103
Views
5
CrossRef citations to date
0
Altmetric
REVIEW

Utility of Matrix Metalloproteinases in the Diagnosis, Monitoring and Prognosis of Ovarian Cancer Patients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3359-3382 | Received 09 Aug 2022, Accepted 08 Nov 2022, Published online: 27 Nov 2023

References

  • Hirst J, Crow J, Godwin A. Ovarian cancer genetics: subtypes and risk factors. In: Devaja O, Papadopoulos A, editors. Ovarian Cancer - From Pathogenesis to Treatment. London: IntechOpen; 2018:1–37.
  • Ravindran F, Choudhary B. Ovarian cancer: molecular classification and targeted therapy. In: Ho G, Webber K, editors. Ovarian Cancer - Updates in Tumour Biology and Therapeutics. London: IntechOpen; 2021:1–21.
  • De Leo A, Santini D, Ceccarelli C, et al. What is new on ovarian carcinoma: integrated morphologic and molecular analysis following the new 2020 World Health Organization classification of female genital tumors. Diagnostics. 2021;11(4):697. doi:10.3390/diagnostics11040697
  • Doubeni CA, Doubeni AR, Myers AE. Diagnosis and management of ovarian cancer. Am Fam Physician. 2016;93(11):937–944.
  • Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 2019;11:287–299. doi:10.2147/IJWH.S197604
  • Dąbrowska E, Przylipiak A, Zajkowska M, Piskór BM, Borowik-Zaręba A, Ławicki S. C-C motif chemokine ligand 5 and C-C chemokine receptor type 5: possible diagnostic application in breast cancer patients. Acta Biochim Pol. 2020;67(4):539–449. doi:10.18388/abp.2020_5402
  • Będkowska GE, Gacuta E, Zbucka-Krętowska M, et al. Plasma levels and diagnostic utility of VEGF in a three-year follow-up of patients with breast cancer. J Clin Med. 2021;10(22):5452. doi:10.3390/jcm10225452
  • Lubowicka E, Zbucka-Kretowska M, Sidorkiewicz I, et al. Diagnostic power of cytokine M-CSF, metalloproteinase 2 (MMP-2) and tissue inhibitor-2 (TIMP-2) in cervical cancer patients based on ROC analysis. Pathol Oncol Res. 2020;26(2):791–800. doi:10.1007/s12253-019-00626-z
  • Sidorkiewicz I, Piskór B, Dąbrowska E, et al. Plasma levels and tissue expression of selected cytokines, metalloproteinases and tissue inhibitors in patients with cervical cancer. Anticancer Res. 2019;39(11):6403–6412. doi:10.21873/anticanres.13854
  • Zajkowska M, Zbucka-Krętowska M, Sidorkiewicz I, et al. Plasma levels and diagnostic utility of macrophage-colony stimulating factor, matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 as tumor markers in cervical cancer patients. Tumour Biol. 2018;40(7):1010428318790363. doi:10.1177/1010428318790363
  • Będkowska GE, Ławicki S, Gacuta E, Pawłowski P, Szmitkowski M. M-CSF in a new biomarker panel with HE4 and CA 125 in the diagnostics of epithelial ovarian cancer patients. J Ovarian Res. 2015;8(1):27. doi:10.1186/s13048-015-0153-3
  • Ławicki S, Będkowska GE, Gacuta-Szumarska E, Szmitkowski M. The plasma concentration of VEGF, HE4 and CA125 as a new biomarkers panel in different stages and sub-types of epithelial ovarian tumors. J Ovarian Res. 2013;6(1):45. doi:10.1186/1757-2215-6-45
  • Kamat AA, Fletcher M, Gruman LM, et al. The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin Cancer Res. 2006;12(6):1707–1714. doi:10.1158/1078-0432.CCR-05-2338
  • Hu X, Li D, Zhang W, Zhou J, Tang B, Li L. Matrix metalloproteinase-9 expression correlates with prognosis and involved in ovarian cancer cell invasion. Arch Gynecol Obstet. 2012;286(6):1537–1543. doi:10.1007/s00404-012-2456-6
  • Ekinci T, Ozbay PO, Yiğit S, Yavuzcan A, Uysal S, Soylu F. The correlation between immunohistochemical expression of MMP-2 and the prognosis of epithelial ovarian cancer. Polish Gynaecology. 2014;85(2):121–130. doi:10.17772/gp/1702
  • Zeng L, Qian J, Zhu F, Wu F, Zhao H, Zhu H. The prognostic values of matrix metalloproteinases in ovarian cancer. J Int Med Res. 2020;48(1):300060519825983. doi:10.1177/0300060519825983
  • Al-Alem L, Curry TE. Ovarian cancer: involvement of the matrix metalloproteinases. Reproduction. 2015;150(2):R55–R64. doi:10.1530/REP-14-0546
  • Piskór BM, Przylipiak A, Dąbrowska E, et al. Plasma concentrations of matrilysins MMP-7 and MMP-26 as diagnostic biomarkers in breast cancer. J Clin Med. 2021;10(7):1436. doi:10.3390/jcm10071436
