212
Views
42
CrossRef citations to date
0
Altmetric
Review

Prime–boost approaches to tuberculosis vaccine development

&
Pages 1221-1233 | Published online: 09 Jan 2014

References

  • Kaufmann SH. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity 33(4), 567–577 (2010).
  • World Health Organization. Global Tuberculosis Control. WHO Press, Geneva, Switzerland (2011).
  • Mcshane H. Vaccine strategies against tuberculosis. Swiss Med. Wkly 139(11–12), 156–160 (2009).
  • Rowland R, McShane H. Tuberculosis vaccines in clinical trials. Expert Rev. Vaccines 10(5), 645–658 (2011).
  • Källenius G, Pawlowski A, Brandtzaeg P, Svenson S. Should a new tuberculosis vaccine be administered intranasally? Tuberculosis (Edinb.). 87(4), 257–266 (2007).
  • Kagina BM, Abel B, Scriba TJ et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette–Guérin vaccination of newborns. Am. J. Respir. Crit. Care Med. 182(8), 1073–1079 (2010).
  • Daley CL. Update in tuberculosis 2009. Am. J. Respir. Crit. Care Med. 181(6), 550–555 (2010).
  • Flynn JL, Chan J. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr. Opin. Immunol. 15(4), 450–455 (2003).
  • Kaufmann SHE. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Micro. 5(7), 491–504 (2007).
  • Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we don’t know can, and does, hurt us. Science 328(5980), 852–856 (2010).
  • Saunders BM, Frank AA, Orme IM, Cooper AM. CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cellular Immunology 216(1–2), 65–72 (2002).
  • Scanga CA, Mohan VP, Yu K et al. Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2. J. Exp. Med. 192(3), 347–358 (2000).
  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178(6), 2243–2247 (1993).
  • Cooper AM. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).
  • Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA 89(24), 12013–12017 (1992).
  • Garcia I, Miyazaki Y, Marchal G, Lesslauer W, Vassalli P. High sensitivity of transgenic mice expressing soluble TNFR1 fusion protein to mycobacterial infections: synergistic action of TNF and IFN-γ in the differentiation of protective granulomas. Eur. J. Immunol. 27(12), 3182–3190 (1997).
  • Rook GA, Dheda K, Zumla A. Immune responses to tuberculosis in developing countries: implications for new vaccines. Nat. Rev. Immunol. 5(8), 661–667 (2005).
  • Paul-Henri L, Tony H, Willem AH. New vaccines against tuberculosis. Clinics In Chest Medicine 30(4), 811–826 (2009).
  • Colditz GA, Brewer TF, Berkey CS et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271(9), 698–702 (1994).
  • Abebe F, Bjune G. The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette–Guérin (BCG) vaccines: is there a link? Clin. Exp. Immunol. 145(3), 389–397 (2006).
  • Hiraishi Y, Nandakumar S, Choi SO et al. Bacillus Calmette–Guérin vaccination using a microneedle patch. Vaccine 29(14), 2626–2636 (2011).
  • Svenson S, Kallenius G, Pawlowski A, Hamasur B. Towards new tuberculosis vaccines. Hum Vaccin 6(4), 1–9 (2010).
  • Henao-Tamayo MI, Ordway DJ, Irwin SM, Shang S, Shanley C, Orme IM. Phenotypic definition of effector and memory T-lymphocyte subsets in mice chronically infected with Mycobacterium tuberculosis. Clin. Vaccine Immunol. 17(4), 618–625 (2010).
  • Nambiar JK, Pinto R, Aguilo JI et al. Protective immunity afforded by attenuated, PhoP-deficient Mycobacterium tuberculosis is associated with sustained generation of CD4+ T-cell memory. Eur. J. Immunol. 42(2), 385–392 (2012).
  • Rook GA, Dheda K, Zumla A. Do successful tuberculosis vaccines need to be immunoregulatory rather than merely Th1-boosting? Vaccine 23(17–18), 2115–2120 (2005).
  • Dheda K, Chang JS, Breen RA et al. In vivo and in vitro studies of a novel cytokine, interleukin 4Δ2, in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 172(4), 501–508 (2005).
