98
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Total Antioxidant Status in Stable Chronic Obstructive Pulmonary Disease

ORCID Icon, , , ORCID Icon, &
Pages 2411-2419 | Published online: 06 Oct 2020

References

  • ZinelluE, ZinelluA, FoisAG, CarruC, PirinaP. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res. 2016;17(1):1–11. doi:10.1186/s12931-016-0471-z26739476
  • RahmanI, KinnulaVL. Strategies to decrease ongoing oxidant burden in chronic obstructive pulmonary disease. Expert Rev Clin Pharmacol. 2012;5(3):293–309. doi:10.1586/ecp.12.1622697592
  • SinghS, VermaSK, KumarS, et al. Evaluation of oxidative stress and antioxidant status in chronic obstructive pulmonary disease. Scand J Immunol. 2017;85(2):130–137. doi:10.1111/sji.1249828256060
  • RahmanIMW. Antioxidant pharmacological therapies for COPD. Curr Opin Pharmacol. 2013;12(3):256–265. doi:10.1016/j.coph.2012.01.015.ANTIOXIDANT
  • EisnerMD, AnthonisenN, CoultasD, et al. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718. doi:10.1164/rccm.200811-1757ST20802169
  • LiY, ChoMH, ZhouX. What do polymorphisms tell us about the mechanisms of COPD? Clin Sci. 2017;131(24):2847–2863. doi:10.1042/cs2016071829203722
  • ZhongN, WangC, YaoW, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med. 2007;176(8):753–760. doi:10.1164/rccm.200612-1749OC17575095
  • BaiJW, ChenXX, LiuS, YuL, XuJF. Smoking cessation affects the natural history of COPD. Int J COPD. 2017;12:3323–3328. doi:10.2147/COPD.S150243
  • ViniolC, VogelmeierCF. Exacerbations of COPD. Eur Respir Rev. 2018;27:170103. doi:10.1183/16000617.0103-201729540496
  • GanWQ, ManSFP, SenthilselvanA, SinDD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–580. doi:10.1136/thx.2003.01958815223864
  • Ben AnesA, FetouiH, BchirS, et al. Increased oxidative stress and altered levels of nitric oxide and peroxynitrite in tunisian patients with chronic obstructive pulmonary disease: correlation with disease severity and airflow obstruction. Biol Trace Elem Res. 2014;161(1):20–31. doi:10.1007/s12011-014-0087-425074430
  • KoechlinC, CouillardA, CristolJP, et al. Does systemic inflammation trigger local exercise-induced oxidative stress in COPD? Eur Respir J. 2004;23(4):538–544. doi:10.1183/09031936.04.0006900415083751
  • CanU, YerlikayaFH, YosunkayaS. Role of oxidative stress and serum lipid levels in stable chronic obstructive pulmonary disease. J Chin Med Assoc. 2015;78(12):702–708. doi:10.1016/j.jcma.2015.08.00426431591
  • AydemirY, AydemirÖ, ŞengülA, et al. Comparison of oxidant/antioxidant balance in COPD and non-COPD smokers. Heart Lung. 2019;48(6):566–569. doi:10.1016/j.hrtlng.2019.07.00531371032
  • LakhdarR, DendenS, MouhamedMH, et al. Correlation of EPHX1, GSTP1, GSTM1, and GSTT1 genetic polymorphisms with antioxidative stress markers in chronic obstructive pulmonary disease. Exp Lung Res. 2011;37(4):195–204. doi:10.3109/01902148.2010.53509321309732
  • RahmanI, SkwarskaE, MacNeeW. Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease. Thorax. 1997;52(6):565–568. doi:10.1136/thx.52.6.5659227727
  • StanojkovicI, Kotur-StevuljevicJ, MilenkovicB, et al. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respir Med. 2011;105(Suppl.1):31–37. doi:10.1016/S0954-6111(11)70008-720696561
  • EkinS, ArısoyA, GunbatarH, et al. The relationships among the levels of oxidative and antioxidative parameters, FEV1 and prolidase activity in COPD. Redox Rep. 2017;22(2):74–77. doi:10.1080/13510002.2016.113929326870880
  • TavilaniH, NadiE, KarimiJ, GoodarziMT. Oxidative stress in COPD patients, smokers and non-smokers subjects. Respir Care. 2012;57(12):2090–2094. doi:10.4187/respcare.0180922710284