  • Będkowska GE, Piskór B, Gacuta E, et al. Diagnostic power of selected cytokines, MMPs and TIMPs in ovarian cancer patients – ROC analysis. Anticancer Res. 2019;39(5):2575–2582. doi:10.21873/anticanres.13380
  • Toss A, Tomasello C, Razzaboni E, et al. Hereditary ovarian cancer: not only BRCA 1 and 2 genes. Biomed Res Int. 2015;2015:341723. doi:10.1155/2015/341723
  • Javadi S, Ganeshan DM, Qayyum A, Iyer RB, Bhosale P. Ovarian cancer, the revised FIGO staging system, and the role of imaging. AJR Am J Roentgenol. 2016;206(6):1351–1360. doi:10.2214/AJR.15.15199
  • Troisi R, Bjørge T, Gissler M, et al. The role of pregnancy, perinatal factors and hormones in maternal cancer risk: a review of the evidence. J Intern Med. 2018;283(5):430–445. doi:10.1111/joim.12747
  • Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–1064. doi:10.2353/ajpath.2010.100105
  • Daniele A, Ferrero A, Fuso L, et al. Palliative care in patients with ovarian cancer and bowel obstruction. Support Care Cancer. 2015;23(11):3157–3163. doi:10.1007/s00520-015-2694-9
  • Lee YC, Jivraj N, O’Brien C, et al. Malignant bowel obstruction in advanced gynecologic cancers: an updated review from a multidisciplinary perspective. Obstet Gynecol Int. 2018;2018:1867238. doi:10.1155/2018/1867238
  • Deng K, Yang C, Tan Q, et al. Sites of distant metastases and overall survival in ovarian cancer: a study of 1481 patients. Gynecol Oncol. 2018;150(3):460–465. doi:10.1016/j.ygyno.2018.06.022
  • Prat J, Ribé A, Gallardo A. Hereditary ovarian cancer. Hum Pathol. 2005;36(8):861–870. doi:10.1016/j.humpath.2005.06.006
  • Berek JS, Renz M, Kehoe S, Kumar L, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int J Gynaecol Obstet. 2021;155(Suppl S1):61–85. doi:10.1002/ijgo.13878
  • Goff BA. Frequency of symptoms of ovarian cancer in women presenting to primary care clinics. JAMA. 2004;291(22):2705–2712. doi:10.1001/jama.291.22.2705
  • Ebell MH, Culp MB, Radke TJ. A systematic review of symptoms for the diagnosis of ovarian cancer. Am J Prev Med. 2016;50(3):384–394. doi:10.1016/j.amepre.2015.09.023
  • Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol. 2013;3:256. doi:10.3389/fonc.2013.00256
  • Shanbhogue AKP, Shanbhogue DKP, Prasad SR, Surabhi VR, Fasih N, Menias CO. Clinical syndromes associated with ovarian neoplasms: a comprehensive review. Radiographics. 2010;30(4):903–919. doi:10.1148/rg.304095745
  • Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3–14. doi:10.1016/j.bpobgyn.2016.08.006
  • Zayyan MS. Risk factors for ovarian cancer. In: Lasfar A, Cohen-Solal K, editors. Tumor Progression and Metastasis. London: IntechOpen; 2020:1–27.
  • Ueki A, Hirasawa A. Molecular features and clinical management of hereditary gynecological cancers. Int J Mol Sci. 2020;21(24):9504. doi:10.3390/ijms21249504
  • Sekine M, Nishino K, Enomoto T. Differences in ovarian and other cancers risks by population and BRCA mutation location. Genes. 2021;12(7):1050. doi:10.3390/genes12071050
  • Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40(1):17–22. doi:10.1038/ng.2007.53
  • Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291–1299. doi:10.1093/annonc/mdv022
  • Stoppa-Lyonnet D. The biological effects and clinical implications of BRCA mutations: where do we go from here? Eur J Hum Genet. 2016;24(Suppl1):S3–S9. doi:10.1038/ejhg.2016.93
  • Gorodetska I, Kozeretska I, Dubrovska A. BRCA genes: the role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10(9):2109–2127. doi:10.7150/jca.30410
  • Neff RT, Senter L, Salani R. BRCA mutation in ovarian cancer: testing, implications and treatment considerations. Ther Adv Med Oncol. 2017;9(8):519–531. doi:10.1177/1758834017714993
  • Liu YL, Breen K, Catchings A, et al. Risk-reducing bilateral salpingo-oophorectomy for ovarian cancer: a review and clinical guide for hereditary predisposition genes. JCO Oncol Pract. 2022;18(3):201–209. doi:10.1200/OP.21.00382
  • Duraturo F, Liccardo R, De Rosa M, Izzo P. Genetics, diagnosis and treatment of Lynch syndrome: old lessons and current challenges. Oncol Lett. 2019;17(3):3048–3054. doi:10.3892/ol.2019.9945