  • Andersen P, Doherty TM. The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3(8), 656–662 (2005).
  • Ordway DJ, Shang S, Henao-Tamayo M et al. Mycobacterium bovis BCG-mediated protection against W-Beijing strains of Mycobacterium tuberculosis is diminished concomitant with the emergence of regulatory T cells. Clin. Vaccine Immunol. 18(9), 1527–1535 (2011).
  • Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70(8), 4501–4509 (2002).
  • Turner J, Frank AA, Orme IM. Old mice express a transient early resistance to pulmonary tuberculosis that is mediated by CD8 T cells. Infect. Immun. 70(8), 4628–4637 (2002).
  • Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).
  • Darrah PA, Patel DT, De Luca PM et al. Multifunctional Th1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13(7), 843–850 (2007).
  • Genescà M, Rourke T, Li J et al. Live attenuated lentivirus infection elicits polyfunctional simian immunodeficiency virus Gag-specific CD8+ T cells with reduced apoptotic susceptibility in rhesus macaques that control virus replication after challenge with pathogenic SIVmac239. J. Immunol. 179(7), 4732–4740 (2007).
  • Betts MR, Nason MC, West SM et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107(12), 4781–4789 (2006).
  • McShane H. Tuberculosis vaccines: beyond bacille Calmette–Guerin. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1579), 2782–2789 (2011).
  • Wedlock DN, Skinner MA, Parlane NA et al. Vaccination with DNA vaccines encoding MPB70 or MPB83 or a MPB70 DNA prime–protein boost does not protect cattle against bovine tuberculosis. Tuberculosis (Edinb.). 83(6), 339–349 (2003).
  • Vordermeier HM, Villarreal-Ramos B, Cockle PJ et al. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect. Immun. 77(8), 3364–3373 (2009).
  • Mittrücker HW, Steinhoff U, Köhler A et al. Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc. Natl Acad. Sci. USA 104(30), 12434–12439 (2007).
  • Tchilian EZ, Desel C, Forbes EK et al. Immunogenicity and protective efficacy of prime–boost regimens with recombinant (delta)ureC hly+ Mycobacterium bovis BCG and modified vaccinia virus ankara expressing M. tuberculosis antigen 85A against murine tuberculosis. Infect. Immun. 77(2), 622–631 (2009).
  • Ramshaw IA, Ramsay AJ. The prime–boost strategy: exciting prospects for improved vaccination. Immunol. Today 21(4), 163–165 (2000).
  • Mcshane H, Hill A. Prime–boost immunisation strategies for tuberculosis. Microbes Infect 7(5–6), 962–967 (2005).
  • Leong KH, Ramsay AJ, Ramshaw IA, Morin J, Robinson HL, Boyle DB. Generation of enhanced immune responses by consecutive immunization with DNA and recombinant fowl pox virus. In: Vaccines 95. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA 327–331 (1995).
  • De Rosa SC, Thomas EP, Bui J et al.; National Institute of Allergy and Infectious Diseases HIV Vaccine Trials Network. HIV-DNA priming alters T cell responses to HIV-adenovirus vaccine even when responses to DNA are undetectable. J. Immunol. 187(6), 3391–3401 (2011).
  • Schneider J, Gilbert SC, Blanchard TJ et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4(4), 397–402 (1998).
  • Woodland DL. Jump-starting the immune system: prime–boosting comes of age. Trends Immunol. 25(2), 98–104 (2004).
  • Estcourt MJ, Ramsay AJ, Brooks A, Thomson SA, Medveckzy CJ, Ramshaw IA. Prime–boost immunization generates a high frequency, high-avidity CD8(+) cytotoxic T lymphocyte population. Int. Immunol. 14(1), 31–37 (2002).
  • Ranasinghe C, Ramshaw IA. Genetic heterologous prime–boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev. Vaccines 8(9), 1172–1181 (2009).
  • Hesseling AC, Marais BJ, Gie RP et al. The risk of disseminated bacille Calmette–Guerin (BCG) disease in HIV-infected children. Vaccine 25(1), 14–18 (2007).
