415
Views
17
CrossRef citations to date
0
Altmetric
Review

Soluble Biomarkers of Osteoporosis and Osteoarthritis, from Pathway Mapping to Clinical Trials: An Update

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 501-518 | Published online: 08 Apr 2020

References

  • Group F-NBW. BEST (Biomarkers, Endpoints, and Other Tools) Resource; 2016.
  • Kraus VB, Blanco FJ, Englund M, et al. OARSI clinical trials recommendations: soluble biomarker assessments in clinical trials in osteoarthritis. Osteoarthr Cartil. 2015;23(5):686–697. doi:10.1016/j.joca.2015.03.00225952342
  • Micheel CM, Ball JR. Evaluation of biomarkers and surrogate endpoints in chronic disease. 2010. doi:10.17226/12869
  • Floyd E, McShane TM. Development and use of biomarkers in oncology drug development. Toxicol Pathol. 2004;32(SUPPL. 1):106–115. doi:10.1080/01926230490425021
  • Burch J, Rice S, Yang H, et al. Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: the secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Health Technol Assess (Rockv). 2014;18(11):1–180. doi:10.3310/hta18110
  • Zhou H, Lu SS, Dempster DW. Bone remodeling: cellular activities in bone. Osteoporosis in Men. 2010;15–24. doi:10.1016/B978-0-12-374602-3.00002-X
  • Mulder JE, Moreira Kulak CA, Shane E. Secondary osteoporosis. Dynam Bone Carti Metabol. 2006;717–737. doi:10.1016/B978-012088562-6/50044-3
  • Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol. 2015;11(8):462–474. doi:10.1038/nrrheum.2015.4825900210
  • Damjanov I. Bones and joints. Pathol Secrets. 2009;409–433. doi:10.1016/B978-0-323-05594-9.00020-9
  • Unnanuntana A, Gladnick BP, Donnelly E, Lane JM. The assessment of fracture risk. J Bone Jt Surg - Ser A. 2010;92(3):743–753. doi:10.2106/JBJS.I.00919
  • IOF. Osteoporosis - Facts and statistics. Available from: https://www.iofbonehealth.org/facts-statistics. Accessed 12 12, 2019.
  • Kanis JA, Harvey NC, McCloskey E, et al. Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos Int. 2019. doi:10.1007/s00198-019-05176-3
  • Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44. doi:10.1007/s00198-018-4704-530324412
  • Greenblatt MB, Tsai JN, Wein MN. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem. 2017;63(2):464–474. doi:10.1373/clinchem.2016.25908527940448
  • Bauer DC. Clinical use of bone turnover markers. JAMA - J Am Med Assoc. 2019. doi:10.1001/jama.2019.9372
  • Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22(2):391–420. doi:10.1007/s00198-010-1501-121184054
  • Shetty S, Kapoor N, Bondu J, Thomas N, Paul T. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. 2016;20(6):846–852. doi:10.4103/2230-8210.19291427867890
  • Cremers S, Garnero P, Seibel MJ. Biochemical markers of bone metabolism. Principles of Bone Biol. 2008;2:1857–1881. doi:10.1016/B978-0-12-373884-4.00020-3
  • Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31(1):57–61. doi:10.1016/S8756-3282(02)00791-312110413
  • Fares JE, Choucair M, Nabulsi M, Salamoun M, Shahine CH, Fuleihan GEH. Effect of gender, puberty, and vitamin D status on biochemical markers of bone remodedeling. Bone. 2003;33(2):242–247. doi:10.1016/S8756-3282(03)00160-114499358
  • Nguyen LT, Nguyen UDT, Nguyen TDT, Ho-Pham LT, Nguyen TV. Contribution of bone turnover markers to the variation in bone mineral density: a study in Vietnamese men and women. Osteoporos Int. 2018;29(12):2739–2744. doi:10.1007/s00198-018-4700-930196375
  • Wu C-H, Chang Y-F, Chen C-H, et al. Consensus statement on the use of bone turnover markers for short-term monitoring of osteoporosis treatment in the Asia-Pacific region. J Clin Densitom. 2019. doi:10.1016/j.jocd.2019.03.004
  • Lorentzon M, Branco J, Brandi ML, et al. Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Adv Ther. 2019;36(10):2811–2824. doi:10.1007/s12325-019-01063-931440982
  • Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET. Use of CTX-I and PINP as bone turnover markers: national Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int. 2017;28(9):2541–2556. doi:10.1007/s00198-017-4082-428631236
  • Bhattoa HP. Laboratory aspects and clinical utility of bone turnover markers. Electron J Int Fed Clin Chem Lab Med. 2018;29(2):117–128.
  • Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908–923. doi:10.1016/S2213-8587(17)30184-528689768
  • Chavassieux P, Portero-Muzy N, Roux JP, Garnero P, Chapurlat R. Are biochemical markers of bone turnover representative of bone histomorphometry in 370 postmenopausal women? J Clin Endocrinol Metab. 2015;100(12):4662–4668. doi:10.1210/jc.2015-295726505821
  • Park SG, Jeong SU, Lee JH, et al. The changes of CTX, DPD, osteocalcin, and bone mineral density during the postmenopausal period. Ann Rehabil Med. 2018;42(3):441–448. doi:10.5535/arm.2018.42.3.44129961742
  • Krege JH, Lane NE, Harris JM, Miller PD. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int. 2014;25(9):2159–2171. doi:10.1007/s00198-014-2646-024599274
  • Azizieh FY, Shehab D, Jarallah Al K, Mojiminiyi O, Gupta R, Raghupathy R. Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. J Inflamm Res. 2019;12:99–108. doi:10.2147/JIR.S20359031118735
  • Ivanova S, Vasileva L, Ivanova S, Peikova L, Obreshkova D. Osteoporosis: therapeutic options. Folia Med (Plovdiv). 2015. doi:10.1515/folmed-2015-0037
  • Dominguez LJ, Scalisi R, Barbagallo M. Therapeutic options in osteoporosis. Acta Biomed. 2010;81(SUPPL. 1):55–65.20518192
  • Bettica P, Bevilacqua M, Vago T, Masino M, Cucinotta E, Norbiato G. Short-term variations in bone remodeling biochemical markers: cyclical etidronate and alendronate effects compared. J Clin Endocrinol Metab. 1997;82(9):3034–3039. doi:10.1210/jcem.82.9.41939284739
  • Reginster JY, Wilson KM, Dumont E, Bonvoisin B, Barrett J. Monthly oral ibandronate is well tolerated and efficacious in postmenopausal women: results from the Monthly Oral Pilot Study. J Clin Endocrinol Metab. 2005;90(9):5018–5024. doi:10.1210/jc.2004-175015972582
  • Binkley N, Silverman SL, Simonelli C, et al. Monthly ibandronate suppresses serum CTX-I within 3 days and maintains a monthly fluctuating pattern of suppression. Osteoporos Int. 2009;20(9):1595–1601. doi:10.1007/s00198-008-0827-419145396
  • Borba VZC, Paz-Filho G, Kulak CAM, Seibel MJ, Bilezikian JP. Bone turnover 18 months after a single intravenous dose of zoledronic acid. Int J Clin Pract. 2007;61(6):1058–1062. doi:10.1111/j.1742-1241.2007.01392.x17504370
  • Kaufman J-M, Audran M, Bianchi G, et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab. 2013;98(2):592–601. doi:10.1210/jc.2012-304823341486
  • Bruyère O, Collette J, Rizzoli R, et al. Relationship between 3-month changes in biochemical markers of bone remodelling and changes in bone mineral density and fracture incidence in patients treated with strontium ranelate for 3 years. Osteoporos Int. 2010;21(6):1031–1036. doi:10.1007/s00198-009-1078-819813043
  • Rizzoli R, Chapurlat RD, Laroche J-M, et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis results of a 2-year study. Osteoporos Int. 2012;23(1):305–315. doi:10.1007/s00198-011-1758-z21909729
  • Savvidis C, Tournis S, Dede AD. Obesity and bone metabolism. Hormones. 2018;17(2):205–217. doi:10.1007/s42000-018-0018-429858847
  • Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6(1):1. doi:10.1186/1749-799X-6-3021208449
  • Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007;92(5):1640–1646. doi:10.1210/jc.2006-057217299077
  • Sharma S, Tandon V, Mahajan S, Mahajan V, Mahajan A. Obesity: friend or foe for osteoporosis. J Midlife Health. 2014;5(1):6. doi:10.4103/0976-7800.12778224672199