  • Biller LH, Syngal S, Yurgelun MB. Recent advances in Lynch syndrome. Fam Cancer. 2019;18(2):211–219. doi:10.1007/s10689-018-00117-1
  • Lepore Signorile M, Disciglio V, Di Carlo G, Pisani A, Simone C, Ingravallo G. From genetics to histomolecular characterization: an insight into colorectal carcinogenesis in lynch syndrome. Int J Mol Sci. 2021;22(13):6767. doi:10.3390/ijms22136767
  • Nakamura K, Banno K, Yanokura M, et al. Features of ovarian cancer in Lynch syndrome (Review). Mol Clin Oncol. 2014;2(6):909–916. doi:10.3892/mco.2014.397
  • Helder-Woolderink JM, Blok EA, Vasen HF, Hollema H, Mourits MJ, De Bock GH. Ovarian cancer in Lynch syndrome; a systematic review. Eur J Cancer. 2016;55:65–73. doi:10.1016/j.ejca.2015.12.005
  • Crispens MA. Endometrial and ovarian cancer in lynch syndrome. Clin Colon Rectal Surg. 2012;25(2):97–102. doi:10.1055/s-0032-1313780
  • Neto N, Cunha TM. Do hereditary syndrome-related gynecologic cancers have any specific features? Insights Imaging. 2015;6(5):545–552. doi:10.1007/s13244-015-0425-x
  • Angeli D, Salvi S, Tedaldi G. Genetic predisposition to breast and ovarian cancers: how many and which genes to test? Int J Mol Sci. 2020;21(3):1128. doi:10.3390/ijms21031128
  • Weber-Lassalle N, Hauke J, Ramser J, et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018;20(1):7. doi:10.1186/s13058-018-0935-9
  • Clague J, Wilhoite G, Adamson A, Bailis A, Weitzel JN, Neuhausen SL. RAD51C germline mutations in breast and ovarian cancer cases from high-risk families. PLoS One. 2011;6(9):e25632. doi:10.1371/journal.pone.0025632
  • Yang X, Leslie G, Doroszuk A, et al. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol. 2020;38(7):674–685. doi:10.1200/JCO.19.01907
  • Samartzis EP, Labidi-Galy SI, Moschetta M, et al. Endometriosis-associated ovarian carcinomas: insights into pathogenesis, diagnostics, and therapeutic targets-a narrative review. Ann Transl Med. 2020;8(24):1712. doi:10.21037/atm-20-3022a
  • Brilhante AV, Augusto KL, Portela MC, et al. Endometriosis and ovarian cancer: an integrative review (endometriosis and ovarian cancer). Asian Pac J Cancer Prev. 2017;18(1):11–16. doi:10.22034/APJCP.2017.18.1.11
  • Králíčková M, Laganà AS, Ghezzi F, Vetvicka V. Endometriosis and risk of ovarian cancer: what do we know? Arch Gynecol Obstet. 2020;301(1):1–10. doi:10.1007/s00404-019-05358-8
  • Kornovski Y, Atanasova Y, Kostov S, Slavchev S, Yordanov AD. Endometriosis and risk of ovarian cancer. Oncol Clin Pract. 2021;17(3):125–127. doi:10.5603/OCP.2021.0012
  • Bounous VE, Ferrero A, Fuso L, et al. Endometriosis-associated ovarian cancer: a distinct clinical entity? Anticancer Res. 2016;36(7):3445–3449.
  • Rossing MA, Cushing-Haugen KL, Wicklund KG, Doherty JA, Weiss NS. Risk of epithelial ovarian cancer in relation to benign ovarian conditions and ovarian surgery. Cancer Causes Control. 2008;19(10):1357–1364. doi:10.1007/s10552-008-9207-9
  • Al Zahidy Z. Causes and management of ovarian cysts. Egypt J Hosp Med. 2018;70(10):1818–1822. doi:10.12816/0044759
  • Rasmussen CB, Jensen A, Albieri V, Andersen KK, Kjaer SK. Is pelvic inflammatory disease a risk factor for ovarian cancer? Cancer Epidemiol Biomarkers Prev. 2017;26(1):104–109. doi:10.1158/1055-9965.EPI-16-0459
  • Zhou Z, Zeng F, Yuan J, et al. Pelvic inflammatory disease and the risk of ovarian cancer: a meta-analysis. Cancer Causes Control. 2017;28(5):415–428. doi:10.1007/s10552-017-0873-3
  • Piao J, Lee EJ, Lee M. Association between pelvic inflammatory disease and risk of ovarian cancer: an updated meta-analysis. Gynecol Oncol. 2020;157(2):542–548. doi:10.1016/j.ygyno.2020.02.002
  • Trabert B, Waterboer T, Idahl A, et al. Antibodies against chlamydia trachomatis and ovarian cancer risk in two independent populations. J Natl Cancer Inst. 2019;111(2):129–136. doi:10.1093/jnci/djy084
  • Fortner RT, Terry KL, Bender N, et al. Sexually transmitted infections and risk of epithelial ovarian cancer: results from the Nurses’ health studies. Br J Cancer. 2019;120(8):855–860. doi:10.1038/s41416-019-0422-9
  • Daniilidis A, Dinas K. Long term health consequences of polycystic ovarian syndrome: a review analysis. Hippokratia. 2009;13(2):90–92.
