99
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Enhanced immunosuppressive effects of 3,5-bis[4(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one, an α, β-unsaturated carbonyl-based compound as PLGA-b-PEG nanoparticles

, &
Pages 1421-1436 | Published online: 30 Apr 2019

References

  • Arshad L, Haque MA, Bukhari SNA, Jantan I. An overview of structure–activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem. 2017;9(6):605–626. 28394628
  • Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age old spice with modern targets. Trends Pharmacol Sci. 2009;30(2):85–94. doi:10.1016/j.tips.2008.11.00219110321
  • Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int Biochem Cell Biol. 2009;41(1):40–59. doi:10.1016/j.biocel.2008.06.010
  • Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials. 2010;31(25):6597–6611. doi:10.1016/j.biomaterials.2010.04.06220553984
  • Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141–153.19594223
  • Gordon ON, Luis PB, Sintim HO, Schneider C. Unraveling curcumin degradation autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J Biol Chem. 2015;290(8):4817–4828. doi:10.1074/jbc.M114.61878525564617
  • Mock CD, Jordan BC, Selvam C. Recent advances of curcumin and its analogues in breast cancer prevention and treatment. RSC Adv. 2015;5(92):75575–75588. doi:10.1039/C5RA14925H27103993
  • Mehanny M, Hathout RM, Geneidi AS, Mansour S. Studying the effect of physically‐adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loaded‐PLGA nanoparticles. J Biomed Mater Res B. 2017;105(5):1433–1445. doi:10.1002/jbm.a.36028
  • Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; curcumin and its derivatives. J Control Release. 2016;10(225):1–30. doi:10.1016/j.jconrel.2016.01.018
  • Hathout RM, Al-Ahmady SH, Metwally AA. Curcumin or bisdemethyoxycurcumin for nose-to-brain treatment of Alzheimer disease? A bio/chemo-informatics case study. Nat Prod Res. 2017. doi:10.1080/14786419.2017.1385017
  • Farid MM, Hathout RM, Fawzy M, Abou-Aisha K. Silencing of the scavenger receptor (Class B–type 1) gene using siRNA-loaded chitosan nanaoparticles in a HepG2 cell model. Colloids Surf B Biointerfaces. 2014;123:930–937. doi:10.1016/j.colsurfb.2014.10.04525466457
  • El-Marakby EM, Hathout RM, Taha I, Mansour S, Mortada ND. A novel serum-stable liver targeted cytotoxic system using valerate-conjugated chitosan nanoparticles surface decorated with glycyrrhizin. Int J Pharm. 2017;525(1):123–138. doi:10.1016/j.ijpharm.2017.03.08128392279
  • Bisht S, Maitra A. Systemic delivery of curcumin: 21st century solutions for an ancient conundrum. Curr Drug Discov Technol. 2009;6(3):192–199.19496751
  • Knop K, Hoogenboom R, Fischer D, Us S. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49(36):6288–6308. doi:10.1002/anie.200902672
  • Oupicky D, Ogris M, Howard KA, Dash PR, Ulbrich K, Seymour LW. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol Ther. 2002;5(4):463–472. doi:10.1006/mthe.2002.056811945074
  • Arshad L, Jantan I, Bukhari SNA, et al. Inhibitory effects of α, β-unsaturated carbonyl-based compounds and their pyrazoline derivatives on the phagocytosis of human neutrophils. Med Chem Res. 2018;27(5):1460–1471.
  • Arshad L, Jantan I, Bukhari SNA, Fauzi M. 3, 5-Bis [4-(diethoxymethyl) benzylidene]-1-methyl-piperidin-4-one, a novel curcumin analogue, inhibits cellular and humoral immune responses in male Balb/c mice. Curr Pharm Biotechnol. 2018;19(468–482). doi:10.2174/1389201019666181022115405
  • Fessi H, Puisieux F, Devissaguet J, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–R4. doi:10.1016/0378-5173(89)90281-0
  • Jin H, Pi J, Zhao Y, et al. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale. 2017;9(42):16365–16374. doi:10.1039/c7nr06898k29052674
  • Thomson A, Whiting P, Simpson J. Cyclosporine: immunology, toxicity and pharmacology in experimental animals. Agents Actions. 1984;15(3–4):306–327.6395677
  • Borel JF, Feurer C, Magnee C, Stähelin H. Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunol. 1977;32(6):1017–1025.
  • Kumar S, Jyoti A, Keshari RS, Singh M, Barthwal MK, Dikshit M. Functional and molecular characterization of NOS isoforms in rat neutrophil precursor cells. Cytom A. 2010;77(5):467–477.
  • Ilangkovan M, Jantan I, Mesaik MA, Bukhari SNA. Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in Wistar-Kyoto rats. Drug Des Develop Ther. 2015;9:4917–4930.
  • Ahmad W, Jantan I, Kumolosasi E, Bukhari SNA. Immunostimulatory effects of the standardized extract of Tinospora crispa on innate immune responses in Wistar Kyoto rats. Drug Des Develop Ther. 2015;9:2961–2973.
