2,118
Views
1
CrossRef citations to date
0
Altmetric
Review

A Microfluidic Organ-On-A-Chip: Into the Next Decade of Bone Tissue Engineering Applied in Dentistry

ORCID Icon, ORCID Icon & ORCID Icon
Article: FSO902 | Received 18 Apr 2023, Accepted 21 Aug 2023, Published online: 08 Sep 2023

References

  • ManziniBM , MachadoLMR , NoritomiPY , DaSilva JVL. Advances in bone tissue engineering: a fundamental review. J Biosci.46(1), 1–18 (2021).
  • Florencio-SilvaR , daSilva Sasso GR , Sasso-CerriE , SimõesMJ , CerriPS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int.2015, Doi: 10.1155/2015/421746 (2015).
  • JonassonG , RythénM. Alveolar bone loss in osteoporosis: a loaded and cellular affair?Clin Cosmet Investig Dent.8, 95–103 (2016).
  • AndreasenCM , DelaisseJ-M , vander Eerden BC , van LeeuwenJP , DingM , AndersenTL. Understanding age-induced cortical porosity in women: the accumulation and coalescence of eroded cavities upon existing intracortical canals is the main contributor. J. Bone Miner. Res.33(4), 606–620 (2018).
  • BirkholdAI , RaziH , WeinkamerR , DudaGN , ChecaS , WillieBM. Monitoring in vivo (re)modeling: a computational approach using 4D micro-CT data to quantify bone surface movements. Bone75, 210–221 (2015).
  • ChocholataP , KuldaV , BabuskaV. Fabrication of scaffolds for bone-tissue regeneration. Materials.12(4), 1–25 (2019).
  • PereiraH , CengizIF , MaiaFRet al.Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. J Mech Behav Biomed Mater.112, Doi: 10.1016/j.jmbbm.2020.103997 (2020).
  • SozenT , OzisikL , BasaranNC. An overview and management of osteoporosis. Eur J Rheumatol.4(1), 46–56 (2017).
  • GheitaTA , HammamN. Epidemiology and awareness of osteoporosis: a viewpoint from the Middle East and North Africa. Int J Clin Rheumatol.13(3), 134–147 (2018).
  • VijayakumarR , BüsselbergD. Review article Osteoporosis: an under-recognized public health problem. J Local Glob Health Sci.2016(1), 1–13 (2016).
  • BertinH , Gomez-BrouchetA , RédiniF. Osteosarcoma of the jaws: an overview of the pathophysiological mechanisms. Crit. Rev. Oncol. Hematol.156, Doi: 10.1016/j.critrevonc.2020.103126 (2020).
  • VasquezL , SilvaJ , ChavezSet al.Prognostic impact of diagnostic and treatment delays in children with osteosarcoma. Pediatr Blood Cancer.67(4), 1–6 (2020).
  • MacedoF , LadeiraK , PinhoFet al.Bone metastases: an overview. Oncol Rev.11(1), 321 (2017).
  • JonassonG , SkoglundI , RythénM. The rise and fall of the alveolar process: dependency of teeth and metabolic aspects. Arch. Oral Biol.96, 195–200 (2018).
  • PapapanouPN , SanzM , BuduneliNet al.Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol.1(Suppl. 89), S173–S182 (2018).
  • RichardsD. Oral diseases affect some 3.9 billion people. Evid Based Dent.14(2), 35 (2013).
  • The Lancet. Global Burden of Disease 2019: Periodontal diseases — Level 4 causeGlobal Health Metrics, 3–4 (2019). https://www.healthdata.org/results/gbd_summaries/2019/periodontal-diseases-level-4-cause
  • BernabeE , MarcenesW , HernandezCRet al.Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J Dent Res.99(4), 362–373 (2020).
  • AnaID. Bone substituting materials in dental implantology. In: Bone Management in Dental Implantology.BudihardjaAS, MückeT ( Eds). Springer International Publishing, Germany, 121–141 (2019).
  • HuhD , HamiltonGA , IngberDE. From 3D cell culture to organs-on-chips. Trends Cell Biol.21(12), 745–754 (2011).
  • LangerR , VacantiJP. Tissue engineering. Science5110, 920–926 (1993).
  • ZafarMS , KhurshidZ , AlmasK. Oral tissue engineering progress and challenges. Tissue Eng Regen Med.12(6), 387–397 (2015).
  • O'KeefeRJ , MaoJ. Bone tissue engineering and regeneration: from discovery to the clinic - An overview. Tissue Eng Part B Rev.17(6), 389–392 (2011).
  • AminiAR , LaurencinCT , NukavarapuSP. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng.40(5), 363–408 (2012).
  • JanjuaOS , QureshiSM , ShaikhMSet al.Autogenous tooth bone grafts for repair and regeneration of maxillofacial defects: A Narrative review. Int J Environ Res Public Health.19(6), 3960 (2022).
  • RohmanG , LanguehC , RamtaniS , LatailladeJ. The use of Platelet-Rich Plasma to promote cell recruitment into low-molecular-weight. Polymers.11(6), 1–22 (2019).
  • DuvalK , GroverH , HanLHet al.Modeling physiological events in 2D vs 3D cell culture. Physiology (Bethesda).32(4), 266–277 (2017).
  • BreslinS , O'DriscollL. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today18(5–6), 240–249 (2013).
  • FangY , EglenRM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov.22(5), 456–472 (2017).
  • LeungCM , de HaanP , Ronaldson-BouchardKet al.A guide to the organ-on-a-chip. Nat Rev Methods Primers.2(1), 1–29 (2022).
  • AndersenML , WinterLMF. Animal models in biological and biomedical research – experimental and ethical concerns. An Acad Bras Cienc.91, 1–14 (2019).