  • Matevossian K, Carpinello O. Polycystic ovary syndrome: menopause and malignancy. Clin Obstet Gynecol. 2021;64(1):102–109. doi:10.1097/GRF.0000000000000560
  • Schildkraut JM, Schwingl PJ, Bastos E, Evanoff A, Hughes C. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol. 1996;88(4 Pt 1):554–559. doi:10.1016/0029-7844(96)00226-8
  • Barry JA, Azizia MM, Hardiman PJ. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(5):748–758. doi:10.1093/humupd/dmu012
  • Gottschau M, Kjaer SK, Jensen A, Munk C, Mellemkjaer L. Risk of cancer among women with polycystic ovary syndrome: a Danish cohort study. Gynecol Oncol. 2015;136(1):99–103. doi:10.1016/j.ygyno.2014.11.012
  • Cramer DW, Vitonis AF, Terry KL, Welch WR, Titus LJ. The association between talc use and ovarian cancer: a retrospective case-control study in two US states. Epidemiology. 2016;27(3):334–346. doi:10.1097/EDE.0000000000000434
  • O’Brien KM, Tworoger SS, Harris HR, et al. Association of powder use in the genital area with risk of ovarian cancer. JAMA. 2020;323(1):49–59. doi:10.1001/jama.2019.20079
  • Wentzensen N, O’Brien KM. Talc, body powder, and ovarian cancer: a summary of the epidemiologic evidence. Gynecol Oncol. 2021;163(1):199–208. doi:10.1016/j.ygyno.2021.07.032
  • Madsen C, Baandrup L, Dehlendorff C, Kjaer SK. Tubal ligation and salpingectomy and the risk of epithelial ovarian cancer and borderline ovarian tumors: a nationwide case-control study. Acta Obstet Gynecol Scand. 2015;94(1):86–94. doi:10.1111/aogs.12516
  • Gaitskell K, Green J, Pirie K, Reeves G, Beral V; Million Women Study Collaborators. Tubal ligation and ovarian cancer risk in a large cohort: substantial variation by histological type. Int J Cancer. 2016;138(5):1076–1084. doi:10.1002/ijc.29856
  • Fleming JS, Beaugié CR, Haviv I, Chenevix-Trench G, Tan OL. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol. 2006;247(1–2):4–21. doi:10.1016/j.mce.2005.09.014
  • Budiana ING, Angelina M, Pemayun TGA. Ovarian cancer: pathogenesis and current recommendations for prophylactic surgery. J Turk Ger Gynecol Assoc. 2019;20(1):47–54. doi:10.4274/jtgga.galenos.2018.2018.0119
  • Royar J, Becher H, Chang-Claude J. Low-dose oral contraceptives: protective effect on ovarian cancer risk. Int J Cancer. 2001;95(6):370–374. doi:10.1002/1097-0215(20011120)95:6<370::aid-ijc1065>3.0.co;2-t
  • Havrilesky LJ, Moorman PG, Lowery WJ, et al. Oral contraceptive pills as primary prevention for ovarian cancer: a systematic review and meta-analysis. Obstet Gynecol. 2013;122(1):139–147. doi:10.1097/AOG.0b013e318291c235
  • Huang Z, Gao Y, Wen W, et al. Contraceptive methods and ovarian cancer risk among Chinese women: a report from the Shanghai Women’s Health Study. Int J Cancer. 2015;137(3):607–614. doi:10.1002/ijc.29412
  • Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–156. doi:10.1016/j.soncn.2019.02.001
  • Karlsson T, Johansson T, Höglund J, Ek WE, Johansson Å. Time-dependent effects of oral contraceptive use on breast, ovarian, and endometrial cancers. Cancer Res. 2021;81(4):1153–1162. doi:10.1158/0008-5472.CAN-20-2476
  • Schrijver LH, Antoniou AC, Olsson H, et al. Oral contraceptive use and ovarian cancer risk for BRCA1/2 mutation carriers: an international cohort study. Am J Obstet Gynecol. 2021;225(1):51.e1–51.e17. doi:10.1016/j.ajog.2021.01.014
  • Han KH, Kim MK, Kim HS, Chung HH, Song YS. Protective effect of progesterone during pregnancy against ovarian cancer. J Cancer Prev. 2013;18(2):113–122. doi:10.15430/jcp.2013.18.2.113
  • Yu S, Lee M, Shin S, Park J. Apoptosis induced by progesterone in human ovarian cancer cell line SNU-840. J Cell Biochem. 2001;82(3):445–451. doi:10.1002/jcb.1171
  • Lima MA, Silva SV, Jaeger RG, Freitas VM. Progesterone decreases ovarian cancer cells migration and invasion. Steroids. 2020;161:108680. doi:10.1016/j.steroids.2020.108680
  • Su D, Pasalich M, Lee AH, Binns CW. Ovarian cancer risk is reduced by prolonged lactation: a case-control study in southern China. Am J Clin Nutr. 2013;97(2):354–359. doi:10.3945/ajcn.112.044719
  • Luan NN, Wu QJ, Gong TT, Vogtmann E, Wang YL, Lin B. Breastfeeding and ovarian cancer risk: a meta-analysis of epidemiologic studies. Am J Clin Nutr. 2013;98(4):1020–1031. doi:10.3945/ajcn.113.062794
  • Li DP, Du C, Zhang ZM, et al. Breastfeeding and ovarian cancer risk: a systematic review and meta-analysis of 40 epidemiological studies. Asian Pac J Cancer Prev. 2014;15(12):4829–4837. doi:10.7314/apjcp.2014.15.12.4829
  • Babic A, Sasamoto N, Rosner BA, et al. Association between breastfeeding and ovarian cancer risk. JAMA Oncol. 2020;6(6):e200421. doi:10.1001/jamaoncol.2020.0421
  • Olsen CM, Green AC, Whiteman DC, Sadeghi S, Kolahdooz F, Webb PM. Obesity and the risk of epithelial ovarian cancer: a systematic review and meta-analysis. Eur J Cancer. 2007;43(4):690–709. doi:10.1016/j.ejca.2006.11.010
  • Olsen CM, Nagle CM, Whiteman DC, et al. Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocr Relat Cancer. 2013;20(2):251–262. doi:10.1530/ERC-12-0395
  • Bae HS, Kim HJ, Hong JH, Lee JK, Lee NW, Song JY. Obesity and epithelial ovarian cancer survival: a systematic review and meta-analysis. J Ovarian Res. 2014;7:41. doi:10.1186/1757-2215-7-41
  • Nagle CM, Bain CJ, Webb PM. Cigarette smoking and survival after ovarian cancer diagnosis. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2557–2560. doi:10.1158/1055-9965.EPI-06-0592