  • Hoft DF, Blazevic A, Abate G et al. A new recombinant bacille Calmette–Guérin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J. Infect. Dis. 198(10), 1491–1501 (2008).
  • Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guérin mutants that secrete listeriolysin. J. Clin. Invest. 115(9), 2472–2479 (2005).
  • Sun R, Skeiky YA, Izzo A et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine 27(33), 4412–4423 (2009).
  • Sadagopal S, Braunstein M, Hager CC et al. Reducing the activity and secretion of microbial antioxidants enhances the immunogenicity of BCG. PLoS ONE 4(5), e5531 (2009).
  • Raviglione M, Marais B, Floyd K et al. Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet 379(9829), 1902–1913 (2012).
  • Mansoor N, Scriba TJ, de Kock M et al. HIV-1 infection in infants severely impairs the immune response induced by bacille Calmette–Guérin vaccine. J. Infect. Dis. 199(7), 982–990 (2009).
  • Hatherill M, Mahomed H, Hanekom W. Novel vaccine prime and selective BCG boost: a new tuberculosis vaccine strategy for infants of HIV-infected mothers. Vaccine 28(29), 4550–4552 (2010).
  • Romano M, D’Souza S, Adnet PY et al. Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine 24(16), 3353–3364 (2006).
  • Vordermeier HM, Rhodes SG, Dean G et al. Cellular immune responses induced in cattle by heterologous prime–boost vaccination using recombinant viruses and bacille Calmette–Guérin. Immunology 112(3), 461–470 (2004).
  • Feng CG, Palendira U, Demangel C, Spratt JM, Malin AS, Britton WJ. Priming by DNA immunization augments protective efficacy of Mycobacterium bovis bacille Calmette–Guerin against tuberculosis. Infect. Immun. 69(6), 4174–4176 (2001).
  • Abel B, Tameris M, Mansoor N et al. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respir. Crit. Care Med. 181(12), 1407–1417 (2010).
  • Hoft DF, Blazevic A, Stanley J et al. A recombinant adenovirus expressing immunodominant TB antigens can significantly enhance BCG-induced human immunity. Vaccine 30(12), 2098–2108 (2012).
  • Xing Z, Lichty BD. Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis (Edinb) 86(3–4), 211–217 (2006).
  • Gherardi MM, Esteban M. Recombinant poxviruses as mucosal vaccine vectors. J. Gen. Virol. 86(Pt 11), 2925–2936 (2005).
  • Hawkridge T, Mahomed H. Prospects for a new, safer and more effective TB vaccine. Paediatr. Respir. Rev. 12(1), 46–51 (2011).
  • Drexler I, Heller K, Wahren B, Erfle V, Sutter G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J. Gen. Virol. 79 (Pt 2), 347–352 (1998).
  • Sutter G, Wyatt LS, Foley PL, Bennink JR, Moss B. A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12(11), 1032–1040 (1994).
  • Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette–Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol. 171(3), 1602–1609 (2003).
  • Verreck FA, Vervenne RA, Kondova I et al. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS ONE 4(4), e5264 (2009).
  • Beveridge NE, Price DA, Casazza JP et al. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur. J. Immunol. 37(11), 3089–3100 (2007).
  • Scriba TJ, Tameris M, Mansoor N et al. Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur. J. Immunol. 40(1), 279–290 (2010).
  • McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 10(11), 1240–1244 (2004).
  • Sander CR, Pathan AA, Beveridge NE et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am. J. Respir. Crit. Care Med. 179(8), 724–733 (2009).
  • Hawkridge T, Scriba TJ, Gelderbloem S et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J. Infect. Dis. 198(4), 544–552 (2008).
  • Minassian AM, Rowland R, Beveridge NE et al. A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open 1(2), e000223 (2011).
  • Scriba TJ, Tameris M, Smit E et al. A Phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am. J. Respir. Crit. Care Med. 185(7), 769–778 (2012).
  • Ota MO, Odutola AA, Owiafe PK et al. Immunogenicity of the tuberculosis vaccine MVA85A is reduced by coadministration with EPI vaccines in a randomized controlled trial in Gambian infants. Sci. Transl. Med. 3(88), 88ra56 (2011).
