (2003).
  • Klugman KP, Madhi SA, Huebner RE, Kohberger R, Mbelle N, Pierce N; Vaccine Trialists Group. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N. Engl. J. Med. 349(14), 1341–1348 (2003).
  • Mbelle N, Huebner RE, Wasas AD, Kimura A, Chang I, Klugman KP. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 180(4), 1171–1176 (1999).
  • Cutts FT, Zaman SM, Enwere G et al.; Gambian Pneumococcal Vaccine Trial Group. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet 365(9465), 1139–1146 (2005).
  • Cheung YB, Zaman SM, Nsekpong ED et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian children who participated in a 9-valent pneumococcal conjugate vaccine trial and in their younger siblings. Pediatr. Infect. Dis. J. 28(11), 990–995 (2009).
  • O’Brien KL, Moulton LH, Reid R et al. Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. Lancet 362(9381), 355–361 (2003).
  • O’Brien KL, David AB, Chandran A et al. Randomized, controlled trial efficacy of pneumococcal conjugate vaccine against otitis media among Navajo and White Mountain Apache infants. Pediatr. Infect. Dis. J. 27(1), 71–73 (2008).
  • O’Brien KL, Millar EV, Zell ER et al. Effect of pneumococcal conjugate vaccine on nasopharyngeal colonization among immunized and unimmunized children in a community-randomized trial. J. Infect. Dis. 196(8), 1211–1220 (2007).
  • Lucero MG, Nohynek H, Williams G et al. Efficacy of an 11-valent pneumococcal conjugate vaccine against radiologically confirmed pneumonia among children less than 2 years of age in the Philippines: a randomized, double-blind, placebo-controlled trial. Pediatr. Infect. Dis. J. 28(6), 455–462 (2009).
  • Nohynek H, Mäkelä PH, Lucero MG et al. The impact of 11-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae in Philippine children. Presented at: 6th International Symposium on Pneumococci and Pneumococcal Diseases. Reykjavik, Iceland, 8–12 June 2008.
  • Tregnaghi MW, Saez-Llorens X, Lopez P et al. Evaluating the efficacy of 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PhiD-CV) against community-acquired pneumonia in Latin America. Presented at: 29th Annual Meeting of the European Society for the Pediatric Infectious Diseases (ESPID). The Hague, The Netherlands, 7–11 June 2011.
  • Saez-Llorens X, Wong D, Rodriques M et al. Impact of 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PhiD-CV) on nasopharyngeal bacterial carriage in Panamian Children. Presented at: 7th World Society for Pediatric Infectious Diseases (WSPID). Melbourne, VIC, Australia, 16–19 November 2011.
  • Eskola J, Kilpi T, Palmu A et al.;Finnish Otitis Media Study Group. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344(6), 403–409 (2001).
  • Kilpi TM, Syrjänen R, Palmu A et al. Parallel evaluation of the effect of a 7-valent pneumococcal conjugate vaccine (pncCRM) on pneumococcal carriage and acute otitis media. Presented at: 19th Annual Meeting of the European Society for the Pediatric Infectious Diseases (ESPID). Istanbul, Turkey, 26–28 March 2001.
  • Prymula R, Peeters P, Chrobok V et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet 367(9512), 740–748 (2006).
  • Prymula R, Kriz P, Kaliskova E, Pascal T, Poolman J, Schuerman L. Effect of vaccination with pneumococcal capsular polysaccharides conjugated to Haemophilus influenzae-derived protein D on nasopharyngeal carriage of Streptococcus pneumoniae and H. influenzae in children under 2 years of age. Vaccine 28(1), 71–78 (2009).
  • Dagan R, Givon-Lavi N, Zamir O et al. Reduction of nasopharyngeal carriage of Streptococcus pneumoniae after administration of a 9-valent pneumococcal conjugate vaccine to toddlers attending day care centers. J. Infect. Dis. 185(7), 927–936 (2002).
  • Dagan R, Sikuler-Cohen M, Zamir O, Janco J, Givon-Lavi N, Fraser D. Effect of a conjugate pneumococcal vaccine on the occurrence of respiratory infections and antibiotic use in day-care center attendees. Pediatr. Infect. Dis. J. 20(10), 951–958 (2001).
  • Palmu A, Kaijalainen TH, Syrjanen R et al. Effect of the seven-valent vaccine on quantitative bacterial load of pneumococcal nasopharyngeal carriage. Presented at: 8th International Symposium on Pneumococci and Pneumococcal Diseases. Iguaçu Falls, Brazil, 11–15 March 2012.
  • Nurhonen M, Cheng A, Auranen K. Pneumococcal transmission and disease in silico: a microsimulation model of the indirect effects of vaccination. PloS ONE (2012) (In Press).
  • Rinta-Kokko H, Dagan R, Givon-Lavi N, Auranen K. Estimation of vaccine efficacy against acquisition of pneumococcal carriage. Vaccine 27(29), 3831–3837 (2009).
  • Gilbert PB, Qin L, Self SG. Evaluating a surrogate endpoint at three levels, with application to vaccine development. Stat. Med. 27(23), 4758–4778 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.