  • Zhou A, Minlikeeva AN, Khan S, Moysich KB. Association between cigarette smoking and histotype-specific epithelial ovarian cancer: a review of epidemiologic studies. Cancer Epidemiol Biomarkers Prev. 2019;28(7):1103–1116. doi:10.1158/1055-9965.EPI-18-1214
  • Santucci C, Bosetti C, Peveri G, et al. Dose-risk relationships between cigarette smoking and ovarian cancer histotypes: a comprehensive meta-analysis. Cancer Causes Control. 2019;30(9):1023–1032. doi:10.1007/s10552-019-01198-8
  • Faber MT, Kjær SK, Dehlendorff C, et al. Cigarette smoking and risk of ovarian cancer: a pooled analysis of 21 case-control studies. Cancer Causes Control. 2013;24(5):989–1004. doi:10.1007/s10552-013-0174-4
  • Wentzensen N, Poole EM, Trabert B, et al. Ovarian cancer risk factors by histologic subtype: an analysis from the ovarian cancer cohort consortium. J Clin Oncol. 2016;34(24):2888–2898. doi:10.1200/JCO.2016.66.8178
  • Genkinger JM, Hunter DJ, Spiegelman D, et al. Alcohol intake and ovarian cancer risk: a pooled analysis of 10 cohort studies. Br J Cancer. 2006;94(5):757–762. doi:10.1038/sj.bjc.6603020
  • Chang ET, Canchola AJ, Lee VS, et al. Wine and other alcohol consumption and risk of ovarian cancer in the California Teachers Study cohort. Cancer Causes Control. 2007;18(1):91–103. doi:10.1007/s10552-006-0083-x
  • Zhang M, Yang ZY, Binns CW, Lee AH. Diet and ovarian cancer risk: a case–control study in China. Br J Cancer. 2002;86(5):712–717. doi:10.1038/sj.bjc.6600085
  • Pan SY, Ugnat A-M, Mao Y, Wen SW, Johnson KC; Canadian Cancer Registries Epidemiology Research Group. A case-control study of diet and the risk of ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2004;13(9):1521–152. doi:10.1158/1055-9965.1521.13.9
  • Plagens-Rotman K, Chmaj-Wierzchowska K, Pięta B, Bojar I. Modifiable lifestyle factors and ovarian cancer incidence in women. Ann Agric Environ Med. 2018;25(1):36–40. doi:10.5604/12321966.1233565
  • Faber MT, Jensen A, Søgaard M, et al. Use of dairy products, lactose, and calcium and risk of ovarian cancer – results from a Danish case-control study. Acta Oncol. 2012;51(4):454–464. doi:10.3109/0284186X.2011.636754
  • Löffek S, Schilling O, Franzke C-W. Series “matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191–208. doi:10.1183/09031936.00146510
  • Liu J, Khalil RA. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci. 2017;148:355–420. doi:10.1016/bs.pmbts.2017.04.003
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73. doi:10.1016/bs.pmbts.2017.02.005
  • Xie Y, Mustafa A, Yerzhan A, et al. Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov. 2017;3(1):17036. doi:10.1038/cddiscovery.2017.36
  • Cerofolini L, Fragai M, Luchinat C. Mechanism and inhibition of matrix metalloproteinases. Curr Med Chem. 2019;26(15):2609–2633. doi:10.2174/0929867325666180326163523
  • Rangasamy R, Geronimo G, Ortín O, et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs). Molecules. 2019;24(16):2982. doi:10.3390/molecules24162982
  • Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells. 2020;9(5):1313. doi:10.3390/cells9051313
  • Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec. 2020;303(6):1557–1572. doi:10.1002/ar.24188
  • Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020;9(5):1076. doi:10.3390/cells9051076
  • Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int J Mol Sci. 2021;23(1):146. doi:10.3390/ijms23010146
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–573. doi:10.1016/j.cardiores.2005.12.002
  • Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370. doi:10.3389/fonc.2019.01370
  • Benjamin MM, Khalil RA. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Exp Suppl. 2012;103:209–279. doi:10.1007/978-3-0348-0364-9_7
  • Tokuhara CK, Santesso MR, Oliveira GS, et al. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci. 2019;27:e20180596. doi:10.1590/1678-7757-2018-0596
  • Ra H-J, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26(8):587–596. doi:10.1016/j.matbio.2007.07.001
  • Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg J-O. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 2011;278(1):28–45. doi:10.1111/j.1742-4658.2010.07920.x
  • Shimoda M, Ohtsuka T, Okada Y, Kanai Y. Stromal metalloproteinases: crucial contributors to the tumor microenvironment. Pathol Int. 2021;71(1):1–14. doi:10.1111/pin.13033
  • Cabral-Pacheco GA, Garza-Veloz I, Castruita-de la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. doi:10.3390/ijms21249739
  • Azevedo A, Prado AF, Antonio RC, Issa JP, Gerlach RF. Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin Pharmacol Toxicol. 2014;115(4):301–314. doi:10.1111/bcpt.12282
  • Zhang X, Ares WJ, Taussky P, Ducruet AF, Grandhi R. Role of matrix metalloproteinases in the pathogenesis of intracranial aneurysms. Neurosurg Focus. 2019;47(1):E4. doi:10.3171/2019.4.FOCUS19214
  • Brkic M, Balusu S, Libert C, Vandenbroucke RE. Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm. 2015;2015:620581. doi:10.1155/2015/620581
  • Behl T, Kaur G, Sehgal A, et al. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives. Int J Mol Sci. 2021;22(3):1413. doi:10.3390/ijms22031413
  • Parrish AR. Matrix metalloproteinases in kidney disease: role in pathogenesis and potential as a therapeutic target. Prog Mol Biol Transl Sci. 2017;148:31–65. doi:10.1016/bs.pmbts.2017.03.001