  • World Economic Forum. Top 10 Emerging Technologies of 2016.Global Agenda, 1–18 (2016) ( Internet).
  • BhatiaSN , IngberDE. Microfluidic organs-on-chips. Nat Biotechnol.32(8), 760–772 (2014).
  • LowLA , MummeryC , BerridgeBR , AustinCP , TagleDA. Organs-on-chips: into the next decade. Nat Rev Drug Discov.20(5), 345–361 (2021).
  • Ronaldson-BouchardK , Vunjak-NovakovicG. Organs-on-a-Chip: a fast track for engineered human tissues in drug development. Cell Stem Cell.22(3), 310–324 (2018).
  • KimuraH , SakaiY , FujiiT. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet.33(1), 43–48 (2018).
  • WuQ , LiuJ , WangXet al.Organ-on-a-chip: recent breakthroughs and prospects. Biomed Eng Online.19(1), 1–19 (2020).
  • MaC , PengY , LiH , ChenW. Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol. Sci.42(2), 119–133 (2021).
  • Jalili-FiroozinezhadS , GazzanigaFS , CalamariELet al.A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng.3(7), 520 (2019).
  • HumayunM , ChowC-W , YoungEWK. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip.18(9), 1298–1309 (2018).
  • ZhengW , JiangB , WangD , ZhangW , WangZ , JiangX. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip.12(18), 3441–3450 (2012).
  • KaneBJ , ZinnerMJ , YarmushML , TonerM. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem.78(13), 4291–4298 (2006).
  • FleischerS , ShapiraA , FeinerR , DvirT. Modular assembly of thick multifunctional cardiac patches. Proc Natl Acad Sci USA.114(8), 1898–1903 (2017).
  • MusahS , DimitrakakisN , CamachoDM , ChurchGM , IngberDE. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. Nat Protoc.13(7), 1662–1685 (2018).
  • ChouDB , FrismantasV , MiltonYet al.On-chip recapitulation of clinical bone-marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng.4(4), 394 (2020).
  • WangY , WangL , ZhuY , QinJ. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip.18(6), 851–860 (2018).
  • SheynD , Cohn-YakubovichD , Ben-DavidSet al.Bone-chip system to monitor osteogenic differentiation using optical imaging. Microfluid Nanofluid.23(8), 99 (2019).
  • FrançaCM , TahayeriA , RodriguesNSet al.The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip.20(2), 405–413 (2020).
  • BaptistaLS , PorriniC , KronembergerGS , KellyDJ , PerraultCM. 3D organ-on-a-chip: the convergence of microphysiological systems and organoids. Front Cell Dev Biol.10, Doi: 10.3389/fcell.2022.1043117 (2022).
  • ScannellJW , BlanckleyA , BoldonH , WarringtonB. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov.11(3), 191–200 (2012).
  • PaulSM , MytelkaDS , DunwiddieCTet al.How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov.9(3), 203–214 (2010).
  • JangK-J , OtienoMA , RonxhiJet al.Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med.11(517), 1–12 (2019).
  • CleversH. Modeling Development and Disease with Organoids. Cell165(7), 1586–1597 (2016).
  • PanoutsopoulosAA. Organoids, assembloids, and novel biotechnology: steps forward in developmental and disease-related neuroscience. Neuroscientist.27(5), 463–472 (2021).
  • MarxU , AkabaneT , AnderssonTBet al.Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX.37(3), 365–394 (2020).
  • ZhangB , RadisicM. Organ-on-a-chip devices advance to market. Lab Chip.17(14), 2395–2420 (2017).
  • GarretaE , KammRD , Chuvade Sousa Lopes SMet al.Rethinking organoid technology through bioengineering. Nat Mater.20(2), 145–155 (2021).
  • Van NormanGA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach?JACC: Basic Transl Sci.4(7), 845–854 (2019).
  • KoyilotMC , NatarajanP , HuntCRet al.Breakthroughs and applications of organ-on-a-chip technology. Cells.11(11), 1–23 (2022).
  • AkhtarA. The flaws and human harms of animal experimentation. Camb Q Healthc Ethics.24(4), 407–419 (2015).
  • Congress.Gov. H.R.1744 - Humane Research and Testing Act of 2021 (2021). https://www.congress.gov/bill/117th-congress/house-bill/1744/text
  • European Parliament. Plans and actions to accelerate a transition to innovation without the use of animals in research, regulatory testing and education (2021). https://www.europarl.europa.eu/doceo/document/TA-9-2021-0387_EN.html
  • SinghD , MathurA , AroraS , RoyS , MahindrooN. Journey of organ on chip technology and its role in future healthcare scenario. Appl Surf Sci Adv.9, Doi: 10.1016/j.apsadv.2022.100246 (2022).
  • IngberDE. Human organs-on-chips for disease modelling, drug development, and personalized medicine. Nat Rev Genet.23(8), 467–491 (2022).
  • ZhangB , KoroljA , LaiBFL , RadisicM. Advances in organ-on-a-chip engineering. Nat Rev Mater.3(8), 257–278 (2018).
  • Ronaldson-BouchardK , Vunjak-NovakovicG. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell.22(3), 310–324 (2018).
  • AhmedI , AkramZ , BuleMH , IqbalHMN. Advancements and potential applications of microfluidic approaches—A Review. Chemosensors.6(4), 1–22 (2018).
  • Sontheimer-PhelpsA , HassellBA , IngberDE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer.19(2), 65–81 (2019).
  • GonçalvesIM , CarvalhoV , RodriguesROet al.Organ-on-a-chip platforms for drug screening and delivery in tumor cells: a systematic review. Cancers.14(4), 1–25 (2022).