  • Wang J, Thorson L, Stokes RW et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol. 173(10), 6357–6365 (2004).
  • Forbes EK, Sander C, Ronan EO et al. Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J. Immunol. 181(7), 4955–4964 (2008).
  • Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS ONE 4(6), e5856 (2009).
  • Sander C, McShane H. Translational mini-review series on vaccines: development and evaluation of improved vaccines against tuberculosis. Clin. Exp. Immunol. 147(3), 401–411 (2007).
  • Nanda A, Lynch DM, Goudsmit J et al. Immunogenicity of recombinant fiber-chimeric adenovirus serotype 35 vector-based vaccines in mice and rhesus monkeys. J. Virol. 79(22), 14161–14168 (2005).
  • Magalhaes I, Sizemore DR, Ahmed RK et al. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime–boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS ONE 3(11), e3790 (2008).
  • Wacheck V, Egorov A, Groiss F et al. A novel type of influenza vaccine: safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1. J. Infect. Dis. 201(3), 354–362 (2010).
  • Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun. 72(10), 6148–6150 (2004).
  • Dietrich J, Andersen C, Rappuoli R, Doherty TM, Jensen CG, Andersen P. Mucosal administration of Ag85B–ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette–Guerin immunity. J. Immunol. 177(9), 6353–6360 (2006).
  • van Dissel JT, Arend SM, Prins C et al. Ag85B–ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine 28(20), 3571–3581 (2010).
  • van Dissel JT, Soonawala D, Joosten SA et al. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine 29(11), 2100–2109 (2011).
  • Dietrich J, Aagaard C, Leah R et al. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J. Immunol. 174(10), 6332–6339 (2005).
  • Skeiky YA, Dietrich J, Lasco TM et al. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime–boost regimen. Vaccine 28(4), 1084–1093 (2010).
  • Brandt L, Skeiky YA, Alderson MR et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun. 72(11), 6622–6632 (2004).
  • Reed SG, Coler RN, Dalemans W et al. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc. Natl Acad. Sci. USA 106(7), 2301–2306 (2009).
  • Von Eschen K, Morrison R, Braun M et al. The candidate tuberculosis vaccine Mtb72F/AS02A: tolerability and immunogenicity in humans. Hum. Vaccin. 5(7), 475–482 (2009).
  • Leroux-Roels I, Leroux-Roels G, Ofori-Anyinam O et al. Evaluation of the safety and immunogenicity of two antigen concentrations of the Mtb72F/AS02(A) candidate tuberculosis vaccine in purified protein derivative-negative adults. Clin. Vaccine Immunol. 17(11), 1763–1771 (2010).
  • Pethe K, Alonso S, Biet F et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412(6843), 190–194 (2001).
  • Rouanet C, Debrie AS, Lecher S, Locht C. Subcutaneous boosting with heparin binding haemagglutinin increases BCG-induced protection against tuberculosis. Microbes Infect. 11(13), 995–1001 (2009).
  • Sable SB, Cheruvu M, Nandakumar S et al. Cellular immune responses to nine Mycobacterium tuberculosis vaccine candidates following intranasal vaccination. PLoS ONE 6(7), e22718 (2011).
  • Bertholet S, Ireton GC, Ordway DJ et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci. Transl. Med. 2(53), 53ra74 (2010).
  • Aagaard C, Hoang T, Dietrich J et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med. 17(2), 189–194 (2011).
  • Huygen K. Plasmid DNA vaccination. Microbes Infect 7(5–6), 932–938 (2005).
  • Kalams SA, Parker S, Jin X et al.; NIAID HIV Vaccine Trials Network. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PLoS ONE 7(1), e29231 (2012).
  • Dupuis M, Denis-Mize K, Woo C et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J. Immunol. 165(5), 2850–2858 (2000).
  • Lu J, Wang C, Zhou Z et al. Immunogenicity and protective efficacy against murine tuberculosis of a prime–boost regimen with BCG and a DNA vaccine expressing ESAT-6 and Ag85A fusion protein. Clin. Dev. Immunol. 2011, 617892 (2011).