  • Zakiyanov O, Kalousová M, Zima T, Tesař V. Matrix metalloproteinases in renal diseases: a critical appraisal. Kidney Blood Press Res. 2019;44(3):298–330. doi:10.1159/000499876
  • Gueders MM, Foidart J-M, Noel A, Cataldo DD. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol. 2006;533(1–3):133–144. doi:10.1016/j.ejphar.2005.12.082
  • Houghton AM. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 2015;44–46:167–174. doi:10.1016/j.matbio.2015.02.002
  • Paiva KBS, Granjeiro JM. Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog Mol Biol Transl Sci. 2017;148:203–303. doi:10.1016/bs.pmbts.2017.05.001
  • Naim A, Pan Q, Baig MS. Matrix Metalloproteinases (MMPs) in liver diseases. J Clin Exp Hepatol. 2017;7(4):367–372. doi:10.1016/j.jceh.2017.09.004
  • Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27. doi:10.1111/j.1742-4658.2010.07919.x
  • Radisky DC, Bissell MJ. Matrix metalloproteinase-induced genomic instability. Curr Opin Genet Dev. 2006;16(1):45–50. doi:10.1016/j.gde.2005.12.011
  • Farina AR, Mackay AR. Gelatinase B/MMP-9 in tumour pathogenesis and progression. Cancers. 2014;6(1):240–296. doi:10.3390/cancers6010240
  • Kwan JA, Schulze CJ, Wang W, et al. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J. 2004;18(6):690–692. doi:10.1096/fj.02-1202fje
  • Rajabi M, Mousa SA. The role of angiogenesis in cancer treatment. BioMedicines. 2017;5(4):34. doi:10.3390/biomedicines5020034
  • Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57–83. doi:10.1016/j.critrevonc.2019.02.010
  • Czekierdowski A, Czekierdowska S, Daniłoś J, Rogala E, Nowicka A. Vasculogenic mimicry and matrix metalloproteinase MMP-9 expression in women with ovarian tumors. Prz Menopauzalny. 2012;11(2):108–114.
  • Wei S, Juan C, Xiurong L, Jie Y. Study on the expression of MMP-9 and NF-κB proteins in epithelial ovarian cancer tissue and their clinical value. BIO Web Conf. 2017;8:1059. doi:10.1051/bioconf/20170801059
  • Davidson B, Goldberg I, Gotlieb WH, et al. High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma. Clin Exp Metastasis. 1999;17(10):799–808. doi:10.1023/a:1006723011835
  • Sakata K, Shigemasa K, Nagai N, Ohama K. Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary. Int J Oncol. 2000;17(4):673–681.
  • Brun J-L, Cortez A, Commo F, Uzan S, Rouzier R, Daraï E. Serous and mucinous ovarian tumors express different profiles of MMP-2, −7, −9, MT1-MMP, and TIMP-1 and -2. Int J Oncol. 2008;33(6):1239–1246.
  • Brun J-L, Cortez A, Lesieur B, Uzan S, Rouzier R, Daraï E. Expression of MMP-2, −7, −9, MT1-MMP and TIMP-1 and −2 has no prognostic relevance in patients with advanced epithelial ovarian cancer. Oncol Rep. 2012;27(4):1049–1057. doi:10.3892/or.2011.1608
  • Vos MC, van der Wurff AAM, Bulten J, et al. Limited independent prognostic value of MMP-14 and MMP-2 expression in ovarian cancer. Diagn Pathol. 2016;11(1):34. doi:10.1186/s13000-016-0485-3
  • Jeleniewicz W, Cybulski M, Nowakowski A, et al. MMP-2 mRNA expression in ovarian cancer tissues predicts patients‘response to platinum-taxane chemotherapy. Anticancer Res. 2019;39(4):1821–1827. doi:10.21873/anticanres.13289
  • Morales-Vásquez F, Castillo-Sánchez R, Gómora MJ, et al. Expression of metalloproteinases MMP-2 and MMP-9 is associated to the presence of androgen receptor in epithelial ovarian tumors. J Ovarian Res. 2020;13(1):86. doi:10.1186/s13048-020-00676-x
  • Sillanpää S, Anttila M, Voutilainen K, et al. Prognostic significance of matrix metalloproteinase-9 (MMP-9) in epithelial ovarian cancer. Gynecol Oncol. 2007;104(2):296–303. doi:10.1016/j.ygyno.2006.09.004
  • Ge H, Luo H. Overview of advances in vasculogenic mimicry – a potential target for tumor therapy. Cancer Manag Res. 2018;10:2429–2437. doi:10.2147/CMAR.S164675
  • Wechman SL, Emdad L, Sarkar D, Das SK, Fisher PB. Vascular mimicry: triggers, molecular interactions and in vivo models. Adv Cancer Res. 2020;148:27–67. doi:10.1016/bs.acr.2020.06.001
  • Hujanen R, Almahmoudi R, Salo T, Salem A. Comparative analysis of vascular mimicry in head and neck squamous cell carcinoma: in vitro and in vivo approaches. Cancers. 2021;13(19):4747. doi:10.3390/cancers13194747
  • Manenti L, Paganoni P, Floriani I, et al. Expression levels of vascular endothelial growth factor, matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 and 2 in the plasma of patients with ovarian carcinoma. Eur J Cancer. 2003;39(13):1948–1956. doi:10.1016/s0959-8049(03)00427-1
  • Xu D, Su C, Guo L, et al. Predictive significance of serum MMP-9 in papillary thyroid carcinoma. Open Life Sci. 2019;14(1):275–287. doi:10.1515/biol-2019-0031
  • Sheen-Chen S-M, Chen H-S, Eng H-L, Sheen -C-C, Chen W-J. Serum levels of matrix metalloproteinase 2 in patients with breast cancer. Cancer Lett. 2001;173(1):79–82. doi:10.1016/s0304-3835(01)00657-7
  • Acar A, Onan A, Coskun U, et al. Clinical significance of serum MMP-2 and MMP-7 in patients with ovarian cancer. Med Oncol. 2008;25(3):279–283. doi:10.1007/s12032-007-9031-1
  • Li W, Cui Z, Kong Y, Liu X, Wang X. Serum levels of S100A11 and MMP-9 in patients with epithelial ovarian cancer and their clinical significance. Biomed Res Int. 2021;2021:7341247. doi:10.1155/2021/7341247
  • Zhang W, Yang H-C, Wang Q, et al. Clinical value of combined detection of serum matrix metalloproteinase-9, heparanase, and cathepsin for determining ovarian cancer invasion and metastasis. Anticancer Res. 2011;31(10):3423–3428.