  • RegmiS , PoudelC , AdhikariR , LuoKQ. Applications of microfluidics and organ-on-a-chip in cancer research. Biosensors.12(7), 1–29 (2022).
  • LinZ , LuoG , DuW , KongT , LiuC , LiuZ. Recent advances in microfluidic platforms applied in cancer metastasis: Circulating Tumor Cells' (CTCs) isolation and tumor-on-a-chip. Small.16(9), 1–21 (2020).
  • WhitesidesGM. The origins and the future of microfluidics. Nature442(7101), 368–373 (2006).
  • LiR , LvX , ZhangX , SaeedO , DengY. Microfluidics for cell-cell interactions: a review. Front Chem Sci Eng.10(1), 90–98 (2016).
  • KankalaRK , ZhuK , LiJ , WangCS , WangS-B , ChenAZ. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication.9(3), 1–16 (2017).
  • KnowltonS , YenilmezB , TasogluS. Towards single-step biofabrication of organs on a chip via 3D printing. Trends Biotechnol.34(9), 685–688 (2016).
  • HuhD , MatthewsBD , MammotoA , Montoya-ZavalaM , HsinHY , IngberDE. Reconstituting organ-level lung functions on a chip. Science328(5986), 1662–1668 (2010).
  • HuangC , SanaeiF , VerdurmenWPR , YangF , JiW , WalboomersXF. The application of organs-on-a-chip in dental, oral, and craniofacial research. J Dent Res.102(4), 364–375 (2023).
  • Picollet-D'hahanN , ZuchowskaA , LemeunierI , LeGac S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol.39(8), 788–810 (2021).
  • ManzA , GraberN , WidmerHM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem.1(1), 244–248 (1990).
  • VerpoorteE , DeRooij NF. Microfluidics meets MEMS. Proc. IEEE.91(6), 930–953 (2003).
  • ChristofferssonJ , NoortDV , MandeniusCF. Developing organ-on-a-chip concepts using bio-mechatronic design Methodology Biofabrication. 9, 025023 (2017).
  • RamadanQ , AlbertiM , DufvaM , TungYC. Editorial: medical and industrial applications of microfluidic-based cell/tissue culture and organs-on-a-chip. Front Bioeng Biotechnol.7(151), 5–7 (2019).
  • Sosa-HernándezJE , Villalba-RodríguezAM , Romero-CastilloKDet al.Organs-on-a-chip module: a review from the development and applications perspective. Micromachines.9(10), 1–20 (2018).
  • RichardsonL , KimS , MenonR , HanA. Organ-on-chip technology: the Future of feto-maternal interface research?Front Physiol.11(715), 715 (2020).
  • ZhangJ , ChenZ , ZhangYet al.Construction of a high-fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. Lab Chip.21(19), 3804–3818 (2021).
  • DucP , VignesM , HugonGet al.Human neuromuscular junction on micro-structured microfluidic devices implemented with a custom micro electrode array (MEA). Lab Chip.21(21), 4223–4236 (2021).
  • AhnJ , YoonMJ , HongSHet al.Three-dimensional micro-engineered vascularized endometrium-on-a-chip. Hum. Reprod.36(10), 2720–2731 (2021).
  • ZhaoY , RafatianN , WangEYet al.Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biol.85–86, 189–204 (2020).
  • Sontheimer-PhelpsA , ChouDB , TovaglieriAet al.Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell Mol Gastroenterol Hepatol.9(3), 507–526 (2020).
  • BahmaeeH , OwenR , BoyleLet al.Design and evaluation of an osteogenesis-on-a-chip microfluidic device incorporating 3D cell culture. Front Bioeng Biotechnol.8, Doi: 10.3389/fbioe.2020.557111 (2020).
  • MosavatiB , OleinikovAV , DuE. Development of an organ-on-a-chip-device for study of placental pathologies. Int J Mol Sci.21(22), 1–12 (2020).
  • ZhangY , YangN , XieL , ShuF , ShiQ , ShaheenN. A new 3d cultured liver chip and real-time monitoring system based on microfluidic technology. Micromachines.11(12), 1–11 (2020).
  • ShantiA , SamaraB , AbdullahAet al.Multicompartment 3D-cultured organ-on-a-chip: towards a biomimetic lymph node for drug development. Pharmaceutics.12(464), 1–17 (2020).
  • RogalJ , BinderC , KromidasEet al.WAT-on-a-chip integrating human mature white adipocytes for mechanistic research and pharmaceutical applications. Sci Rep.10(1), 1–12 (2020).
  • JingB , WangZA , ZhangCet al.Establishment and application of peristaltic human gut-vessel microsystem for studying host–microbial interaction. Front Bioeng Biotechnol.8, 272 (2020).
  • PetrosyanA , CravediP , VillaniVet al.A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun.10(1), 3656 (2019).
  • TheobaldJ , Abuel Maaty MA , KustererNet al.In vitro metabolic activation of vitamin D3 by using a multi-compartment microfluidic liver-kidney organ on chip platform. Sci Rep.9(4616), 1–11 (2019).
  • DaiJ , XingY , XiaoLet al.Microfluidic disc-on-a-chip device for mouse intervertebral disc-pitching a next-generation research platform to study disc degeneration. ACS Biomater Sci Eng.5(4), 2041–2051 (2019).
  • AlbersHJ , PassierR , vanden Berg A , vander Meer AD. Automated analysis of platelet aggregation on cultured endothelium in a microfluidic chip perfused with human whole blood. Micromachines (Basel).10(11), 781 (2019).
  • ZhangM , XuC , JiangL , QinJ. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb).7(6), 1048–1060 (2018).
  • WeversNR , KasiDG , GrayTet al.A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS.15(1), 1–12 (2018).
  • JainA , BarrileR , vander Meer ADet al.Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin. Pharmacol. Ther.103(2), 332–340 (2018).