  • Dey B, Jain R, Khera A et al. Latency antigen a-crystallin based vaccination imparts a robust protection against TB by modulating the dynamics of pulmonary cytokines. PLoS ONE 6(4), e18773 (2011).
  • Dey B, Jain R, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis. PLoS ONE 6(8)(2011).
  • Kirman JR, Turon T, Su H et al. Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A. Infect. Immun. 71(1), 575–579 (2003).
  • Derrick SC, Yang AL, Morris SL. Vaccination with a Sindbis virus-based DNA vaccine expressing antigen 85B induces protective immunity against Mycobacterium tuberculosis. Infect. Immun. 73(11), 7727–7735 (2005).
  • Thompson JM, Whitmore AC, Konopka JL et al. Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc. Natl Acad. Sci. USA 103(10), 3722–3727 (2006).
  • Capozzo AVE, Ramírez K, Polo JM et al. Neonatal immunization with a Sindbis virus-DNA measles vaccine induces adult-like neutralizing antibodies and cell-mediated immunity in the presence of maternal antibodies. J. Immunother. 176(9), 5671–5681 (2006).
  • Ljungberg K, Whitmore AC, Fluet ME et al. Increased immunogenicity of a DNA-launched Venezuelan equine encephalitis virus-based replicon DNA vaccine. J. Virol. 81(24), 13412–13423 (2007).
  • Atkins GJ, Fleeton MN, Sheahan BJ. Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev. Mol. Med. 10, e33 (2008).
  • Tonkin DR, Jorquera P, Todd T, Beard CW, Johnston RE, Barro M. Alphavirus replicon-based enhancement of mucosal and systemic immunity is linked to the innate response generated by primary immunization. Vaccine 28(18), 3238–3246 (2010).
  • Schell JB, Rose NF, Bahl K et al. Significant protection against high-dose simian immunodeficiency virus challenge conferred by a new prime–boost vaccine regimen. J. Virol. 85(12), 5764–5772 (2011).
  • Roediger EK, Kugathasan K, Zhang X, Lichty BD, Xing Z. Heterologous boosting of recombinant adenoviral prime immunization with a novel vesicular stomatitis virus-vectored tuberculosis vaccine. Mol. Ther. 16(6), 1161–1169 (2008).
  • Sambandamurthy VK, Jacobs WR, Jr. Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis. Microbes Infect. 7(5–6), 955–961 (2005).
  • Martin C, Williams A, Hernandez-Pando R et al. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 24(17), 3408–3419 (2006).
  • Sweeney KA, Dao DN, Goldberg MF et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat. Med. 17(10), 1261–1268 (2011).
  • Cardona PJ, Amat I, Gordillo S et al. Immunotherapy with fragmented Mycobacterium tuberculosis cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of tuberculosis. Vaccine 23(11), 1393–1398 (2005).
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J. Immunol. 183(11), 6883–6892 (2009).
  • Haan L, Verweij WR, Holtrop M et al. Nasal or intramuscular immunization of mice with influenza subunit antigen and the B subunit of Escherichia coli heat-labile toxin induces IgA- or IgG-mediated protective mucosal immunity. Vaccine 19(20–22), 2898–2907 (2001).
  • Haneberg B, Kendall D, Amerongen HM, Apter FM, Kraehenbuhl JP, Neutra MR. Induction of specific immunoglobulin A in the small intestine, colon-rectum, and vagina measured by a new method for collection of secretions from local mucosal surfaces. Infect. Immun. 62(1), 15–23 (1994).
  • Ranasinghe C, Turner SJ, McArthur C et al. Mucosal HIV-1 pox virus prime–boost immunization induces high-avidity CD8+ T cells with regime-dependent cytokine/granzyme B profiles. J. Immunol. 178(4), 2370–2379 (2007).
  • Gallichan WS, Rosenthal KL. Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J. Exp. Med. 184(5), 1879–1890 (1996).
  • Kozlowski PA, Cu-Uvin S, Neutra MR, Flanigan TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun. 65(4), 1387–1394 (1997).