  • Ławicki S, Będkowska E, Szumarska-Gacuta E, et al. Concentration and diagnostic utility of metalloproteinase-9 (MMP-9) in patients with ovarian cancer. Diagn Lab. 2013;49(3):335.
  • Ławicki S, Głażewska EK, Sobolewska M, Będkowska GE, Szmitkowski M. Plasma levels and diagnostic utility of macrophage colony-stimulating factor, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 as new biomarkers of breast cancer. Ann Lab Med. 2016;36(3):223–229. doi:10.3343/alm.2016.36.3.223
  • Coticchia CM, Curatolo AS, Zurakowski D, et al. Urinary MMP-2 and MMP-9 predict the presence of ovarian cancer in women with normal CA125 levels. Gynecol Oncol. 2011;123(2):295–300. doi:10.1016/j.ygyno.2011.07.034
  • Postawski K, Rechberger T, Jakimiuk AJ, Skorupski P, Bogusiewicz M, Jakowicki JA. Interstitial collagenase (MMP-1) activity in human ovarian tissue. Gynecol Endocrinol. 1999;13(4):273–278. doi:10.3109/09513599909167566
  • Cossins J, Dudgeon TJ, Catlin G, Gearing AJ, Clements JM. Identification of MMP-18, a putative novel human matrix metalloproteinase. Biochem Biophys Res Commun. 1996;228(2):494–498. doi:10.1006/bbrc.1996.1688
  • Behrens P, Rothe M, Florin A, Wellmann A, Wernert N. Invasive properties of serous human epithelial ovarian tumors are related to Ets-1, MMP-1 and MMP-9 expression. Int J Mol Med. 2001;8(2):149–154. doi:10.3892/ijmm.8.2.149
  • Stenman M, Paju A, Hanemaaijer R, et al. Collagenases (MMP-1, −8 and −13) and trypsinogen-2 in fluid from benign and malignant ovarian cysts. Tumour Biol. 2003;24(1):9–12. doi:10.1159/000070655
  • Stadlmann S, Pollheimer J, Moser PL, et al. Cytokine-regulated expression of collagenase-2 (MMP-8) is involved in the progression of ovarian cancer. Eur J Cancer. 2003;39(17):2499–2505. doi:10.1016/j.ejca.2003.08.011
  • Wang S, Jia J, Liu D, et al. Matrix metalloproteinase expressions play important role in prediction of ovarian cancer outcome. Sci Rep. 2019;9(1):11677. doi:10.1038/s41598-019-47871-5
  • Hantke B, Harbeck N, Schmalfeldt B, et al. Clinical relevance of matrix metalloproteinase-13 determined with a new highly specific and sensitive ELISA in ascitic fluid of advanced ovarian carcinoma patients. Biol Chem. 2003;384(8):1247–1251. doi:10.1515/BC.2003.137
  • Laitinen A, Hagström J, Mustonen H, et al. Serum MMP-8 and TIMP-1 as prognostic biomarkers in gastric cancer. Tumour Biol. 2018;40(9):1010428318799266. doi:10.1177/1010428318799266
  • Wang H, Li H, Yan Q, et al. Serum matrix metalloproteinase-13 as a diagnostic biomarker for cutaneous squamous cell carcinoma. BMC Cancer. 2021;21(1):816. doi:10.1186/s12885-021-08566-1
  • Bogusiewicz M, Rechberger T, Jakimiuk AJ, Skorupski P, Jakowicki JA, Postawski K. Evaluation of matrix metalloproteinases-1 and −3 concentrations in the tunica albuginea, the apical wall of atretic follicles and the corpus luteum of normal human ovaries. Gynecol Endocrinol. 2000;14(1):25–31. doi:10.3109/09513590009167656
  • Mueller J, Brebeck B, Schmalfeldt B, Kuhn W, Graeff H, Höfler H. Stromelysin-3 expression in invasive ovarian carcinomas and tumours of low malignant potential. Virchows Arch. 2000;437(6):618–624. doi:10.1007/s004280000261
  • Périgny M, Bairati I, Harvey I, et al. Role of immunohistochemical overexpression of matrix metalloproteinases MMP-2 and MMP-11 in the prognosis of death by ovarian cancer. Am J Clin Pathol. 2008;129(2):226–231. doi:10.1309/49LA9XCBGWJ8F2KM
  • Escalona RM, Kannourakis G, Findlay JK, Ahmed N. Expression of TIMPs and MMPs in ovarian tumors, ascites, ascites-derived cells, and cancer cell lines: characteristic modulatory response before and after chemotherapy treatment. Front Oncol. 2022;11:796588. doi:10.3389/fonc.2021.796588
  • Cymbaluk-Płoska A, Chudecka-Głaz A, Pius-Sadowska E, Machaliński B, Menkiszak J, Sompolska-Rzechuła A. Suitability assessment of baseline concentration of MMP3, TIMP3, HE4 and CA125 in the serum of patients with ovarian cancer. J Ovarian Res. 2018;11(1):1. doi:10.1186/s13048-017-0373-9