  • WangYI , AbaciHE , ShulerML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng.114(1), 184–194 (2017).
  • BanaeiyanAA , TheobaldJ , PaukštyteJ , WölflS , AdielsCB , GoksörM. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication.9(1), Doi: 10.1088/1758-5090/9/1/015014 (2017).
  • MusahS , MammotoA , FerranteTCet al.Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng.1, 1–25 (2017).
  • SkardalA , MurphySV , DevarasettyMet al.Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep.7(1), 1–16 (2017).
  • LeeJS , RomeroR , HanYMet al.Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med.29(7), 1046–1054 (2016).
  • CongY , HanX , WangYet al.Drug toxicity evaluation based on organ-on-a-chip technology: a review. Micromachines.11(4), 1–24 (2020).
  • SunW , LuoZ , LeeJet al.Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater.8(4), 1–12 (2019).
  • LiY , LiuY , HuCet al.Study of the neurotoxicity of indoor airborne nanoparticles based on a 3D human blood-brain barrier chip. Environ Int.143, 1–9 (2020).
  • BovardD , SandozA , LuettichKet al.A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab Chip.18(24), 3814–3829 (2018).
  • KameiKI , KatoY , HiraiYet al.Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs: in vitro. RSC Adv.7(58), 36777–36786 (2017).
  • NierodeGJ , PereaBC , McFarlandSKet al.High-throughput toxicity and phenotypic screening of 3D human neural progenitor cell cultures on a microarray chip platform. Stem Cell Rep.7(5), 970–982 (2016).
  • KwonSJ , LeeDW , ShahDAet al.High-throughput and combinatorial gene expression on a chip for metabolism-induced toxicology screening. Nat Commun.5(1), 1–12 (2014).
  • JangK-J , MehrAP , HamiltonGAet al.Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol.5(9), 1119–1129 (2013).
  • HackamDG , RedelmeierDA. Translation of research evidence from animals to humans. JAMA296(14), 1731–1732 (2006).
  • DayCP , MerlinoG , Van DykeT. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell163(1), 39–53 (2015).
  • FidlerIJ , WilmannsC , StaroselskyA , RadinskyR , DongZ , FanD. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev.13(2), 209–222 (1994).
  • HassellBA , GoyalG , LeeEet al.Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep.21(2), 508–516 (2017).
  • KillionJJ , RadinskyR , FidlerIJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev.17(3), 279–284 (1998).
  • JustusCR , LefflerN , Ruiz-EchevarriaM , YangLV. In vitro cell migration and invasion assays. J Vis Exp. (88), 1–8 (2014).
  • MehtaG , HsiaoAY , IngramM , LukerGD , TakayamaS. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release.164(2), 192–204 (2012).
  • EdmondsonR , BroglieJJ , AdcockAF , YangL. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol.12(4), 207–218 (2014).
  • HirschhaeuserF , MenneH , DittfeldC , WestJ , Mueller-KlieserW , Kunz-SchughartLA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol.148(1), 3–15 (2010).
  • GuanPP , YuX , GuoJJet al.By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion, and lung colonization. Oncotarget.6(11), 9140–9159 (2015).
  • HeldinC-H , RubinK , PietrasK , OstmanA. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer.4(10), 806–813 (2004).
  • PolacheckWJ , CharestJL , KammRD. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci USA.108(27), 11115–11120 (2011).
  • GhoshSP , KulkarniS , PerkinsMWet al.Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radiat. Res.53(4), 526–536 (2012).
  • ChaudhuriPK , LowBC , LimCT. Mechanobiology of tumor growth. Chem. Rev.118(14), 6499–6515 (2018).
  • DrostJ , CleversH. Organoids in cancer research. Nat Rev Cancer.18(7), 407–418 (2018).
  • BhadrirajuK , ChenCS. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today7(11), 612–620 (2002).
  • LeeE , PandeyNB , PopelAS. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumor and organ microenvironment. Expert Rev Mol Med.17, e3 (2015).
  • MamaniJB , MarinhoBS , RegoGNAet al.Magnetic hyperthermia therapy in glioblastoma tumor on-a-chip model. Einstein (Sao Paulo).18, 1–18 (2020).
  • LeeE , SongHHG , ChenCS. Biomimetic on-a-chip platforms for studying cancer metastasis. Curr Opin Chem Eng.11, 20–27 (2016).
  • ChramiecA , TelesD , YeagerKet al.Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip.20(23), 4357–4372 (2020).
  • LiuY , SakolishC , ChenZet al.Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. Toxicology445, 1–12 (2020).
  • WengKC , KurokawaYK , HajekBS , PaladinJA , ShirureVS , GeorgeSC. Human induced pluripotent stem-cardiac-endothelial-tumor-on-a-chip to assess anticancer efficacy and cardiotoxicity. Tissue Eng Part C Methods.26(1), 44–55 (2020).
  • OliverCR , WesterhofTM , CastroMG , MerajverSD. Quantifying the brain metastatic tumor micro-environment using an organ-on-a chip 3D Model, machine learning, and confocal tomography. J Vis Exp. (162), Doi: 10.3791/61654 (2020).
  • XiaoY , KimD , DuraBet al.Ex vivo dynamics of human glioblastoma cells in a microvasculature-on-a-chip system correlates with tumor heterogeneity and subtypes. Adv Sci (Weinh).6(8), Doi: 10.1002/advs.201801531 (2019).
  • MillerCP , TsuchidaC , ZhengY , HimmelfarbJ , AkileshS. A 3D Human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis 1. Neoplasia.20, 610–620 (2018).
  • Montanez-SauriSI , SungKE , BerthierE , BeebeDJ. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr Biol.5(3), 631–640 (2013).