  • Faienza MF, D’Amato G, Chiarito M, et al. Mechanisms involved in childhood obesity-related bone fragility. Front Endocrinol (Lausanne). 2019:10. doi:10.3389/fendo.2019.00269.30733707
  • Ambroszkiewicz J, Gajewska J, Rowicka G, Klemarczyk W, Chelchowska M. Assessment of biochemical bone turnover markers and bone mineral density in thin and normal-weight children. Cartilage. 2018;9(3):255–262. doi:10.1177/194760351668614529156943
  • Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus - A systematic review. Bone. 2016;82:69–78. doi:10.1016/j.bone.2015.02.01925722065
  • Pater A, Sypniewska G, Pilecki O. Biochemical markers of bone cell activity in children with Type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2010;23(1–2):81–86. doi:10.1515/JPEM.2010.23.1-2.8120432810
  • Starup-Linde J, Westberg-Rasmussen S, Lykkeboe S, Vestergaard P. Effects of glucose on bone markers: overview of current knowledge with focus on diabetes, glucose, and bone markers. Biomark Bone Dis. 2017:1105–1128. doi:10.1007/978-94-007-7693-7_15
  • Liu TT, Liu DM, Xuan Y, et al. The association between the baseline bone resorption marker CTX and incident dysglycemia after 4 years. Bone Res. 2017:5. doi:10.1038/boneres.2017.20.
  • Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9(10):575–583. doi:10.1038/nrendo.2013.15423938284
  • Mäkitie RE, Haanpää M, Valta H, et al. Skeletal characteristics of WNT1 osteoporosis in children and young adults. J Bone Miner Res. 2016;31(9):1734–1742. doi:10.1002/jbmr.284127005318
  • Luther J, Yorgan TA, Rolvien T, et al. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci Transl Med. 2018;10(466):466. doi:10.1126/scitranslmed.aau7137
  • Okamoto M, Udagawa N, Uehara S, et al. Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis. Sci Rep. 2014:4. doi:10.1038/srep04493.
  • Garnero P. New developments in biological markers of bone metabolism in osteoporosis. Bone. 2014;66:46–55. doi:10.1016/j.bone.2014.05.01624909537
  • Tian J, Xu XJ, Shen L, et al. Association of serum Dkk-1 levels with β-catenin in patients with postmenopausal osteoporosis. J Huazhong Univ Sci Technol - Med Sci. 2015;35(2):212–218. doi:10.1007/s11596-015-1413-625877354
  • Ueland T, Stilgren L, Bollerslev J. Bone matrix levels of dickkopf and sclerostin are positively correlated with bone mass and strength in postmenopausal osteoporosis. Int J Mol Sci. 2019;20(12):12. doi:10.3390/ijms20122896
  • Corrado A, Neve A, Macchiarola A, Gaudio A, Marucci A, Cantatore FP. RANKL/OPG ratio and DKK-1 expression in primary osteoblastic cultures from osteoarthritic and osteoporotic subjects. J Rheumatol. 2013;40(5):684–694. doi:10.3899/jrheum.12084523457386
  • Morse LR, Sudhakar S, Lazzari AA, et al. Sclerostin: a candidate biomarker of SCI-induced osteoporosis. Osteoporos Int. 2013;24(3):961–968. doi:10.1007/s00198-012-2072-022801952
  • Dovjak P, Heinze G, Rainer A, Sipos W, Pietschmann P. Serum levels of Dickkopf-1 are a potential negative biomarker of survival in geriatric patients. Exp Gerontol. 2017;96:104–109. doi:10.1016/j.exger.2017.06.00228652180
  • OARSI. Osteoarthritis: a Serious Disease, Submitted to the U.S. Food and Drug Administration. Available from: https://www.oarsi.org/sites/default/files/library/2018/pdf/oarsi_white_paper_oa_serious_disease121416_1.pdf. 2016 Accessed 1212, 2019.
  • Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21. doi:10.1016/j.joca.2012.11.01223194896
  • Watt FE. Osteoarthritis biomarkers: year in review. Osteoarthr Cartil. 2018;26(3):312–318. doi:10.1016/j.joca.2017.10.01629107060
  • Fernández-Puente P, Calamia V, González-Rodríguez L, et al. Multiplexed mass spectrometry monitoring of biomarker candidates for osteoarthritis. J Proteomics. 2017;152:216–225. doi:10.1016/j.jprot.2016.11.01227865793
  • Haraden CA, Huebner JL, Hsueh MF, Li YJ, Kraus VB. Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation. Arthritis Res Ther. 2019;21(1):1. doi:10.1186/s13075-019-1923-x30606217
  • Bay-Jensen AC, Hoegh-Madsen S, Dam E, et al. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int. 2010;30(4):435–442. doi:10.1007/s00296-009-1183-119816688
  • Soul J, Dunn SL, Anand S, et al. Stratification of knee osteoarthritis: two major patient subgroups identified by genome-wide expression analysis of articular cartilage. Ann Rheum Dis. 2018;77(3):423. doi:10.1136/annrheumdis-2017-21260329273645
  • Massicotte F, Lajeunesse D, Benderdour M, et al. Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E2 by isolated human subchondral osteoblasts identity two subgroups of osteoarthritic patients. Osteoarthr Cartil. 2002;10(6):491–500. doi:10.1053/joca.2002.052812056853
  • Liu B, Zhang M, Zhao J, Zheng M, Yang H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp Ther Med. 2018;16(6):5009–5014. doi:10.3892/etm.2018.685230546406
  • Nagy E, Vajda E, Vari C, Sipka S, Fárr A-M, Horváth E. Meloxicam ameliorates the cartilage and subchondral bone deterioration in monoiodoacetate-induced rat osteoarthritis. PeerJ. 2017;5:e3185. doi:10.7717/peerj.318528413731
  • Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. doi:10.1038/nrrheum.2010.19621119608
  • Imamura M, Ezquerro F, Marcon Alfieri F, et al. Serum levels of proinflammatory cytokines in painful knee osteoarthritis and sensitization. Int J Inflam. 2015:2015. doi:10.1155/2015/329792.
  • Radojčić MR, Thudium CS, Henriksen K, et al. Biomarker of extracellular matrix remodelling C1M and proinflammatory cytokine interleukin 6 are related to synovitis and pain in end-stage knee osteoarthritis patients. Pain. 2017;158(7):1254–1263. doi:10.1097/j.pain.000000000000090828333699
  • Dyer J, Davison G, Marcora SM, Mauger AR. Effect of a Mediterranean type diet on inflammatory and cartilage degradation biomarkers in patients with osteoarthritis. J Nutr Heal Aging. 2017;21(5):562–566. doi:10.1007/s12603-016-0806-y
  • Shan Y, Qi C, Liu Y, Gao H, Zhao D, Jiang Y. Increased frequency of peripheral blood follicular helper T cells and elevated serum IL-21 levels in patients with knee osteoarthritis. Mol Med Rep. 2017;15(3):1095–1102. doi:10.3892/mmr.2017.613228112376
  • Castrogiovanni P, Di Rosa M, Ravalli S, et al. Moderate physical activity as a prevention method for knee osteoarthritis and the role of synoviocytes as biological key. Int J Mol Sci. 2019;20(3):3. doi:10.3390/ijms20030511
  • Munjal A, Bapat S, Hubbard D, Hunter M, Kolhe R, Fulzele S. Advances in molecular biomarker for early diagnosis of osteoarthritis. Biomol Concepts. 2019;10(1):111–119. doi:10.1515/bmc-2019-001431401621