  • MirzaS, ClayRD, KoslowMA, ScanlonPD. COPD guidelines: a review of the 2018 GOLD report. Mayo Clin Proc. 2018;93(10):1488–1502. doi:10.1016/j.mayocp.2018.05.02630286833
  • BeehKM, GlaabT, StowasserS, et al. Characterisation of exacerbation risk and exacerbator phenotypes in the POET-COPD trial. Respir Res. 2013;14:1–8. doi:10.1186/1465-9921-14-11623289668
  • SulskySI, FullerWG, Van LandinghamC, OgdenMW, SwaugerJE, CurtinGM. Evaluating the association between menthol cigarette use and the likelihood of being a former versus current smoker. Regul Toxicol Pharmacol. 2014;70(1):231–241. doi:10.1016/j.yrtph.2014.07.00925017361
  • GuoE, LiuP, QianZ, et al. Number of cigarettes smoked per day, smoking index, and intracranial aneurysm rupture: a case–control study. Front Neurol. 2018;9:1–7. doi:10.3389/fneur.2018.0038029403429
  • MillerMR, HankinsonJ, BrusascoV, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi:10.1183/09031936.05.0003480516055882
  • Rice-EvansC, MillerNJ. Total antioxidant status in plasma and body fluids. Methods Enzymol. 1994;234:279–293. doi:10.1016/0076-6879(94)34095-17808295
  • GoskerHR, BastA, HaenenGRMM, et al. Altered antioxidant status in peripheral skeletal muscle of patients with COPD. Respir Med. 2005;99(1):118–125. doi:10.1016/j.rmed.2004.05.01815672860
  • SignorelliSS, NeriS, SciacchitanoS, et al. Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas. 2006;53(1):77–82. doi:10.1016/j.maturitas.2005.03.00116325025
  • Oliveras-LópezMJ, Ruiz-PrietoI, Bolaños-RíosP, De la CerdaF, MartínF, Jáuregui-LoberaI. Antioxidant activity and nutritional status in anorexia nervosa: effects of weight recovery. Nutrients. 2015;7(4):2193–2208. doi:10.3390/nu704219325830944
  • LeoF, RossodivitaAN, SegniCD, et al. Frailty of obese children: evaluation of plasma antioxidant capacity in pediatric obesity. Exp Clin Endocrinol Diabetes. 2016;124(8):481–486. doi:10.1055/s-0042-10528027169687
  • KeaneyJF, LarsonMG, VasanRS, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–439. doi:10.1161/01.ATV.0000058402.34138.1112615693
  • BenMS, SfaxiI, TabkaZ, BenSH, RouatbiS. Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: a case-control study. Libyan J Med. 2014;9(1):1–13. doi:10.3402/ljm.v9.23873
  • VivodtzevI, MoncharmontL, TamisierR, et al. Quadriceps muscle fat infiltration is associated with cardiometabolic risk in COPD. Clin Physiol Funct Imaging. 2018;38(5):788–797. doi:10.1111/cpf.1248129105276
  • MeyerA, ZollJ, CharlesAL, et al. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol. 2013;98(6):1063–1078. doi:10.1113/expphysiol.2012.06946823377494
  • HongJY, LeeCY, LeeMG, KimYS. Effects of dietary antioxidant vitamins on lung functions according to gender and smoking status in Korea: a population-based cross-sectional study. BMJ Open. 2018;8(4):1–9. doi:10.1136/bmjopen-2017-020656
  • BewleyMA, BuddRC, RyanE, et al. Opsonic phagocytosis in chronic obstructive pulmonary disease is enhanced by Nrf2 agonists. Am J Respir Crit Care Med. 2018;198(6):739–750. doi:10.1164/rccm.201705-0903oc29547002
  • MizumuraK, MaruokaS, ShimizuT, GonY. Role of Nrf2 in the pathogenesis of respiratory diseases. Respir Investig. 2019;1–8. doi:10.1016/j.resinv.2019.10.003
  • SidhayeVK, HolbrookJT, BurkeA, et al. Compartmentalization of anti-oxidant and anti-inflammatory gene expression in current and former smokers with COPD. Respir Res. 2019;20(1):1–9. doi:10.1186/s12931-019-1164-130606211
  • FordES, LiC, CunninghamTJ, CroftJB. Associations between antioxidants and all-cause mortality among US adults with obstructive lung function. Br J Nutr. 2014;112(10):1662–1673. doi:10.1017/S000711451400266925315508
  • ZemansRL, JacobsonS, KeeneJ, et al. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir Res. 2017;18(1):1–10. doi:10.1186/s12931-017-0597-728049526