  • MansoorifarA , GordonR , BerganRC , BertassoniLE. Bone-on-a-Chip: microfluidic technologies and microphysiologic models of bone tissue. Adv Funct Mater.31(6), 1–16 (2021).
  • HalldorssonS , LucumiE , Gómez-SjöbergR , FlemingRMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron.63, 218–231 (2015).
  • KimS , TakayamaS. Organ-on-a-chip and the kidney. Kidney Res Clin Pract.34(3), 165–169 (2015).
  • BhatiaSN , IngberDE. Microfluidic organs-on-chips. Nat Biotechnol.32(8), 760–772 (2014).
  • BeckerH , GärtnerC. Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem.390(1), 89–111 (2008).
  • AhmedI , IqbalHMN , AkramZ. Microfluidics engineering: recent trends, valorization, and applications. Arab J Sci Eng.43(1), 23–32 (2018).
  • ShimKY , LeeD , HanJ , NguyenNT , ParkS , SungJH. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices.19(2), 37 (2017).
  • MataA , FleischmanAJ , RoyS. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices.7(4), 281–293 (2005).
  • van PollML , ZhouF , RamstedtM , HuL , HuckWTS. A Self-assembly approach to chemical micropatterning of poly(dimethylsiloxane). Angew Chem In Ed.46(35), 6634–6637 (2007).
  • DuffyDC , McDonaldJC , SchuellerOJ , WhitesidesGM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem.70(23), 4974–4984 (1998).
  • ToepkeMW , BeebeDJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip.6(12), 1484–1486 (2006).
  • WangJD , DouvilleNJ , TakayamaS , ElSayedM. Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann. Biomed. Eng.40(9), 1862–1873 (2012).
  • KulthongK , DuivenvoordeL , MizeraBZet al.Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners. RSC Adv.8(57), 32440–32453 (2018).
  • GharibG , Bütünİ , MuganlıZet al.Biomedical applications of microfluidic devices: a review. Biosensors.12(11), 1–60 (2022).
  • WangDZ , RoyaS , KooK , KimK. Organ-on-a-chip platforms for drug delivery and cell characterization: a review. Sens Mater.27(6), 487–506 (2015).
  • StickerD , RothbauerM , LechnerS , HehenbergerM-T , PeterE. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip.15, 4542–4554 (2015).
  • WhitesidesGM , OstuniE , TakayamaS , JiangX , IngberDE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng.3, 335–373 (2001).
  • HoCMB , NgSH , LiKHH , YoonY-J. 3D printed microfluidics for biological applications. Lab Chip.15(18), 3627–3637 (2015).
  • BeckerH , LocascioLE. Polymer microfluidic devices. Talanta.56(2), 267–287 (2002).
  • LeeY , ChoiJW , YuJet al.Microfluidics within a well: an injection-molded plastic array 3D culture platform. Lab Chip.18(16), 2433–2440 (2018).
  • DoshiJ , RenekerDH. Electrospinning process and applications of electrospun fibers. Conf Rec Ind Appl Soc. IEEE-IAS Annu. Meet.3, 1698–1703 (1993).
  • WuC , LuoY , CunibertiG , XiaoY , GelinskyM. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater.7(6), 2644–2650 (2011).
  • DhariwalaB , HuntE , BolandT. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng.10(9–10), 1316–1322 (2004).
  • KhodaeiM , AminiK , ValanezhadA. Fabrication and characterization of poly lactic acid scaffolds by fused deposition modeling for bone tissue engineering. J Wuhan Univ. Technol Mat Sci Edit.35(1), 248–251 (2020).
  • ZeinI , HutmacherDW , TanKC , TeohSH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials23(4), 1169–1185 (2002).
  • AwadA , FinaF , GoyanesA , GaisfordS , BasitAW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm.586, 1–14 (2020).
  • KruthJ , WangX , LaouiT , FroyenL. Lasers and materials in selective laser sintering. Assem Autom.23(4), 357–371 (2003).
  • LandersR , MülhauptR. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng.282(1), 17–21 (2000).
  • MaPX , LangerR. Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. Methods Mol Med.18, 47–56 (1999).
  • LeeSB , KimYH , ChongMS , HongSH , LeeYM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials26(14), 1961–1968 (2005).
  • GrenierJ , DuvalH , BarouF , LvP , DavidB , LetourneurD. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater.94, 195–203 (2019).
  • SachlosE , CzernuszkaJT , GogolewskiS , DalbyM. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater.5, 29–40 (2003).
  • SungJH , ShulerML. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip.9(10), 1385–1394 (2009).
  • ByunCK , Abi-SamraK , ChoY-K , TakayamaS. Pumps for microfluidic cell culture. Electrophoresis35(2–3), 245–257 (2014).
  • SungJH , KamC , ShulerML. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip.10(4), 446–455 (2010).
  • MillerPG , ShulerML. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol. Bioeng.113(10), 2213–2227 (2016).
  • KothaSS , HayesBJ , PhongKTet al.Engineering a multicellular vascular niche to model hematopoietic cell trafficking. Stem Cell Res Ther.9(1), 1–14 (2018).
  • McAleerCW , LongCJ , ElbrechtDet al.Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci Transl Med.11(497), 1–12 (2019).
  • YissacharN , ZhouY , UngLet al.An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell168(6), 1135–1148 (2017).
  • CimettaE , SirabellaD , YeagerKet al.Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab Chip.13(3), 355–364 (2013).
  • WanC , ChungS , KammRD. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann. Biomed. Eng.39(6), 1840–1847 (2011).
  • AshammakhiNA , ElzagheidA. Organ-on-a-Chip: New Tool for Personalized Medicine. J Craniofac Surg.29(4), 823–824 (2018).