  • Amorij JP, Saluja V, Petersen AH, Hinrichs WL, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine 25(52), 8707–8717 (2007).
  • Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4(9), 699–710 (2004).
  • Wu HY, Nikolova EB, Beagley KW, Eldridge JH, Russell MW. Development of antibody-secreting cells and antigen-specific T cells in cervical lymph nodes after intranasal immunization. Infect. Immun. 65(1), 227–235 (1997).
  • Etchart N, Wild F, Kaiserlian D. Mucosal and systemic immune responses to measles virus haemagglutinin in mice immunized with a recombinant vaccinia virus. J. Gen. Virol. 77(Pt 10), 2471–2478 (1996).
  • Chen L, Wang J, Zganiacz A, Xing Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect. Immun. 72(1), 238–246 (2004).
  • Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun. 74(8), 4634–4643 (2006).
  • Hoft DF, Brown RM, Belshe RB. Mucosal bacille Calmette–Guérin vaccination of humans inhibits delayed-type hypersensitivity to purified protein derivative but induces mycobacteria-specific interferon-γ responses. Clin. Infect. Dis. 30(Suppl. 3), S217–S222 (2000).
  • Cosgrove CA, Castello-Branco LR, Hussell T et al. Boosting of cellular immunity against Mycobacterium tuberculosis and modulation of skin cytokine responses in healthy human volunteers by Mycobacterium bovis BCG substrain Moreau Rio de Janeiro oral vaccine. Infect. Immun. 74(4), 2449–2452 (2006).
  • Tompkins DM, Ramsey DS, Cross ML, Aldwell FE, de Lisle GW, Buddle BM. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proc. Biol. Sci. 276(1669), 2987–2995 (2009).
  • Brice GT, Dobano C, Sedegah M et al. Extended immunization intervals enhance the immunogenicity and protective efficacy of plasmid DNA vaccines. Microbes Infect. 9(12–13), 1439–1446 (2007).
  • Weiss WR, Kumar A, Jiang G et al. Protection of rhesus monkeys by a DNA prime/poxvirus boost malaria vaccine depends on optimal DNA priming and inclusion of blood stage antigens. PLoS ONE 2(10), e1063 (2007).
  • Griffin JF, Mackintosh CG, Rodgers CR. Factors influencing the protective efficacy of a BCG homologous prime–boost vaccination regime against tuberculosis. Vaccine 24(6), 835–845 (2006).
  • Williams A, Hatch GJ, Clark SO et al. Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis (Edinb.) 85(1–2), 29–38 (2005).
  • Williams A, Hall Y, Orme IM. Evaluation of new vaccines for tuberculosis in the guinea pig model. Tuberculosis (Edinb). 89(6), 389–397 (2009).
  • Rappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473(7348), 463–469 (2011).
  • Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity 33(4), 516–529 (2010).
  • Aderem A, Adkins JN, Ansong C et al. A systems biology approach to infectious disease research: innovating the pathogen–host research paradigm. MBio 2(1), e00325–e00310 (2011).
  • Maertzdorf J, Ota M, Repsilber D et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS One 6(10), e26938 (2011).
  • Berry MP, Graham CM, McNab FW et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309), 973–977 (2010).
  • Eum SY, Kong JH, Hong MS et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137(1), 122–128 (2010).
  • Eruslanov EB, Lyadova IV, Kondratieva TK et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect. Immun. 73(3), 1744–1753 (2005).
  • Maertzdorf J, Repsilber D, Parida SK et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun. 12(1), 15–22 (2011).
  • McNab FW, Berry MP, Graham CM et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur. J. Immunol. 41(7), 1941–1947 (2011).
  • Gideon HP, Wilkinson KA, Rustad TR et al. Hypoxia induces an immunodominant target of tuberculosis specific T cells absent from common BCG vaccines. PLoS Pathog. 6(12), e1001237 (2010).
  • Checkley AM, Wyllie DH, Scriba TJ et al. Identification of antigens specific to non-tuberculous mycobacteria: the Mce family of proteins as a target of T cell immune responses. PLoS ONE 6(10), e26434 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.