  • Chu H, Xu ZM, Yu H, Zhu KJ, Huang H. Association between hypoxia-inducible factor-1a levels in serum and synovial fluid with the radiographic severity of knee osteoarthritis. Genet Mol Res. 2014;13(4):10529–10536. doi:10.4238/2014.December.12.1525511037
  • Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci. 2019;20(18):18. doi:10.3390/ijms20184653
  • Zhao XY, Yang ZB, Zhang ZJ, et al. CCL3 serves as a potential plasma biomarker in knee degeneration (osteoarthritis). Osteoarthr Cartil. 2015;23(8):1405–1411. doi:10.1016/j.joca.2015.04.00225887364
  • He J, Cao W, Azeem I, Zhao Q, Shao Z. Transforming growth factor Beta1 being considered a novel biomarker in knee osteoarthritis. Clin Chim Acta. 2017;472:96–101. doi:10.1016/j.cca.2017.07.02128739110
  • Gundogdu G, Gundogdu K. A novel biomarker in patients with knee osteoarthritis: adropin. Clin Rheumatol. 2018;37(8):2179–2186. doi:10.1007/s10067-018-4052-z29549492
  • Charni-Ben Tabassi N, Desmarais S, Bay-Jensen AC, Delaissé JM, Percival MD, Garnero P. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation. Osteoarthr Cartil. 2008;16(10):1183–1191. doi:10.1016/j.joca.2008.02.00818403221
  • Mouritzen U, Christgau S, Lehmann HJ, Tankó LB, Christiansen C. Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis. 2003;62(4):332–336. doi:10.1136/ard.62.4.33212634232
  • Bihlet AR, Byrjalsen I, Bay-Jensen AC, et al. Associations between biomarkers of bone and cartilage turnover, gender, pain categories and radiographic severity in knee osteoarthritis. Arthritis Res Ther. 2019;21(1):1. doi:10.1186/s13075-019-1987-730606217
  • Reijman M, Hazes JMW, Bierma-Zeinstra SMA, et al. A new marker for osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum. 2004;50(8):2471–2478. doi:10.1002/art.2033215334460
  • Lehmann HJ, Mouritzen U, Christgau S, Cloos PAC, Christiansen C. Effect of bisphosphonates on cartilage turnover assessed with a newly developed assay for collagen type II degradation products. Ann Rheum Dis. 2002;61(6):530–533. doi:10.1136/ard.61.6.53012006327
  • Park MC, Chung SJ, Park YB, Lee SK. Bone and cartilage turnover markers, bone mineral density, and radiographic damage in men with ankylosing spondylitis. Yonsei Med J. 2008;49(2):288–294. doi:10.3349/ymj.2008.49.2.28818452267
  • Catterall J, Dewitt Parr S, Fagerlund K, Caterson B. CTX-II is a marker of cartilage degradation but not of bone turnover. Osteoarthr Cartil. 2013;21:S77. doi:10.1016/j.joca.2013.02.168
  • Meulenbelt I, Kloppenburg M, Kroon HM, et al. Urinary CTX-II levels are associated with radiographic subtypes of osteoarthritis in hip, knee, hand, and facet joints in subject with familial osteoarthritis at multiple sites: the GARP study. Ann Rheum Dis. 2006;65(3):360–365. doi:10.1136/ard.2005.04064216079167
  • Park YM, Kim SJ, Lee KJ, Yang SS, Min BH, Yoon HC. Detection of CTX-II in serum and urine to diagnose osteoarthritis by using a fluoro-microbeads guiding chip. Biosens Bioelectron. 2015;67:192–199. doi:10.1016/j.bios.2014.08.01625172026
  • Csifó (Vajda) E, Nagy EE, Horváth E, Fárr A-M, Muntean D-L. Mid-term effects of meloxicam on collagen type II degradation in a rat osteoarthritis model induced by iodoacetate. Farmacia. 2015;63(4):556–560.