  • TomaselloL , MauceriR , CoppolaAet al.Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: a potential application for bone formation. Stem Cell Res Ther.8(1), 1–15 (2017).
  • AshammakhiN , NasiriR , DeNRet al.Gut-on-a-chip: Current Progress and Future Opportunities. Biomaterials255, Doi: 10.1016/j.biomaterials.2020.120196 (2020).
  • RosalemGS , TorresLAG , deLas Casas EB , MathiasFAS , RuizJC , CarvalhoMGR. Microfluidics and organ-on-a-chip technologies: a systematic review of the methods used to mimic bone marrow. PLOS ONE.15(12), 1–31 (2020).
  • PramanikS , KharcheS , MoreN , RanglaniD , KapusettiG. Natural Biopolymers for Bone Tissue Engineering: A Brief Review. Engineered Regeneration.4(2), 193–204 (2022).
  • AslankoohiN , MondalD , RizkallaAS , MequanintK. Bone repair and regenerative biomaterials: towards recapitulating the microenvironment. Polymers.11(9), 1–31 (2019).
  • ShiR , HuangY , MaC , WuC , TianW. Current advances for bone regeneration based on tissue engineering strategies. Front Med.13(2), 160–188 (2019).
  • PaladiniF , PolliniM. Novel approaches and biomaterials for bone tissue engineering: a focus on silk fibroin. Materials.15(19), 1–22 (2022).
  • FuL , LiP , LiHet al.The application of bioreactors for cartilage tissue engineering: advances, limitations, and future perspectives. Stem Cells Int.2021, Doi: 10.1155/2021/6621806 (2021).
  • KapałczyńskaM , KolendaT , PrzybyłaWet al.2D and 3D cell cultures – a comparison of different. Arch Med Sci.14(4), 910–919 (2016).
  • UtoK , TsuiJH , DeForestCA , KimD-H. Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog Polym Sci.65, 53–82 (2017).
  • ColuccioML , PerozzielloG , MalaraNet al.Microfluidic platforms for cell cultures and investigations. Microelectron Eng.208, 14–28 (2019).
  • LiJ , ChenJ , BaiHet al.An overview of organs-on-chips based on deep learning. Research.2022, Doi: 10.34133/2022/9869518 (2022).
  • DewhirstFE , ChenT , IzardJet al.The human oral microbiome. J Bacteriol.192(19), 5002–5017 (2010).
  • XuH , SobueT , BertoliniMet al.S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms. Virulence.8(8), 1602–1617 (2017).
  • SouzaJGS , BertoliniM , ThompsonA , BarãoVAR , Dongari-BagtzoglouA. Biofilm interactions of Candida albicans and mitis group streptococci in a titanium-mucosal interface model. Appl. Environ. Microbiol.86(9), 1–12 (2020).
  • SouzaJGS , BertoliniMM , CostaRC , NagayBE , Dongari-BagtzoglouA , BarãoVAR. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience.24(1), 1–25 (2021).
  • CostaRC , NagayBE , BertoliniMet al.Fitting pieces into the puzzle: the impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv. Colloid Interface Sci.298, Doi: 10.1016/j.cis.2021.102551 (2021).
  • YinW , WangY , LiuL , HeJ. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci.20(14), 1–18 (2019).
  • BertoliniM , CostaRC , BarãoVARet al.Oral microorganisms and biofilms: new insights to defeat the main etiologic factor of oral diseases. Microorganisms.10(12), 1–9 (2022).
  • DoddsM , RolandS , EdgarM , ThornhillM. Saliva A review of its role in maintaining oral health and preventing dental disease. BDJ Team.2(15123), 11–13 (2015).
  • RathH , StumppSN , StieschM. Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials. PLOS ONE.12(2), 1–12 (2017).
  • KristensenMF , LeonhardtD , NelandMLB , SchlaferS. A 3D printed microfluidic flow-cell for microscopy analysis of in situ-grown biofilms. J Microbiol Methods.171, Doi: 10.1016/j.mimet.2020.105876 (2020).
  • KoldermanE , BettampadiD , SamarianDet al.L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLOS ONE.10(5), 1–18 (2015).
  • LuoTL , HayashiM , ZsiskaMet al.Introducing BAIT (biofilm architecture inference tool): a software program to evaluate the architecture of oral multispecies biofilms. Microbiology165(5), 527–537 (2019).
  • GashtiMP , AsselinJ , BarbeauJ , BoudreauD , GreenerJ. A microfluidic platform with pH imaging for chemical and hydrodynamic stimulation of intact oral biofilms. Lab Chip.16(8), 1412–1419 (2016).
  • JalaliF , EllettF , BalaniPet al.No man's land: species-specific formation of exclusion zones bordering Actinomyces graevenitzii microcolonies in nanoliter cultures. Microbiology Open.10(1), 1–13 (2021).
  • LamRHW , CuiX , GuoW , ThorsenT. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics. Lab Chip.16(9), 1652–1662 (2016).
  • ThihaA , IbrahimF , JosephKet al.A novel microfluidic compact disc to investigate electrochemical property changes between artificial and real salivary samples mixed with mouthwashes using electrical impedance analysis. PLOS ONE.18(2), 1–19 (2023).
  • FrançaCM , TahayeriA , RodriguesNSet al.The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip.20(2), 405–413 (2020).
  • HuS , MunirajG , MishraAet al.Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents. Dent Mater.38(8), 1385–1394 (2022).
  • RodriguesNS , FrançaCM , TahayeriAet al.Biomaterial and Biofilm Interactions with the Pulp-Dentin Complex-on-a-Chip. J Dent Res.100(10), 1136–1143 (2021).
  • NiuL , ZhangH , LiuYet al.Microfluidic Chip for Odontoblasts in Vitro. ACS Biomater Sci Eng.5(9), 4844–4851 (2019).