  • Tanimoto H, Underwood LJ, Shigemasa K, et al. The matrix metalloprotease pump-1 (MMP-7, Matrilysin): a candidate marker/target for ovarian cancer detection and treatment. Tumour Biol. 1999;20(2):88–98. doi:10.1159/000030051
  • Wang F-Q, So J, Reierstad S, Fishman DA. Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer. 2005;114(1):19–31. doi:10.1002/ijc.20697
  • Sillanpää SM, Anttila MA, Voutilainen KA, et al. Prognostic significance of matrix metalloproteinase-7 in epithelial ovarian cancer and its relation to β-catenin expression. Int J Cancer. 2006;119(8):1792–1799. doi:10.1002/ijc.22067
  • Ripley D, Tunuguntla R, Susi L, Chegini N. Expression of matrix metalloproteinase-26 and tissue inhibitors of metalloproteinase-3 and −4 in normal ovary and ovarian carcinoma. Int J Gynecol Cancer. 2006;16(5):1794–1800. doi:10.1111/j.1525-1438.2006.00714.x
  • Gershtein ES, Levkina NV, Digayeva MA, Laktionov KP, Tereshkina IV, Kushlinsky NE. Matrix metalloproteinases 2, 7, and 9 and tissue inhibitor of metalloproteinases-1 in tumors and serum of patients with ovarian neoplasms. Bull Exp Biol Med. 2010;149(5):628–631. doi:10.1007/s10517-010-1010-4
  • Meinhold-Heerlein I, Bauerschlag D, Zhou Y, et al. An integrated clinical-genomics approach identifies a candidate multi-analyte blood test for serous ovarian carcinoma. Clin Cancer Res. 2007;13(2):458–466. doi:10.1158/1078-0432.CCR-06-0691
  • Będkowska GE, Gacuta E, Zajkowska M, et al. Plasma levels of MMP-7 and TIMP-1 in laboratory diagnostics and differentiation of selected histological types of epithelial ovarian cancers. J Ovarian Res. 2017;10(1):39. doi:10.1186/s13048-017-0338-z
  • Cheng T, Li F, Wei R, et al. MMP26: a potential biomarker for prostate cancer. J Huazhong Univ Sci Technolog Med Sci. 2017;37(6):891–894. doi:10.1007/s11596-017-1823-8
  • Puttabyatappa M, Jacot TA, Al-Alem LF, et al. Ovarian membrane-type matrix metalloproteinases: induction of MMP14 and MMP16 during the periovulatory period in the rat, macaque, and human. Biol Reprod. 2014;91(2):34. doi:10.1095/biolreprod.113.115717
  • Vos MC, van der Wurff AA, Last JT, et al. Immunohistochemical expression of MMP-14 and MMP-2, and MMP-2 activity during human ovarian follicular development. Reprod Biol Endocrinol. 2014;12(1):12. doi:10.1186/1477-7827-12-12
  • Testuri M, Daghero H, Rey G, Acosta G, Bernachin J, Marco M. Expression of membrane type- matrix metalloproteinases in common epithelial malignant tumors of the ovary. JSM Clin Pathol. 2019;4:7.
  • Afzal S, Lalani E-N, Poulsom R, et al. MT1-MMP and MMP-2 mRNA expression in human ovarian tumors: possible implications for the role of desmoplastic fibroblasts. Hum Pathol. 1998;29(2):155–165. doi:10.1016/s0046-8177(98)90226-x
  • Adley BP, Gleason KJ, Yang XJ, Stack MS. Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: high level expression in clear cell carcinoma. Gynecol Oncol. 2009;112(2):319–324. doi:10.1016/j.ygyno.2008.09.025
  • Wang H, Qi C, Wan D. MicroRNA-377-3p targeting MMP-16 inhibits ovarian cancer cell growth, invasion, and interstitial transition. Ann Transl Med. 2021;9(2):124. doi:10.21037/atm-20-8027
  • Bruney L, Conley KC, Moss NM, Liu Y, Stack MS. Membrane-type I matrix metalloproteinase-dependent ectodomain shedding of mucin16/ CA-125 on ovarian cancer cells modulates adhesion and invasion of peritoneal mesothelium. Biol Chem. 2014;395(10):1221–1231. doi:10.1515/hsz-2014-0155
  • Kaimal R, Aljumaily R, Tressel SL, et al. Selective blockade of matrix metalloprotease-14 with a monoclonal antibody abrogates invasion, angiogenesis, and tumor growth in ovarian cancer. Cancer Res. 2013;73(8):2457–2467. doi:10.1158/0008-5472.CAN-12-1426
  • Klupp F, Neumann L, Kahlert C, et al. Serum MMP7, MMP10 and MMP12 level as negative prognostic markers in colon cancer patients. BMC Cancer. 2016;16(1):494. doi:10.1186/s12885-016-2515-7