  • Luo Y, Bay-Jensen A, Karsdala M, Qvist P, He Y. Serum CTX-II does not measure the same as urinary CTX-II. Osteoarthr Cartil. 2018;26:S179. doi:10.1016/j.joca.2018.02.386
  • Fawzy RM, Hashaad NI, Mansour AI. Decrease of serum biomarker of type II Collagen degradation (Coll2-1) by intra-articular injection of an autologous plasma-rich-platelet in patients with unilateral primary knee osteoarthritis. Eur J Rheumatol. 2017;4(2):93–97. doi:10.5152/eurjrheum.2017.16007628638679
  • Bay-Jensen AC, Liu Q, Byrjalsen I, et al. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM-Increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem. 2011;44(5–6):423–429. doi:10.1016/j.clinbiochem.2011.01.00121223960
  • Wei X, Yin K, Li P, et al. Type II collagen fragment HELIX-II is a marker for early cartilage lesions but does not predict the progression of cartilage destruction in human knee joint synovial fluid. Rheumatol Int. 2013;33(7):1895–1899. doi:10.1007/s00296-011-2309-922238024
  • Verma P, Dalal K. Serum cartilage oligomeric matrix protein (COMP) in knee osteoarthritis: a novel diagnostic and prognostic biomarker. J Orthop Res. 2013;31(7):999–1006. doi:10.1002/jor.2232423423905
  • Hoch JM, Mattacola CG, Bush HM, Medina McKeon JM, Hewett TE, Lattermann C. Longitudinal documentation of serum cartilage oligomeric matrix protein and patient-reported outcomes in collegiate soccer athletes over the course of an athletic season. Am J Sports Med. 2012;40(11):2583–2589. doi:10.1177/036354651245826022967826
  • Bai B, Li Y. Combined detection of serum CTX-II and COMP concentrations in osteoarthritis model rabbits: an effective technique for early diagnosis and estimation of disease severity. J Orthop Surg Res. 2016;11:1. doi:10.1186/s13018-016-0483-x26728048
  • Li H, Bai B, Wang J, Xu Z, Yan S, Liu G. Identification of key mRNAs and microRNAs in the pathogenesis and progression of osteoarthritis using microarray analysis. Mol Med Rep. 2017;16(4):5659–5666. doi:10.3892/mmr.2017.725128849222
  • Riegger J, Rehm M, Büchele G, et al. Serum cartilage oligomeric matrix protein in late-stage osteoarthritis: association with clinical features, renal function, and cardiovascular biomarkers. J Clin Med. 2020;9(1):268. doi:10.3390/jcm9010268
  • Rose BJ, Kooyman DL. A tale of two joints: the role of matrix metalloproteases in cartilage biology. Dis Markers. 2016;2016. doi:10.1155/2016/4895050
  • Ruan G, Xu J, Wang K, et al. Associations between knee structural measures, circulating inflammatory factors and MMP13 in patients with knee osteoarthritis. Osteoarthr Cartil. 2018;26(8):1063–1069. doi:10.1016/j.joca.2018.05.00329753949
  • Pengas I, Eldridge S, Assiotis A, McNicholas M, Mendes JE, Laver L. MMP-3 in the peripheral serum as a biomarker of knee osteoarthritis, 40 years after open total knee meniscectomy. J Exp Orthop. 2018;5(1):1. doi:10.1186/s40634-018-0132-x29330711
  • Charlier E, Deroyer C, Ciregia F, et al. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol. 2019;165:49–65. doi:10.1016/j.bcp.2019.02.03630853397
  • Leeming DJ, He Y, Veidal SS, et al. A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers. 2011;16(7):616–628. doi:10.3109/1354750X.2011.62062821988680
  • Barascuk N, Veidal SS, Larsen L, et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem. 2010;43(10–11):899–904. doi:10.1016/j.clinbiochem.2010.03.01220380828
  • Arends RHGP, Karsdal MA, Verburg KM, West CR, Bay-Jensen AC, Keller DS. Identification of serological biomarker profiles associated with total joint replacement in osteoarthritis patients. Osteoarthr Cartil. 2017;25(6):866–877. doi:10.1016/j.joca.2017.01.00628115232
  • Valdes AM, Meulenbelt I, Chassaing E, et al. Large scale meta-analysis of urinary C-terminal telopeptide, serum cartilage oligomeric protein and matrix metalloprotease degraded type II collagen and their role in prevalence, incidence and progression of osteoarthritis. Osteoarthr Cartil. 2014;22(5):683–689. doi:10.1016/j.joca.2014.02.00724576742