  • QiY , ZouT , DissanayakaWL , WongHM , BertassoniLE , ZhangC. Fabrication of tapered fluidic microchannels conducive to angiogenic sprouting within gelatin methacryloyl hydrogels. J Endod.47(1), 52–61 (2021).
  • ZhangL , HanY , ChenQ , DissanayakaWL. Sema4D-plexin-B1 signaling in recruiting dental stem cells for vascular stabilization on a microfluidic platform. Lab Chip.22(23), 4632–4644 (2022).
  • LyKL , RooholghodosSA , RahimiCet al.An Oral-mucosa-on-a-chip sensitively evaluates cell responses to dental monomers. Biomed Microdevices.23(1), 7 (2021).
  • RahimiC , RahimiB , PadovaDet al.Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics.12(5), 1–15 (2018).
  • KoningJJ , RodriguesNeves CT , SchimekKet al.A Multi-organ-on-chip approach to investigate how oral exposure to metals can cause systemic toxicity leading to Langerhans cell activation in skin. Front Toxicol.3, 1–12 (2022).
  • IsolaG. Interface between periodontal tissues and dental materials: dynamic changes and challenges. Coatings.11(5), 1–5 (2021).
  • VuratMT , ŞekerŞ , Lalegül-ÜlkerÖ , ParmaksizM , ElçinAE , ElçinYM. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes Dis.9(4), 1008–1023 (2022).
  • JinL , KouN , AnFet al.Analyzing human periodontal soft tissue inflammation and drug responses in vitro using epithelium-capillary interface on-a-chip. Biosensors.12(5), 1–14 (2022).
  • MakkarH , ZhouY , TanKS , LimCT , SriramG. Modeling crevicular fluid flow and host-oral microbiome interactions in a gingival crevice-on-chip. Adv Healthc Mater.12(6), e2202376 (2023).
  • McMahonS , ChenAY. Head and neck cancer. Cancer Metastasis Rev.22(1), 21–24 (2003).
  • LouieKS , MehannaH , SasieniP. Trends in head and neck cancers in England from 1995 to 2011 and projections up to 2025. Oral Oncol.51(4), 341–348 (2015).
  • DöbrossyL. Epidemiology of head and neck cancer: magnitude of the problem. Cancer Metastasis Rev.24(1), 9–17 (2005).
  • BowerR , GreenVL , KuvshinovaEet al.Maintenance of head and neck tumor on-chip: gateway to personalized treatment?Future Sci OA.3(2), 1–13 (2017).
  • JinD , MaX , LuoYet al.Application of a microfluidic-based perivascular tumor model for testing drug sensitivity in head and neck cancers and toxicity in endothelium. RSC Adv.6(35), 29598–29607 (2016).
  • de HaanP , IanovskaMA , MathwigKet al.Digestion-on-a-chip: a continuous-flow modular microsystem recreating enzymatic digestion in the gastrointestinal tract. Lab Chip.19(9), 1599–1609 (2019).
  • PagellaP , NetoE , Jiménez-RojoL , LamghariM , MitsiadisTA. Microfluidics co-culture systems for studying tooth innervation. Front Physiol.5, 326 (2014).
  • KangKJ , JuSM , JangYJ , KimJ. Indirect co-culture of stem cells from human exfoliated deciduous teeth and oral cells in a microfluidic platform. Tissue Eng Regen Med.13(4), 428–436 (2016).
  • NewmanMG , TakeiHH , KlokkevoldPR , CarranzaFA. Newman and Carranza's Clinical Periodontology (13th Edition).Elsevier, PA, USA (2018).
  • BoseS , RoyM , BandyopadhyayA. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol.30(10), 546–554 (2012).
  • RosetiL , ParisiV , PetrettaMet al.Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C.78, 1246–1262 (2017).
  • OwenR , ReillyGC. In vitro models of bone remodeling and associated disorders. Front. Bioeng Biotechnol.6, 134 (2018).
  • BabaliariE , PetekidisG , ChatzinikolaidouM. A precisely flow-controlled microfluidic system for enhanced pre-osteoblastic cell response for bone tissue engineering. Bioengineering.5(3), 1–16 (2018).
  • MiddletonK , Al-DujailiS , MeiX , GüntherA , YouL. Microfluidic co-culture platform for investigating osteocyte-osteoclast signaling during fluid shear stress mechanostimulation. J. Biomech.59, 35–42 (2017).
  • NaselloG , Alamán-DíezP , SchiaviJ , PérezMÁ , McNamaraL , García-AznarJM. Primary Human osteoblasts cultured in a 3D microenvironment create a unique representative model of their differentiation into osteocytes. Front Bioeng Biotechnol.8, 336 (2020).
  • BahmaeeH , OwenR , BoyleLet al.Design and evaluation of an osteogenesis-on-a-chip microfluidic device incorporating 3D cell culture. Front Bioeng Biotechnol.8, Doi: 10.3389/fbioe.2020.557111 (2020).
  • JeonJS , BersiniS , GilardiMet al.Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci USA.112(1), 214–219 (2015).
  • TomlinsonRE , ChristiansenBA , GiannoneAA , GenetosDC. The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol.11, 646 (2020).
  • SilvaDI , DosSantos BP , LengJ , OliveiraH , AmédéeJ. Dorsal root ganglion neurons regulate the transcriptional and translational programs of osteoblast differentiation in a microfluidic platform article. Cell Death Dis.8(12), 1–14 (2017).
  • LinZ , LiZ , LiENet al.Osteochondral tissue chip derived from ipscs: modeling oa pathologies and testing drugs. Front Bioeng Biotechnol7, 411 (2019).