  • Varalakshmi C, Ali AM, Pardhasaradhi B, et al. Immunomodulatory effects of curcumin in vivo. Inter Immunopharmacol. 2008;8(5):688–700. doi:10.1016/j.intimp.2008.01.008
  • Gupta A, Khajuria A, Singh J, et al. Immunomodulatory activity of biopolymeric fraction RLJ-NE-205 from Picrorhiza kurroa. Int Immunopharmacol. 2006;6(10):1543–1549. doi:10.1016/j.intimp.2006.05.00216919826
  • Koffuor GA, Amoateng P, Andey TA. Immunomodulatory and erythropoietic effects of aqueous extract of the fruits of Solanum torvum Swartz (Solanaceae). Pharmacogn Res. 2011;3(2):130. doi:10.4103/0974-8490.81961
  • Dao TPT, Nguyen TH, Ho TH, et al. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material. Adv Nat Sci. 2014;5(3):035013.
  • Missirlis D, Hubbell J, Tirelli N. Thermally-induced glass formation from hydrogel nanoparticles. Soft Matter. 2006;2(12):1067–1075. doi:10.1039/b607437e
  • Xie X, Tao Q, Zou Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J Agric Food Chem. 2011;59(17):9280–9289. doi:10.1021/jf202135j21797282
  • Karve S, Werner ME, Cummings ND, et al. Formulation of diblock polymeric nanoparticles through nanoprecipitation technique. J Vis Exp: JoVE. 2011;55.
  • Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Inter J Pharm. 2006;307(1):93–102. doi:10.1016/j.ijpharm.2005.10.010
  • Müller RH. Colloidal Carriers for Controlled Drug Delivery and Targeting: Modification, Characterization and In Vivo Distribution. Stutgart, Germany: Taylor & Francis, Wissenschaftliche Verlagsgesellschaft; 1991 227 figures.
  • Dandekar PP, Jain R, Patil S, et al. Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci. 2010;99(12):4992–5010. doi:10.1002/jps.2219120821383
  • Tang L, Azzi J, Kwon M, et al. Immunosuppressive activity of size-controlled PEG-PLGA nanoparticles containing encapsulated cyclosporine A. J Transpl. 2012;2012.
  • Yoshida N, Yoshikawa T, Tanaka Y, et al. A new mechanism for anti‐inflammatory actions of proton pump inhibitors–inhibitory effects on neutrophil endothelial cell interactions. Alimen Pharmacol Ther. 2000;14(s1):74–81. doi:10.1046/j.1365-2036.2000.014s1074.x
  • Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678. doi:10.1038/nri215617717539
  • Burg ND, Pillinger MH. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol. 2001;99(1):7–17. doi:10.1006/clim.2001.500711286537
  • Olza J, Aguilera CM, Gil-Campos M, et al. Myeloperoxidase is an early biomarker of inflammation and cardiovascular risk in prepubertal obese children. Diabetes Care. 2012;35(11):2373–2376. doi:10.2337/dc12-061422912422
  • Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396–405. doi:10.1016/j.bbadis.2009.12.00920079433
  • Rodríguez MC, Rivas GA. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta. 2009;78(1):212–216. doi:10.1016/j.talanta.2008.11.00219174227
  • Wang H, Wang M, Chen J, et al. A polysaccharide from Strongylocentrotus nudus eggs protects against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int Immunopharmacol. 2011;11(11):1946–1953. doi:10.1016/j.intimp.2011.06.00621723424
  • De la Fuente M, Victor V. Anti‐oxidants as modulators of immune function. Immunol Cell Biol. 2000;78(1):49–54. doi:10.1046/j.1440-1711.2000.00884.x10651929
  • Luckheeram RV, Zhou R, Verma AD, et al. CD4(+)T cells: differentiation and functions. Clin Develop Immunol. 2012;2012:925135. doi:10.1155/2012/925135
  • Farrar JD, Asnagli H, Murphy KM. T helper subset development: roles of instruction, selection, and transcription. J Clin Investig. 2002;109(4):431–435. doi:10.1172/JCI1509311854312
  • Akagawa KS, Tokunaga T. Delayed‐Type Hypersensitivity (DTH) in BCG‐Sensitized Mice. Microbiol Immunol. 1979;23(5):403–414.159397
  • Benacerraf B. Opinion: a hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978;120(6):1809–1812.77879
  • Amirghofran Z, Azadmehr A, Javidnia K. Haussknechtia elymatica: a plant with immunomodulatory effects. Iran J Immunol. 2007;4(1):26–31.17652840
  • Anuradha C, Aukunuru J. Preparation, characterisation and in vivo evaluation of bis-demethoxy curcumin analogue (BDMCA) nanoparticles. Trop J Pharm Res. 2010;9:51–58. doi:10.4314/tjpr.v9i1.52036
  • Francis AP, Murthy PB, Devasena T. Bis-demethoxy curcumin analog nanoparticles: synthesis, characterization, and anticancer activity in vitro. J Nanosci Nanotechnol. 2014;14:4865–4873.24757955
  • Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol. 2008;76:1590–1611. doi:10.1016/j.bcp.2008.08.00818775680
  • Tobıo M, Sanchez A, Vila A, et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B. 2000;18:315–323. doi:10.1016/S0927-7765(99)00157-5
  • Muthu M. Nanoparticles based on PLGA and its co-polymer: an overview. Asian J Pharm. 2009;3:266–273. doi:10.4103/0973-8398.59948