  • He Y, Manon-Jensen T, Arendt-Nielsen L, et al. Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis. Osteoarthr Cartil. 2019;27(4):611–620. doi:10.1016/j.joca.2019.01.00130654118
  • Asghar S, Litherland GJ, Lockhart JC, Goodyear CS, Crilly A. Exosomes in intercellular communication and implications for osteoarthritis. Rheumatology. 2019. doi:10.1093/rheumatology/kez462
  • Wan L, Zhao Q, Niu G, Xiang T, Ding C, Wang S. Plasma miR-136 can be used to screen patients with knee osteoarthritis from healthy controls by targeting IL-17. Exp Ther Med. 2018;16(4):3419–3424. doi:10.3892/etm.2018.662530233690
  • Zheng WD, Zhou FL, Lin N, Liu J. Investigation for the role of CTX-III and microRNA-98 in diagnosis and treatment of osteoarthritis. Eur Rev Med Pharmacol Sci. 2018;22(17):5424–5428. doi:10.26355/eurrev_201809_1580130229812
  • Dong Z, Jiang H, Jian X, Zhang W. Change of miRNA expression profiles in patients with knee osteoarthritis before and after celecoxib treatment. J Clin Lab Anal. 2019;33(1):1. doi:10.1002/jcla.22648
  • de Visser HM, Sanchez C, Mastbergen SC, Lafeber FPJG, Henrotin YE, Weinans H. Fib3-3 as a biomarker for osteoarthritis in a rat model with metabolic dysregulation. Cartilage. 2019;10(3):329–334. doi:10.1177/194760351875462929366335
  • Runhaar J, Sanchez C, Taralla S, Henrotin Y, Bierma-Zeinstra SMA. Fibulin-3 fragments are prognostic biomarkers of osteoarthritis incidence in overweight and obese women. Osteoarthr Cartil. 2016;24(4):672–678. doi:10.1016/j.joca.2015.10.01326521011
  • De Seny D, Sharif M, Fillet M, et al. Discovery and biochemical characterisation of four novel biomarkers for osteoarthritis. Ann Rheum Dis. 2011;70(6):1144–1152. doi:10.1136/ard.2010.13554121362709
  • Imai K, Shikata H, Okada Y. Degradation of vitronectin by matrix metalloproteinases-1, −2, −3, −7 and −9. FEBS Lett. 1995;369(2–3):249–251. doi:10.1016/0014-5793(95)00752-U7544295
  • Ourradi K, Xu Y, De Seny D, Kirwan J, Blom A, Sharif M. Development and validation of novel biomarker assays for osteoarthritis. PLoS One. 2017;12(7):7. doi:10.1371/journal.pone.0181334
  • Kraus VB, Burnett B, Coindreau J, et al. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthr Cartil. 2011;19(5):515–542. doi:10.1016/j.joca.2010.08.01921396468
  • Weng X, Lin P, Liu F, et al. Achyranthes bidentata polysaccharides activate the Wnt/β -catenin signaling pathway to promote chondrocyte proliferation. Int J Mol Med. 2014:1045–1050. doi:10.3892/ijmm.2014.186925176272
  • Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β -catenin in bone healing of hip arthroplasty patients. Bone. 2018;107:66–77.29129760
  • Theologis T, Efstathopoulos N, Nikolaou V, et al. Association between serum and synovial fluid Dickkopf-1 levels with radiographic severity in primary knee osteoarthritis patients. 2017:1865–1872. doi:10.1007/s10067-017-3640-7
  • Mills JS, Kinsley MA, Peters DF, Weber PSD, Shearer TR, Pease AP. Correlation of dickkopf-1 concentrations in plasma and synovial fluid to the severity of radiographic signs of equine osteoarthritis. Vet Comp Orthop Traumatol. 2017;30(05):311–317. doi:10.3415/VCOT-16-11-015728763521
  • Lu K, Li Y, Shi T, et al. Changes in expression of Wnt signaling pathway inhibitors dickkopf-1 and sclerostin before and after total joint arthroplasty. Medicine. 2017;96: 1–5.
  • Huang X, Post JN, Zhong L, et al. Dickkopf-related protein 1 and gremlin 1 show different response than frizzled-related protein in human synovial fluid following knee injury and in patients with osteoarthritis. Osteoarthr Cartil. 2018;26(6):834–843. doi:10.1016/j.joca.2018.02.90429526783
  • Snelling SJB, Davidson RK, Swingler TE, et al. Dickkopf-3 is upregulated in osteoarthritis and has a chondroprotective role. Osteoarthritis Cartil. 2016;24:883–891. doi:10.1016/j.joca.2015.11.021