  • LinH , LozitoTP , AlexanderPG , GottardiR , TuanRS. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Mol Pharm.11(7), 2203–2212 (2014).
  • LeeJH , GuY , WangH , LeeWY. Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials. Biomaterials33(4), 999–1006 (2012).
  • DoyleAD , PetrieRJ , KutysML , YamadaKM. Dimensions in cell migration. Curr. Opin. Cell Biol.25(5), 642–649 (2013).
  • MovillaN , BorauC , ValeroC , García-AznarJM. Degradation of extracellular matrix regulates osteoblast migration: a microfluidic-based study. Bone107, 10–17 (2018).
  • SeyfriedTN , HuysentruytLC. On the origin of cancer metastasis. Crit. Rev. Oncog.18(1–2), 43–73 (2013).
  • CheungFH. The practicing orthopedic surgeon's guide to managing long bone metastases. Orthop Clin N Am.45(1), 109–119 (2014).
  • ErraniC , MavrogenisAF , CevolaniLet al.Treatment for long bone metastases based on a systematic literature review. Eur J Orthop Surg Traumatol.27(2), 205–211 (2017).
  • ColemanRE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res.12(20), S6243–S6249 (2006).
  • ErraniC. Treatment of bone metastasis. Curr Oncol.29(8), 5195–5197 (2022).
  • ConceiçãoF , SousaDM , Loessberg-ZahlJet al.A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Mater Today Bio.13, 1–13 (2022).
  • MeiX , MiddletonK , ShimDet al.Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integr Biol.11(4), 119–129 (2019).
  • SafiriS , KolahiA-A , SmithEet al.Global, regional, and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheu. Dis.79(6), 819–828 (2020).
  • KimC , KeatingA. Cell therapy for knee osteoarthritis: mesenchymal stromal cells. Gerontology.65(3), 294–298 (2019).
  • CoaccioliS , Sarzi-PuttiniP , ZisP , RinonapoliG , VarrassiG. Osteoarthritis: new insight on its pathophysiology. J Clin Med.11(20), 1–12 (2022).
  • JangS , LeeK , JuJH. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int J Mol Sci.22(5), 1–15 (2021).
  • KulkarniP , MartsonA , VidyaR , ChitnavisS , HarsulkarA. Pathophysiological landscape of osteoarthritis. Adv. Clin. Chem.100, 37–90 (2021).
  • HunterDJ , Bierma-ZeinstraS. Osteoarthritis. Lancet393(10182), 1745–1759 (2019).
  • MakarczykMJ , HinesS , YagiHet al.Using microphysiological system for the development of treatments for joint inflammation and associated cartilage loss—A pilot study. Biomolecules.13(2), 1–13 (2023).
  • GeorgeG , LaneJM. Osteonecrosis of the femoral head. J Am Acad Orthop Surg Glob Res Rev.6(5), 1–10 (2022).
  • HinesJT , JoWL , CuiQet al.Osteonecrosis of the femoral head: an updated review of arco on pathogenesis, staging and treatment. J. Korean Med. Sci.36(24), 1–15 (2021).
  • XieX-H , WangX-L , YangH-L , ZhaoD-W , QinL. Steroid-associated osteonecrosis: epidemiology, pathophysiology, animal model, prevention, and potential treatments (an overview). J Orthop Translat.3(2), 58–70 (2015).
  • SeamonJ , KellerT , SalehJ , CuiQ. The pathogenesis of nontraumatic osteonecrosis. Arthritis.2012, Doi: 10.1155/2012/601763 (2012).
  • AlDhalaan NA , BaQaisA , Al-OmarA. Medication-related osteonecrosis of the jaw: a review. Cureus.12(2), 1–11 (2020).
  • LiT , LiuY , ZhangQ , SunW , DongY. A steroid-induced osteonecrosis model established using an organ-on-a-chip platform. Exp Ther Med.22(4), 1–9 (2021).
  • SpagnuoloG , CodispotiB , MarrelliM , RengoC , RengoS , TatulloM. Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent J.6(4), 1–8 (2018).
  • TatulloM , MarrelliM , PaduanoF. The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci.12(1), 72–77 (2015).
  • LiuJ , YuF , SunYet al.Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells33(3), 627–638 (2015).
  • CicciùM , FiorilloL , CervinoG , HabalMB. Bone morophogenetic protein application as grafting materials for bone regeneration in craniofacial surgery: current application and future directions. J Craniofac Surg.32(2), 787–793 (2021).
  • FiorilloL , CervinoG , RussoD , ItroA , LainoL , CicciùM. Transcortical bone capillary vessels network: implication on the maxillofacial district. Minerva Stomatol.69(5), 309–316 (2020).
  • YamadaY , Nakamura-YamadaS , KusanoK , BabaS. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: a concise review. Int J Mol Sci.20(5), 1–17 (2019).
  • LeungCM , de HaanP , Ronaldson-BouchardKet al.A guide to the organ-on-a-chip. Nat Rev Methods Primers2, 33 (2022).
  • KaramanosNK , TheocharisAD , PiperigkouZet al.A guide to the composition and functions of the extracellular matrix. FEBS J.288(24), 6850–6912 (2021).
  • StaubliN , SchmidtJC , RinneCA , Signer-BusetSL , RodriguezFR , WalterC. Animal experiments in periodontal and peri-implant research: are there any changes?Dent J.7(2), 1–9 (2019).
  • HubrechtRC , CarterE. The 3Rs and humane experimental technique: implementing change. Animals.9(10), 1–10 (2019).
  • WilkinsonM. The potential of organ on chip technology for replacing animal testing. In: Animal Experimentation Working Towards a Paradigm Change.HerrmannK, JayneK ( Eds). Verlag Ferdinand Schöningh, Paderborn, Germany, 639–653 (2019).